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A B S T R A C T

Effective energy management of microgrid is essential due to significant growth of renewable energy resources
like photovoltaic (PV) systems. Reactive power compensation capability provided by grid-tie PV inverters when
PV power is unavailable increases the efficiency of the PVs utilization in microgrids. In this paper, a robust
model combining particle swarm optimization (PSO) algorithm and primal–dual interior point (PDIP) method is
proposed for optimal energy management of the microgrid, considering VAR compensation mode of the PV
inverters. Besides, both the uncertainty of insolation forecast and forced outages of system components (diesel
generators and branches) are taken into account. A bi-objective method is employed to detect the worst-case
probable 24-h scenario with the severest effects on the system security. Finally, the energy management problem
of the microgrid is solved under the obtained worst-case scenario, minimizing the microgrid operation cost, as
well as satisfying the physical constraints of the microgrid and insolation limitation of the PVs. Simulation
studies have been carried out on a modified version of IEEE 33-bus standard distribution system operating as a
microgrid with variable PV generation. The results demonstrate the effectiveness of the proposed robust model
for the microgrid energy management.

1. Introduction

Various drawbacks of traditional centralized power plants such as
the high prices of fuels, environmental issues, low efficiency, high ex-
penses of transmission network development, and the growing demand
for the electricity have recently provided a number of challenges in the
power systems. To address these issues, distributed energy resources
(DER) have recently drawn much attention [1,2]. Microgrids are in-
troduced to facilitate the integration of DERs into the power system.
Microgrid is a small distribution system with local DERs which is
connected to the traditional centralized electrical grid but is able to
operate autonomously. A microgrid could be a kind of smart grid
equipped with the advanced computer communication technologies
and smart meters providing more flexibility and reliability for control
and protection of the system. The microgrid operator optimizes the
provided energy by the local DERs and the traditional centralized
generation to supply the local loads. Interaction between DERs and the
system infrastructure is the major feather of a microgrid. This interac-
tion provides storage and flexibility abilities needed for demand man-
agement [3]. Photovoltaic (PV) system is one of the most effective DERs

in microgrids. Local generation and reducing the congestion rate of the
transmission networks are the main advantages of the PVs. However the
uncertainty of the solar irradiation availability of grid-tie PVs may
provide some problems in active and reactive power balance and vol-
tage regulation in microgrids [4].

Optimal dispatches of renewable energy resources (RESs) have been
addressed in several works [5–13]. In [5], two sub-problems of dis-
tribution network reconfiguration and distribution system operation are
integrated considering the uncertainties associated with wind, PV and
load variation. In [9], a multi-objective optimization formulation in-
corporating both of the design problem and the optimal operation of
distribution system is presented. In [13], a generalized model is pro-
posed for distribution system optimal planning considering three as-
pects of modern distribution networks. First, a probabilistic approach
considering the hourly load profile is employed; second, it is assumed
that the distribution system is able to operate with one or multiple
microgrids operating in islanding mode; finally the penetration level of
RESs is taken into account.

The challenges with the grid-tie PV systems have been addressed in
several studies. The impacts of utility-scale PV units on dynamic
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Nomenclature

Abbreviations

ASG Adaptive scenario generation
BDSG bi-objective desired solution generator
BOP bi-objective problems
BLI branches loading index
CSI Current source inverter
DIG Diesel generator
DER distributed energy resource
FOR forced outage rate
MOP multi-objective optimization problem
MCS Monte Carlo simulation
MOC microgrid operation cost
MIPS Matlab Interior Point Solver
NLP nonlinear programming
PV photovoltaic
PSO particle swarm optimization
PDIP primal-dual interior point
PF power factor
PDF probability density function
SCADA supervisory control and data acquisition
RES renewable energy resource
RPCF reactive power compensation function
RWM roulette wheel mechanism
VD voltages deviations from the reference bus
VSI Voltage source inverter
VOLL the value of lost load
WCSD worst-case scenario detection

Indices

c system components (Diesel generators or branches)
d diesel generators and PVs
e objective functions
g diesel generators (DIGs)
h equal arc-shaped parts of angle θ
i, j system buses
it PSO iterations
k types of system loads
n non-contingent scenario
p PVs at each bus
s scenarios
t,τ operation hours
u insolation states
w worst-case scenario

Parameters

FORc forced outage rate of system components
IMPP current at maximum power point for the PVs (A)
IOC open-circuit current for the PVs (A)
Insu insolation level obtained by the rotate wheel mechanism

(KW/m2)
KI, KV current and voltage temperature coefficients for the PVs

(A/°C and V/°C)
LNSi

P,max maximum active load shedding (KW)
NB total number of buses
NS total number of final most probable 24-h scenarios em-

ployed in robust and stochastic models
NSC total number of generated 24-h scenarios employed in the

