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Abstract 

Proper maintenance of manufacturing equipment is crucial to ensure productivity and product quality. To improve maintenance decis ion 
support, and enable prediction-as-a-service there is a need to provide the context required to differentiate between process and machine 
degradation. Correlating machine conditions with process and inspection data involves data integration of different types such as condition 
monitoring, inspection and process data. Moreover, data from a variety of sources can appear in different formats and with different sampling 
rates. This paper highlights those challenges and presents a semantic framework for data collection, synthesis, and knowledge sharing in a 
Cloud environment for predictive maintenance. 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Maintenance plays an important and supportive role in the 
production. Effective maintenance policy improves quality, 
efficiency, and effectiveness of manufacturing operation and 
could influence the productivity and profitability of a 
manufacturing process [1]. Diagnostics and prognostics are 
two important aspects in a Condition-based Maintenance 
(CBM) program [2]. In literature several approaches for 
machining operation and machine tool condition monitoring 
have been reported [3]. 

To improve diagnostics and prognostics for better 
maintenance decision making, there is a need to better 
correlate process and inspection data with machine condition 
to differentiate between process and machine degradation [4]. 
Generally, diagnostics and prognostics models require 
significant amounts of historical condition monitoring and 
event data, as the uncertainty of these models decreases when 
data become more extensive. The means to synthesise smaller 
available data sets to generate extensive, representative 
historical condition monitoring and event data sets remains an 
open research question [5]. 

To solve those problems more detail information about 
manufacturing asset across its lifetime need to be gathered, 
accessed and processed. Targeting cloud-based predictive 
maintenance, this research aims at developing a semantic 
framework for the context-aware approach. 

The remainder of the paper is organised as follows. Section 
2 reviews background. Section 3 highlights available sources 
of data and benefits of its aggregation. Proposed semantic 
framework is presented in Section 4. Section 5 provide an 
example how this framework can be used to retrieve relevant 
information. Finally, Section 6 conclude the paper. 

2. Backgrounds 

2.1. Disparate data sources 

Development and implementation of Information and 
Communication Technologies (ICT) in the industry in past 
decade brings new possibilities and challenges. More data are 
gathered, however, stored and processed in disparate and 
heterogeneous systems as Computerised Maintenance 
Management System (CMMS) for maintenance record-
keeping, Condition Monitoring (CM) for asset health state 
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monitoring and Supervisory Control and Data Acquisition 
(SCADA) systems for monitoring process and controlling the 
asset. 

2.2. Industry 4.0 

According to the Federal Ministry of Education and 
Research, Germany (BMBF) after Monostori [6], “Industry is 
on, the threshold of the fourth industrial revolution frequently 
noted as Industry 4.0. This revolution is led by development 
and implementation of Cyber-Physical Systems. A similar 
concept is also researched under the name of Cloud 
Manufacturing. Cloud Manufacturing paradigm is a result of a 
combination of cloud computing, the Internet of Things, 
service-oriented technologies and high-performance 
computing [7]. It transforms manufacturing resources and 
capabilities into manufacturing services. It is not the simple 
deployment of manufacturing software tools in the computing 
cloud. The physical resources integrated into the 
manufacturing cloud are able to offer adaptive, secure and on-
demand manufacturing services over the Internet of Things 
[8]. 
 

 

Fig. 1. Cloud-enabled monitoring, prognosis and maintenance [5]. 

Overview of cloud-enabled prognostics approach within 
cyber-physical concept has been visualised in Fig.1. Cloud-
enabled prognosis benefits from both advanced computing 
capability and information sharing for intelligent decision-
making [5]. 

2.3. Context 

Recently a context awareness is an approach gaining more 
focus from researchers in the field of CBM and predictive 
maintenance. This well-known concept in some other fields 
could be beneficial when employed in CBM and Asset 
Management [9]. 

2.3.1. Context definition 

In predictive analytics, two sets of information can be 
distinguished namely condition monitoring and context. 
Condition monitoring data are used to estimate health state of 
monitored equipment while context information provides 

support for a better understanding of it. Context information 
consists of two types of factors: conditions that affect health 
state estimation, and condition that affects degradation 
processes. An example of factors that belongs to the first 
context group is types of used sensor, acquisition parameters, 
and operational condition at measurement time. Operational 
conditions and performed maintenance actions are the 
examples of contextual information belonging to the other 
group. Overview of different context modelling techniques 
and its usage in predictive maintenance has been reported in 
[10]. 