MCVM method

NPVi total number of PVs at each bus
NDIGi total number of DIGs at each bus
Nk total number of load types
NT total number of operation hours
Nmd total number of PV modules
Nins total number of insolation levels
Ncom total number of system components (DIGs and branches)
PPVp i t s

av
, , , available output power of PVs obtained by the insolation

modelling (KW)
PDi t, active power demand (KW)
PSUBi t,

max feeder capacity (KW)
PDIGg i,

min lower limit for active power output of DIGs (KW)
PDIGg i,

max upper limit for active power output of DIGs (KW)
PDERd active power output of DIGs and PVs (KW)
QDi t, reactive power demand (KW)
QDERd reactive power output of DIGs and PVs (KVAr)
RDG DG penetration rate
Sij

max capacity of lines (MVA)
SRg i,

max upper limit for spinning reserves provided by DIGs (KW)
SRreq total required spinning reserve of the microgrid at each

hour
SPDER

MOC
d sensitivity of microgrid operation cost to deviation in the

active power generation dispatch of DER d
SPDER

VD
d sensitivity of voltage deviation index to deviation in the

active power generation dispatch of DER d
SPDER

BLI
d sensitivity of branches loading index to deviation in the

active power generation dispatch of DER d
SQDER

MOC
d sensitivity of microgrid operation cost to deviation in the

reactive power generation dispatch of DER d
SQDER

VD
d sensitivity of voltage deviation index to deviation in the

reactive power generation dispatch of DER d
SQDER

BLI
d sensitivity of branches loading index to deviation in the

reactive power generation dispatch of DER d
Tcell, Tamb PV cell and ambient temperatures (°C)
Tnom nominal operating temperature of PV cell (°C)
URRg i, up-ramp rates of DIGs
DRRg i, down-ramp rates of DIGs
VOLL value of lost load ($/KWh)
Vi

ref reference value of the voltage (1 p.u)
Vi

min minimum voltage magnitude (V)
Vi

max maximum voltage magnitude (V)
VMPP voltage at maximum power point for the PVs (V)
VOC open-circuit voltage for the PVs (V)
we weighting coefficient of the objectives
Yij s, magnitude of admittance matrix elements (℧)
Zc,τ,s a binary variable which is equal to 0 if component c has

been out of service for more than one hour at time τ;
otherwise it is equal to 1

αk i, load importance factor
γu τ

ins
, probability of uth insolation level

ρPSUBi t, cost of active power of substation ($/KWh)
ρPVp i t, , operation and maintenance (O&M) cost of PV ($/KWh)
ρDIGg i t, , O&M cost of DIG ($/KWh)
ρlosst cost of active power losses ($/KWh)
ρQSUBi t, cost of reactive power of substation ($/KVArh)
ρg i t

SR
, , cost of spinning reserve of DIG ($/KWh)

θij s, angle of admittance matrix elements (rad)
βs

0 type of scenario (1: non-contingent scenario, 0: contingent
scenario)

πt,s probability of sth scenario up to time t
ωu τ s

ins
, , binary indicators representing whether uth insolation level

occurs (equal to 1) or not (equal to 0)
ωc,τ,s binary indicators representing the status of cth component

(1: available, 0: forced outage)
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(transient and small-signal stability) and static (voltage stability) of the
transmission system are investigated in [14] and [15], including model
of the PV array and converter, as well as associated control systems.
Buses voltages limits are controlled by changing feed-in reactive power
from the utility-scale PV units. A power factor control is employed to
procure the reactive power set point. A voltage and frequency control is
proposed in [15], coordinating the controls for the PV inverter and
maximum power point tracking. In [4], the uncertainty in solar gen-
eration is stochastically modeled in the optimal operation of distribu-
tion network. Modeling of realistic PV generation in the proposed sto-
chastic formulation improves the cost of power provision and
minimizes the thermal loss. In [16], a probabilistic multi-objective
method is presented for the operation of distribution networks im-
proving the system voltage and power factor control. The uncertainties
associated with solar irradiance of PVs and unbalanced loads are
modeled. In [17], a systematic model is proposed for optimal dispatch
of PV inverters in distribution feeders focusing on both active and re-
active power production; the optimal PV inverters dispatch are de-
termined for the ancillary services provision. The effect of PV pene-
tration on the distribution system voltage profile is evaluated in [18]. In
[19], a multi-objective model is presented for PV allocation in dis-
tribution system minimizing the power loss and improving the voltage
profile. Time-varying loads are modeled to determine the PV penetra-
tion level in the distribution system. Ref. [20] presents a voltage un-
balance sensitivity analysis to determine the optimal number and the
size of single-phase PV systems in distribution network with multiple
PV penetration levels. To this end, a stochastic method is proposed to
verify the effectiveness of any random combination of PV systems in the
network.