2.4. Ontology 

In computer and information science, ontology determines 
formal specifications of knowledge in a domain explicit 
specification of the objects, concepts, and other entities 
(vocabulary) that exist in some area of interest and the 
relationships that hold among them [11]. Ontology model O 
can be described as a set O={C, RS, I}, where C is a 
collection of concepts in the ontology called also classes, I is 
set of particulars (instances of classes, individuals), and RS is 
set of relations between two concepts or particulars. Ontology 
Web Language (OWL) [12] is one of common ontology 
formalization languages. Reasoning over ontology specified 
with OWL is done with the use of Descriptive Logics that 
makes it more powerful than just reasoning within Resource 
Description Framework (RDF), as more complicated relations 
can be represented. Moreover, Semantic Web Rule Language 
(SWRL) [13] extend the capability of OWL to represent 
knowledge by means of more complex rules. According to 
[14], ontology-based context modelling allows:  

 Knowledge sharing between computational entities by 
having a common set of concepts about the concept; 

 Logic inference by exploiting various existing logic 
reasoning mechanisms to deduce high-level, conceptual 
context from low-level, raw context;  

 Knowledge reuse by reusing well-defined Web ontologies 
of different domains, e.g. a large-scale context ontology 
can be composed without starting from scratch. 

2.4.1. Standards 

There are some standardisation initiatives to enable the 
integration of disparate maintenance IT systems.  

MIMOSA (Machinery Information Management Open 
Systems Alliance) [15] is a not-for-profit trade association 
dedicated to developing and encouraging the adoption of open 
information standards for Operations and Maintenance in 
manufacturing, fleet, and facility environments. MIMOSA's 
open standards enable collaborative asset lifecycle 
management in both commercial and military applications. 
OSA-EAI (System Architecture for Enterprise Application 
Integration), OSA-CBM (Open Systems Architecture for 
Condition Based Maintenance), MIMOSA standards are 
compliant with and form the informative reference to the 
published ISO 13374-1 standard for machinery diagnostic 
systems. According to [16] MIMOSA and OSA-CBM are the 
most evolved standards that cope with CBM technology. 
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Another standard that provides maintenance taxonomy is 
ISO 14224: Petroleum and Natural gas industries – Collection 
and exchange of reliability and maintenance data for 
equipment. Some typical oil and gas equipment related terms 
have been categorised as to taxonomy, boundary definition, 
inventory data and failure modes. These data are specific for 
each equipment unit. A standardization approach has been 
applied for classification and subdivision of units. This 
reduces the total number of different data categories and 
definitions, while at the same time there are fewer tailor-made 
definitions and codes for each individual equipment unit. 

2.5. Machine Tool condition monitoring 

Zhou at al. [17] proposed integrated condition monitoring 
and fault diagnosis for modern manufacturing system with the 
use of internal controller signals and sensors. Remote 
monitoring and maintenance system for thousands of machine 
tools linked to a central server has been developed in [18]. 
There exists high potential in knowledge capitalisation in 
population width approach, as for example existing system 
reported in [19] connects to over 14 000 machine tools 
worldwide. 

Condition monitoring in [20] dynamically affect the entries 
in the capability ontology by providing the current status of 
the machines. If the machine is overloaded or faulty then it 
will be not shown up in results from a query of the machine 
that can perform specified task.  

3. Valuable data/information 

Across industrial ICT systems, there exist a big amount of 
valuable information from diagnostics and prognostics 
perspective. To mention some of them:  

 Asset related data: information about machine tools across 
factory – type of machines and their location; hierarchical 
structure – division into units, subunits, components, spare 
parts. 

 Work orders (WO): machine/unit/component on which 
maintenance action was performed; type of maintenance 
action (corrective, preventive); descriptions (symptoms, 
comments on performed actions); list of acquired spare 
parts for WO. 

 Condition monitoring: vibration, ball-bar measurements; 
geometry measurements. 

 SCADA: number of cycles, type of produced variant. 
 Internal Machine Tool Controller data. 

The ideal scenario is to have access to all those data and be 
able to retrieve relevant information, that could be utilised 
within context-aware approach and provide support for 
predictive maintenance, see Fig. 2. 

Examples provided in following part of the section are 
based on real data retrieved from ICT systems in one 
company within the automotive manufacturing industry. 

Aggregated information can be presented to the human 
decision maker in a new way, as depicted in Fig.3. where 
trend information from condition monitoring are enriched 

with indications of performed maintenance actions, and 
replaced spare parts. Automatic query of information related 
to specified machine/unit/component will improve 
interpretation of data by including that information as 
contextual information. 
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Fig. 2. Information access for context-aware prediction. 
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Fig. 3. Aggregation of information from disparate sources in one view: XY, 
YZ, XZ – trends from ball-bar measurements; MaintMatReq – acquired spare 
parts; WO – performed work orders. 
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Fig. 4. Condition monitoring data aligned to component instances  
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Querying for components of the same type and associated 
condition monitoring data can increase the amount of 
available datasets that can be used to train the diagnostics and 
prognostics models. In Fig. 4. an example of ball-bar 
measurements aligned with instances of replaced ball-screws 
of the same type across the available population of machines 
is presented. Taking into consideration the type of performed 
maintenance work (corrective or preventive) involved in the 
replacement, obtained trends can be differentiated to ones 
related to actual lifetime, and to ones related to censored 
lifetime. 

Continuously acquired information from machine tool 
controllers can provide additional contextual information 
about machine utilisation. As an example in Fig. 5. calculated 
mechanical energy delivered to machine tool’s linear axes is 
presented. It is based on on-line acquired information about 
axes velocities and applied torque. Energy corresponds to the 
load axes have been exposed to, and could be used as a 
context information. Despite the same operation is performed, 
the average energy consumption per cycle varies noticeably. 
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Fig. 5. Variation of machine tool main linear axes energy consumption during 
one production day 

4. Semantic Framework  

Overview of the semantic framework for predictive 
maintenance is presented in Fig. 6. With the use of ontology 
base mapping and semantic querying, it allows accessing 
information from disparate sources. Moreover, provision of a 
service-oriented data access within the cloud concept allows 
obtaining the relevant information despite its location. 
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Fig. 6. Semantic framework overview 

4.1. Ontology-based data retrieval 

To be able to access the local data sources through the 
domain ontology, there is need to maintain the link between 
the domain ontology and the data sources. There exist some 
technology that allows performing this mapping with different 
autonomy levels. 

RDB to RDF mapping language (R2RML) [21], D2RQ 
Mapping Language [22], RDB2RDF Direct Mapping [23]. 

After that semantic query language e.g. simple protocol 
and RDF query language (SPARQL) [24] can be used to 
retrieve local data represented in RDF (R2RML, D2RQ). 
Ontology-based information representation and retrieve are 
similar to the one proposed in the semantic framework 
presented in [25]. 

4.1.1. Manual mapping 

Manually create a mapping using e.g. R2RML. This is the 
case when vocabulary and local ontology of RDB differ much 
from a domain ontology, see Fig. 7.a. 

4.1.2. Automatic and semi-automatic mapping 

In this case, local ontology is retrieved from RDB by direct 
mapping. Than ontology, alignment tool has to be applied to 
automatically generate R2RML file corresponding to this 
alignment. When two ontologies cannot be fully automatically 
aligned, there is a need for human intervention to manually 
modify or add mappings between ontologies, as depicted in 
Fig. 7.b. 

To facilitate the automatic mapping, the standardization of 
common ontology for data represented in RDBs are needed. 
Some initiatives in this direction have been mentioned earlier 
in section 2.4.1.  
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Fig. 7. (a) manual mapping; (b) automatic/semi-automatic mapping 

4.2. Domain ontologies 

Domain ontology captures knowledge within the domain, 
specific area, and perspective. Examples of different 
perspectives that the same asset in a manufacturing 
environment can be looked from could be: production, 
maintenance, quality. 

Potential domain ontologies that could be distinguished 
are: Asset ontology – structure of asset, Functional ontology – 
performed function, Work Order ontology – performed 
maintenance actions. In most cases, ontologies overlaps and it 
allows to make bridges between them and this provides an 
opportunity to use data and knowledge across linked domains. 
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However, those bridges if not explicit have to be defined by 
expert across the domains. 

5. Demonstration Case 

To illustrate the potential usefulness of proposed approach 
a demonstration case based on part of data that have been 
explained in section 3 is presented. 