Solar irradiation and thereby PV active power generation are
usually available during the middle hours of the day; so the PV inverters
are useless and with no financial benefits during a large part of the 24 h
period. This available inverter capacity can be utilized to produce re-
active power for power loss reduction and voltage regulation during
hours with low solar irradiation [1]. This capability to control the re-
active power provides several ancillary services such as congestion
management, power losses reduction and power/voltage control [21].

Microgrid energy management problem has been addressed in

several works [22–26]. In [22], a multi-objective framework is pro-
posed for optimal energy management of the grid-tied microgrid con-
sidering wind speed forecast. Wavelet neural network is employed to
improve the accuracy of the wind power forecast. In this work, eco-
nomic dispatch based NSGA-II is used to solve the proposed multi-ob-
jective optimization problem (MOP). A new microgrid energy man-
agement scheme with the objectives of microgrid operation cost
minimization and pollutant emission minimization is presented in [23].
The balance of charging/discharging amounts of energy storage sys-
tems over a day is considered by an interactive process. Besides, a graph
is employed to observe the limits of the charge state. In this paper,
multi-objective uniform water cycle algorithm is proposed to solve the
proposed MOP. In [24], the microgrid energy management problem is
solved minimizing the operation cost and carbon emissions. Besides, the
disturbances of intermittent renewable energy resources and uncertain
loads are mitigated. Multi-objective cross entropy algorithm is em-
ployed to solve the proposed MOP. The problem of optimal sizing of
battery storage is combined with the problem of optimal economic
dispatches of the microgrid resources in [25]. The proposed model
considers the daily price profile of the electricity and natural gas, limits
of battery state of charge and the non-linearity of the PV output power.
In [26], the benefits of coupling of a storage system with a RES and a
complex of electrical loads in a microgrid, is verified by a sensitivity
analysis, from both economic and energy point of views. In this work,
the interactions among the different microgrid subsections are con-
sidered on a yearly base. Ref. [27] presents an evolutionary technique
named improved bat algorithm to procure an optimized operation
management of the microgrid in the presence of battery energy storage
sizing.

In several works such as [10,13,19] the weighted sum approach is
employed to solve the proposed MOPs. This method obtains a set of
Pareto solutions by varying the weights of multiple objectives. How-
ever, this method cannot provide the Pareto solutions for the problems
with non-convex fronts, which reduces its applicability. ε-constraint
method is used to solve the MOP proposed in [16]. This method de-
termines the Pareto solutions by converting the problem into a para-
meter-dependent scalar optimization problem. Several solutions of the
MOPs are obtained by solving the scalar problem for a variety of

λc,τ,s share of cth component in πt,s

Variables

ABLI average branches loading index
AENS average energy not supplied
AVD average sum of the buses voltage deviation from the re-

ference bus
BLIs branches loading index
F x( )e objective value
F x( )e

min minimum value of the objective functions
F x( )e

max maximum value of the objective functions
LNSk i t s

P
, , , active load curtailment of different types (KW)

LNSk i t s
Q
, , , reactive load curtailment of different types (KW)

MOC total operation cost of microgrid
MOCn operation cost of microgrid under non-contingent scenario
MOCw operation cost of microgrid under worst-case scenario
PSUBi t s, , active power of substation (KW)
PSUBi t,

0 scheduled value of active power of substation (KW)
PPVp i t s, , , active power output of PVs at each bus (KW)
PPV p i t, ,

0 scheduled value of active power output of PVs at each bus
(KW)

PDIGg i t s, , , active power output of DIGs at each bus (KW)
PDIGg i t, ,

0 scheduled value of active power output of DIGs at each
bus (KW)

PFp i t
PV
, , power factor of PVs

PFp i t
DIG
, , power factor of DIGs

Plosst,s hourly value of active power loss (KW)
QSUBi t s, , reactive power of substation (KVAr)
QSUBi t,

0 scheduled value of reactive power of substation (KVAr)
QPVp i t s, , , reactive power output of PVs at each bus (KVAr)
QPV p i t, ,

0 scheduled value of reactive power output of PVs at each
bus (KVAr)

QDIGg i t s, , , reactive power output of DIGs at each bus (KVAr)
QDIGg i t, ,

0 scheduled value of reactive power output of DIGs at each
bus (KVAr)

Sij t s, , apparent power flow of lines (MVA)
SRg i t, , spinning reserve of DIGs at each bus (KW)
SRg i t, ,

0 scheduled value of spinning reserve of DIGs at each bus
(KW)

Vi,t,s voltage magnitude (V)
VDs sum of buses voltage deviation from the reference bus
X stg1 vector of first stage decision variables obtained by the PSO

algorithm
X stg2 vector of second stage decision variables obtained by the

PDIP method
δij t s, , voltage angle (rad)
μ x( )e normalized values of the objectives
μ total normalized value
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parameters. The main disadvantage of this method is high computation
burden due to the necessity to approximate the Pareto front. In some
other works such as [7,9,11,22–24], a set of non-dominated solutions of
MOPs are procured by meta-heuristic based approaches like NSGA-II,
MOUWCA, MOCE and MOPSO. Although these approaches remedy the
above drawbacks, there is no guarantee that the obtained set of non-
dominated solutions is a good approximate of the real Pareto front.
Furthermore, for all of the above methods, a decision making approach,
as in [10], is needed to find the best compromise solution among the
approximated Pareto front set.

In the above studies on the microgrid energy management, the
uncertainties are not incorporated in the problem formulation.
However, a scenario-based programming model is essential to decrease
the risk of renewable energy intermittency and uncertainty, as well as
unsuccessful commitment of generators. In [28], a scenario-based sto-
chastic programming model is proposed for optimal energy manage-
ment of the microgrid minimizing the cost and emission. The un-
certainties of load forecast, wind and photovoltaic available energy, as
well as the market price are taken into account. However, in scenario-
based stochastic approaches the system uncertainties are modeled by
considering a large number of possible scenarios which may lead to
large-sized, computationally challenging problems. Besides, the prob-
abilistic functional (e.g. expected value) of the objective functions and
constraints are considered in the stochastic optimization problem.
Share of each scenario in the expected values of the objectives is
computed with respect to the normalized value of that scenario prob-
ability. This does not guarantee the optimal optimization of the ob-
jective functions in the mathematical optimization scenario-based
problem. Moreover, although the most probable scenarios are con-
sidered in the stochastic model, there is no guarantee that a con-
tingency out of the considered scenarios does not occur. Consequently,
it is essential to make the system robust enough to withstand probable
contingencies out of the considered scenarios. Furthermore, both wait
and see, and here and now stochastic problems require representation
of uncertainties in the probabilistic space and then the propagation of
these uncertainties through the model to achieve the probabilistic re-
presentation of the output [29]. This provides a new challenge for the
microgrid operator to aggregate the scenarios to obtain the final values
for the scenario dependent variables. For example in [30], weighted-
average (expected value) of the variables over all scenarios are applied.
To remedy this weakness, a robust optimization model is proposed in
the present paper for optimal energy management of the microgrid
aiming at operation cost minimization. The energy management pro-
blem of the microgrid is solved under worst-case scenario making the
system robust enough to withstand probable contingencies. The hybrid
particle swarm optimization (PSO) algorithm and primal-dual interior
point (PDIP) method is employed to solve the proposed microgrid en-
ergy management problem. To this end, the nonlinear programming
(NLP) problem of the microgrid energy management is solved by the
PDIP method, while the dispatches of the reserves resources and op-
timal power factors (PFs) of DERs are determined as the particles’ po-
sitions in the PSO algorithm. In the hybrid method, the dispatches of
the reserves resources and optimal PFs of DERs, which are defined as
scenario independent variables (first stage decision variables) obtained
by the PSO algorithm, act as constant parameters in the NLP problem
solved by the PDIP method. This reduces the complexity and non-
linearity of the problem in compared to the traditional methods in
which all the decision variables are obtained as scenario dependent
variables (second stage decision variables). Besides, the need for a
scenario aggregation approach to obtain the final values of these vari-
ables (the dispatches of the reserves resources and optimal PFs of DERs)
is eliminated. Furthermore, bi-objective desired solution generator
(BDSG) approach which is presented in our other work, is employed to
solve the bi-objective problems (BOPs) for detecting the worst-case
probable scenario, maximizing the security indices of buses voltages
deviations from the reference bus (VD) and branches loading index

(BLI) [31]. BDSG approach is able to achieve the desired solution for
both convex and non-convex BOPs, without acquiring the complete
Pareto front through approximation. The main contributions of this
paper with respect to the previous works can be summarized as: (1)
combining the advantages of both classic and heuristic methods to fa-
cilitate applying the PDIP method to the microgrid energy management
problem, (2) considering VAR compensation mode of grid-tie PV in-
verters to optimize the 24-h utilization of PVs in the microgrid energy
management, (3) proposing a bi-objective approach for detecting the
worst-case probable scenario among the 24-h generated scenarios, and
(4) proposing a validation method based on Monte Carlo simulation,
which is referred to as MCVM method, to evaluate the performance and
potential of the proposed robust model versus the traditional stochastic
one.

The rest of the paper is organized as follows: Section 2 describes the
formulation for the robust energy management of the microgrid with
PV inverters. The employed robust model is detailed in Section 3. Be-
sides, the proposed MCVM validation method is presented in this sec-
tion. Section 4 presents a case study to verify the efficiency of the
proposed method, and Section 5 presents the conclusion.

2. Problem formulation

In order to focus on the underlying ideas of the optimal utilization of
grid-tie PV inverters, and for the sake of simplicity, it is assumed that
the microgrid includes just photovoltaic and diesel generator (DIG)
DERs and other types of DERs are ignored. In this section, first the
model of the PV generation is presented. Then, the proposed robust
model for optimal energy management of the microgrid is presented. At
the end, the proposed MCVM validation method is described.