In a relational database of CMMS, there are tables that 
represent the hierarchical structure of the asset. Data model is 
depicted in Fig. 8. This model corresponds to ontology’s 
classes and dependencies presented in Fig.9. Retrieving data 
stored in RDB, the ontology can be enriched with instances of 
individuals that corresponds to existing physical machines, 
units, components and its hierarchical structure. 
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Fig. 8. Data model for the asset hierarchical structure 

 

Fig. 9. Part of Asset hierarchy ontology 

 

Fig. 10. Part of Functional ontology 

Additional ontologies that have been creating are 
Functional ontology presented in Fig.10. and Measurement 
ontology depicted in Fig.11. A functional ontology defines 
functions that can be performed by objects. In presented part, 
there have been defined three functions related to a linear 
movement that are translations in 3 main directions (Tr_X, 
Tr_Y, and Tr_Z). Measurement ontology can describe 
different types of measurements with an indication of what 
function performance it corresponds to. In depicted case, the 
ball-bar measurement is represented that corresponds to a 
measurement in plain created by motion in two main 
directions at a time. 

 

 

Fig. 11. Part of Measurement ontology 

Ball-bar measurements are retrieved form of XML files. It 
includes a field that consists of machine_id, an identification 
number of a machine tool on which the measurement has been 
performed. It is the same number as Object_ID key in the 
asset database. This leads to straightforward connections 
between those ontologies as in Table 1. 

Table 1. The bridge between Measurement and Asset ontologies. 

Measurement:Object  owl:sameAs  Asset:Object 

 
The used sameAs property belongs to OWL vocabulary, 

and indicates that two terms are synonyms, e.g. identify the 
same class or individual. 

Next step in defining ontologies and connections is to map 
defined functions with objects that are responsible for it. In 
presented case of machine tool axes it can be done by 
following a set of rules from Table 2. represented in human 
readable form (? denotes a variable). 

Table 2. Mapping of functions to asset objects. 

Object:has_name(?x, ”X Axis”)  =>  Object:has_function(?x,Function:Tr_X) 

Object:has_name(?x, ”Y Axis”)  =>  Object:has_function(?x,Function:Tr_Y) 

Object:has_name(?x, ”Z Axis”)  =>  Object:has_function(?x,Function:Tr_Z) 

 
In this case value of one property of an object (has_name) 

is used to assign the value of another property (has_function). 
Up to this point following mappings have been performed: 
measurements to machines, and machines’ components to its 
functions. Table 3. presents rule specified to map 
measurement instances with relevant objects within the 
machine tool hierarchical structure (units or components). 
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Table 3. Mapping of measurements to corresponding asset objects . 

Measurement:measures(?measurement,?function) ˄  

 ˄ Measurement:performed_on(?measurement,?objectX) ˄ 

 ˄ Object:has_function(?objectY,?function) ˄ 

 ˄ Object:part_of(?objectY, ?objectX) => 

 => Object:has_measurement(?objectY, ?measurement) 

 
Now combined ontology can be queried for 

has_measurement property to retrieve all relevant 
measurements. For example, for individual corresponding to 
the X axis of machine A, it will return all ball-bare 
measurements performed on machine A that has been 
executed in XY plane and XZ plane, as those measurements 
involve the motion in X direction. 

This approach can be used as a support in selecting suitable 
diagnostics and prognostics method on its early stages by 
checking what types of data are available and the amount of 
available relevant data. Moreover, data from the whole 
population of identical or similar components could be 
retrieved. Identical components could be defined as the one 
that uses the same spare part. However, data from a 
population of components cannot be simply aggregate, 
without consideration of contextual information. It needs to be 
mentioned, that defining similarity in context domain is not a 
trivial task. 

6. Conclusions 

This paper presents important data available within ITC 
systems in the manufacturing industry that have to be 
integrated to facilitate improvement in diagnostics and 
prognostics for CBM. A semantic framework with the use of 
ontology-based approach for data aggregation is proposed to 
support context-aware cloud–enabled diagnostics and 
prognostics in application to the maintenance of 
manufacturing asset. To indicate potential benefits, some 
examples originated from manufacturing industry have been 
presented. 

Future work will focus on developing and applying more 
advanced context modelling and prediction method that will 
be able to utilise the contextual information to improve 
prediction reliability. 
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