2.1. PV generation model

In grid-tie PV systems, the output direct currents (DC) of the solar
modules are converted to the alternate current (AC) by an inverter.
Current source inverters (CSI) are able to supply only active power
(operating at PF= 1). Consequently, when the solar irradiation is low
especially during the night, such PV systems become idle and are in-
capable of feeding the grid loads [32]. Voltage source inverter (VSI) has
recently received increasingly interest. In contrast to the CSI, VSI has
the capability to inject and absorb reactive power to the electric grid
according to the grid demand. This capability provides a new function
which is referred to as reactive power compensation function (RPCF).
RPCF is effective when the insolation is weak or during the night. By
this function the inverters are able to absorb as little as possible active
power from the grid, set their DC bus voltages within limits, and inject
the desired reactive power into the grid. Microgrid energy management
is improved economically and technically by RPCF. Power factor of the
PV system is set based on the supplied energy by the PV system varying
with the solar irradiation level. On the basis of microgrid operation
requirements, the direction of the voltage vector may be changed, so
that the inverter is absorbing reactive power from the grid [33].

In this paper, historical data are employed to generate a forecasting
model for the insolation at each hour. Accurate forecast of insolation,
leads to a more accurate energy management of the microgrid. To in-
crease the reliability of the prediction, dependable levels of the in-
solation forecast are extracted. To this end, a probability density
function (PDF) is generated for the insolation at each hour. As shown in
Fig. 1, the PDF of the insolation is separated into seven states with one
insolation forecast error standard deviation (σ) wide which are centered
on the zero mean. Here, the roulette wheel mechanism (RWM) is em-
ployed to generate scenarios for each hour. To this end, probabilities of
different insolation states obtained from the respective PDF are nor-
malized such that range of [0,1] is occupied by the normalized prob-
abilities, and their summation becomes equal to unity. Then, random
numbers are generated between 0 and 1, where each random number
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falls in the normalized probability range associated with an insolation
level. That insolation level is selected by the RWM for the corre-
sponding scenario [28].

Based on the insolation level obtained by the RWM (Insu), the
available output power of the PV module for each insolation state
(PPVu

av) is calculated by (1). Tcell in (1) denotes cell temperature and is
obtained by (2) [19].

⎜ ⎟= ⎛
⎝

⎞
⎠

− + −PPV N V I
V I

V K T Ins I K T( ) ( ( 25))u
av md

MPP MPP

OC SC
OC V cell

u
SC I cell

(1)

= + ⎛
⎝

− ⎞
⎠

T T Ins T 20
0.8

cell amb
u

nom

(2)

2.2. Uncertainties modelling

In addition to the insolation forecast uncertainty, the uncertainties
regarding the contingencies of system components (DIGs and branches)
are modeled by Monte Carlo simulation (MCS) based on their forced
outage rates (FORs) [30]. To this end, in each scenario of the MCS, a
number between [0,1] is randomly generated for each component, and
compared with its FOR. If the number generated for a component is
smaller than its FOR, then the component is out of service; otherwise, it
is available. This procedure is iterated for all DIGs and branches. The
procured insolation level by the RWM, as well as the status of DIGs and
branches determined by the MCS construct one scenario of the robust
model for an hour. The process continues until a number of scenarios
are generated for an hour. Adaptive scenario generation (ASG) algo-
rithm as described in [30] is used in this paper to generate 24-h sce-
narios. In the proposed ASG algorithm, the probability of sth generated
scenario up to hour t (πt,s) can be computed by (3) and (4). As shown in
(4), it is assumed that if a forced outage of a system component (DIG or
branch) occurs in an hour, it lasts for a specific number of hours. In-
creasing the number of scenarios for the proposed robust model results
in a better uncertainties modeling with the cost of higher computation
burden. Consequently, a scenario reduction technique is used to reduce
the number of generated scenarios while still retaining the essential
features of the employed ASG algorithm [30]. Employing the reduction
technique the most probable and dissimilar 24-h scenarios are extracted
(NS scenarios) for using in the proposed robust model.

∏ ∑ ∏= ⎛

⎝
⎜

⎞

⎠
⎟

= = =

π ω γ λ·t s
τ

t

u

N

u τ s
ins

u τ
ins

c

N

c τ s,
1 1

, , ,
1

, ,

ins com

(3)

= − + − + −λ ω FOR ω FOR Z Z[( (1 ) (1 ) )] (1 )c τ s c τ s c c τ s c c τ s c τ s, , , , , , , , , , (4)

2.3. Robust energy management of the microgrid

In this paper, a robust optimization model is proposed for the mi-
crogrid energy management problem, in which the worst-case probable
24-h scenario is detected. The microgrid energy management problem
is solved under the obtained worst-case scenario, making the system
‘robust’ enough to provide an adequate level of the network security. In
other words, the microgrid is utilized to be capable of withstanding a
major event with the severest effects on the system security. After de-
tection of the worst-case scenario, the microgrid energy management
problem is solved under this scenario, and the optimal dispatches of
DERs are obtained. Optimizing the operational scheduling of the mi-
crogrid resources under the worst-case scenario in the proposed robust
model provides more robust solutions with a relatively low computa-
tional burden in compared to the stochastic and probabilistic ap-
proaches. Besides, the optimality of the solutions is improved due to the
optimization of the real values of the objectives instead of the expected
values of the objectives. It is to be noted that two optimization problems
are solved in the proposed robust model for energy management of the
microgrid. First, the main problem of the microgrid energy manage-
ment with objective of operation cost minimization, second, bi-objec-
tive worst-case scenario detection (WCSD) problem, maximizing the
security indices of buses voltages deviations from the reference bus
(VD) and branches loading index (BLI).

2.3.1. Main problem
The main problem of the microgrid energy management is for-

mulated as a constrained nonlinear optimization problem. Non-con-
tingent scenario with no insolation error (σ=0) and component outage
(normal operation state), as well as the worst-case scenario are con-
sidered in the proposed formulation, as follows:

Objective function: The objective is to minimize the total operation
cost of the microgrid (MOC) which is sum of the operation costs under
the non-contingent scenario (MOCn) and the operation costs under
worst-case probable 24-h scenario (MOCw), as shown in (5). Operation
costs include the cost of active and reactive power supplied by the
substation (main grid), the operation cost of the DERs, and the cost of
active power losses. Besides, as shown in (6) and (7), cost of reserves
provided by DIGs is included in the non-contingent scenario, while the
respective penalties associated with the unserved loads are included in
the worst-case scenario. In fact, the costs of reserves deployment in the
post contingency states are included in energy cost under relevant
scenario. To prevent high penalty load curtailment, the priorities of
individual loads are taken into account by defining load importance
factors, which depend on the type and location of the loads [34].

= +Min MOC MOC MOCn w (5)
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Fig. 1. Discretization of the probability distribution of the insolation forecast.

I. Goroohi Sardou et al. Electrical Power and Energy Systems 98 (2018) 118–132

122



Constraints: The problem of optimal energy management of the
microgrid includes several practical constraints. The active power of
substation is limited by the feeder capacity as shown in (8). Constraints
(9) and (10) address the power flow equations, considering the active
and reactive power output of DERs. As shown in (10), it is possible for
PVs to absorb reactive power, depending on total reactive demand,
reactive output of DIGs, and the reactive power supplied by the sub-
station. Insolation limitation of PVs is addressed in (11). As shown in
(11), available output power of each PV obtained by the insolation
modelling (PPVp i t s

av
, , , ) is considered as the upper limit for the active

power output of that PV at each hour. The proposed formulation for the
optimal energy management of the microgrid allows utilization of the
RPCF available by the PVs. When the insolation is weak, a significant
part of reactive power demand can be supplied by the PV inverters (as
in (10)); this reduces the operation cost by decreasing the reactive
power supplied by the substation (as in (5)–(7)). Spinning reserves
provided by DIGs are limited by (12). Constraint (13) addresses the
total required spinning reserve of the microgrid at each hour. As shown
in (14) and (15), the power outputs of DIGs under non-contingent
scenario are limited by the scheduled dispatches of the reserves re-
sources; while under contingencies the power output deviations of the
DIGs from the normal state values are limited by the scheduled dis-
patches of the reserves resources. In fact, energy and reserves are
scheduled so that the system is remained secure under the contingent
scenarios, while there is minimum deviation in power output of DIGs
with respect to that of the non-contingent scenario. Response rate
limitations of the DIGs are shown in (16) and (17). The load curtailment
at each bus is restricted by (18). As shown in (19), no load curtailment
is allowed under non-contingent scenario. Constraints (20) and (21)
confine the power flow of the lines and the buses voltages, respectively.
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2.3.2. Worst-case scenario detection problem
To detect the worst-case scenario among NS most probable gener-

ated 24-h scenarios, the microgrid energy management problem is
solved under these scenarios with the objectives of maximization of the
sum of buses voltages deviations from the reference bus (VD), and
branches loading index (BLI), satisfying constraints (8)–(11), and
(15)–(18). This problem is called worst-case scenario detection (WCSD)
problem whose objectives are formulated in (22) and (23). Limits vio-
lation in the buses voltages and branches power flows are the main
security concerns of the microgrid operator. That is why indices of VD
and BLI are chosen as the objectives of the bi-objective WCSD problem.
After solving the bi-objective WCSD problem under NS generated most
probable 24-h scenarios, scenario under which the WCSD problem leads
to the solution with higher values of indices VD and BLI is chosen as the
worst-case probable scenario. In fact, the scenario with the severest
effects on the system security is detected.
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3. Solution methodology

The main difficulty with the MOPs including the conflicting objec-
tives is lack of a solution that allows for simultaneous optimality of all
objectives. Here, the BDSG approach which is proposed in our other
work is employed to solve the proposed bi-objective WCSD problems
[31]. Against the scalarization methods such as ε-constraint method,
and metaheuristic methods such as NSGA-II and MOPSO, BDSG ap-
proach provides the desired solution without need to obtain an ap-
proximation of the Pareto front. This significantly reduces the compu-
tational burden, and removes the necessity of employing a decision
making approach to find the best compromise solution among the
Pareto solutions.

3.1. BDSG approach

In this approach, we are looking for a Pareto solution of bi-objective
problem (BOP) shown in (24), which minimizes −μ x mμ x| ( ) ( )|2 1 . Where,
m is a positive real number which can be tuned based on the microgrid
operator preference. For instance, m=1 indicates second objective
(BLI) is as important as the first objective (VD) (w1= 1/2, w2= 1/2).
The objective functions are normalized by (25). The first step of BDSG
approach is to solve Problem (26) with a=0 and r=(1,m)T, where
“lexmin” means lexicographically minimizing the objective. It can be
shown that obtained solution of Problem (26) which is denoted as x0 is
a Pareto solution of BOP (24) [31]. Three cases are possible for x0:

Case 1: μ2(x0)=mμ1(x0): Here, x0 is the desired solution, and the
algorithm stops.

Case 2: μ2(x0)<mμ1(x0): In this case, first, as shown in Fig. 2 for a
typical BOP, parameter d0 which denotes the distance between μ(x0)
and the line μ2=mμ1 is computed. Then α and θ are calculated by (27)
and (28). To investigate whether Pareto solution x0 minimizes
|μ2(x)−mμ1(x)| over the Pareto frontier, the space ℝ2 is divided into
four regions with respect to the point μ(x0), as shown in (29).
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Let x be a Pareto solution such that ≠μ x μ x( ) ( )0 . If ∈μ x R( ) 1, then
it is dominated by x0; so it is not possible for x to be a Pareto solution.
Besides, if ∈μ x R( ) 3, then it dominates x0; so it is not possible for x0 to
be a Pareto solution. Consequently, μ x( ) is located in one of regions R2

or R4. If ∈μ x R( ) 4, then the distance between μ x( )0 and the line
μ2=mμ1 is less than the distance between μ x( ) and the line μ2=mμ1.
Therefore, ∈μ x R( ) 2, and the search space is confined to region R2.
Now, we are looking for Pareto solution x located in region R2 mini-
mizing |μ2(x)−mμ1(x)|. As the Pareto solutions located in R2, are not
dominated by points located in region ∪R R

1 4 , the constraint
⩽μ x μ x( ) ( )1 1

0 is added to the Problem (26), and Problem (30) is solved
to obtain all Pareto solutions in which the distance between their image

Fig. 2. Parameters α, θ and d0 for the BDSG approach.

Fig. 3. The algorithm of the proposed BDSG ap-
proach.
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and the line μ2=mμ1 is less than the distance between μ(x0) and the
line μ2=mμ1. In (30), a=0 and rh is calculated by (31). Parameter n in
(31) is a given fixed positive integer and denotes the number of choices
for the parameter rh. Larger value of n leads to a better approximation
of the desired solution.

+ + − ⩾ ⩽lex t μ x μ x s t a tr μ x μ x μ xmin( , ( ) ( )) . . ( ) 0 ( ) ( )h
1 2 1 1

0 (30)
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α h θ
n

h n1 cos ,sin , 1,2, ,h 2

(31)

Let (th, xh) be the optimal solution of Problem (30) in hth iteration.
If μ(xh)= μ(x0), we go to the next iteration (h= h+1); otherwise, the
distance between μ(xh) and the line μ2=mμ1, which is denoted as dh, is
computed. If dh < d0, then xh is the desired solution; otherwise x0 is the
desired solution. It is to be noted that, after procuring the first xh with

≠μ x μ x( ) ( )h 0 , the next iteration is not necessary. This is due to in-
creasing the value of dh by increasing the value of h.

Case 3: μ2(x0) > mμ1(x0): An approach similar to Case 2 is taken for
Case 3, except that (31) is replaced by (32).
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The above steps are summarized in the algorithm of the BDSG ap-
proach shown in Fig. 3.

3.2. Solution algorithm

Employing the BDSG approach for the BOP WCSD problems, several
single-objective sub-problems (as shown in (26) and (32)) are obtained
which should be solved. Hybrid PSO algorithm and PDIP method is
employed to solve all NLP problems including the main energy man-
agement problem of the microgrid and the sub-problems obtained by
the BDSG approach [7,35]. The connection of PSO algorithm, PDIP
method and BDSG approach for robust energy management of the mi-
crogrid is shown in Fig. 4. Interior point method is able to obtain ap-
proximate solutions of nonlinear-hard problems in polynomial time. In
interior point methods, the expensive operations can somewhat be
parallelized; consequently, they can better exploit multiprocessor
platforms; thereby tend to be faster on large problems [35]. Because of
this and due to the complexity of the proposed problem of optimal
hourly operation of the microgrid including the PVs, PDIP method is
employed to solve the NLP problems; this is while the first stage sce-
nario-independent decision variables including the optimal dispatches
of the reserves resources, and PFs of DERs are determined as the par-
ticles’ positions in the PSO algorithm. In fact, for a given particles’
position (first stage decision variables) a subsidiary NLP problem is
solved using PDIP method in each iteration of the PSO algorithm to
obtain optimal hourly dispatches of the microgrid resources.

Fig. 5 shows the solution algorithm of the proposed robust model for
microgrid energy management. Steps (a)-(p) in this figure are the main
steps taken to obtain the proposed microgrid energy management
scheme which are described as follows:

(a) Receive input data including hourly insolation data, load data, forced
outage rates (FORs) of the microgrid elements, and marginal costs.

(b) Employ roulette wheel mechanism and Monte Carlo simulation to
generate NS most probable 24-h scenarios as detailed in Sections 2.1
and 2.2.

(c) Select randomly the initial population of particles’ positions, and
velocity vectors in the PSO algorithm. Here, particles’ positions
represent the first stage decision variables, including reserves dis-
patches of DIGs, and PFs of DERs as shown in (33).

=X PF PF SR[ , , ]stg
p i t
PV

g i t
DIG

g i t
1

, , , , , , (33)

(d) The search space boundaries are validated for particles’ positions.
In iteration 2 and higher ( ⩾it 2), updating the particles’ positions
by the PSO operators may violate the variable bounds. If so, go to
(e), otherwise go to (f).

(e) Move the infeasible solution to the closest random feasible solution.
(f) Based on reserves dispatches of DIGs obtained in Step (c), the PDIP

method is employed to solve the main energy management problem
of the microgrid under the non-contingent scenario, minimizing
MOCn shown in (6), and satisfying constraints shown in (8)–(14),
(16), (17), and (19)–(21). Here, the active power output of the PVs,
as well as the active and reactive power of the substation are the
second stage decision variables as shown in (34); while the reactive
power outputs of PVs and DIGs are computed as shown in (35) and
(36), respectively.

=X PPV PDIG PSUB QSUB[ , , , ]stg
p i t s g i t s i t s i t s

2
, , , , , , , , , , (34)

= −QPV PPV PFtan(cos ( ))p i t s p i t s p i t
PV

, , , , , ,
1

, , (35)

= −QDIG PDIG PFtan(cos ( ))p i t s p i t s p i t
DIG

, , , , , ,
1

, , (36)

where, PFp i t
PV
, , and PFp i t

DIG
, , are also determined as the particles’ position of

the PSO algorithm.

(g) Solve the single-objective WCSD problems under the generated
probable 24-h scenarios, with objectives (22) and (23), and con-
straints shown in (8)–(11), and (15)–(18), separately, to obtain the
boundaries of the objectives.

(h) Based on the dispatches schedule of the resources under the non-
contingent scenario obtained in Step (f), the BDSG approach (as

Fig. 4. Connection of different methods for robust energy management of the microgrid.
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detailed in Section 3.1) is applied to solve the BOP WCSD problem
under the generated scenarios, maximizing objectives (22) and
(23), and satisfying constraints shown in (8)–(11), and (15)–(18).
Here, the load curtailments are considered equal to zero
( = =LNS LNS 0k i t s

P
k i t s
Q

, , , , , , ).
(i) Employ the PDIP method to solve the single-objective WCSD sub-

problems obtained by the BDSG approach.
(j) Calculate the values of first objective function (VD) shown in (22) and

the second objective function (BLI) shown in (23) based on the op-
timal dispatches of microgrid resources procured in Steps (f) and (i).

(k) After solving the BOP WCSD problems for all NS probable 24-h
scenarios by the BDSG approach, the scenario with smallest value of
µ (as calculated in (37)) is chosen as the worst-case scenario.

= +μ w μ w μ1 1 2 2 (37)

where, w1 and w2 denote the weighting coefficients of the objectives
and are set based on the microgrid operator preference (w1= 1/
(1+m), w2=m/(1+m)).

(l) Based on the dispatches schedule of the resources under the non-
contingent scenario obtained in Step (f), the PDIP method is em-
ployed to solve the main energy management problem of the mi-
crogrid under the worst-case probable scenario (obtained in Step
(k)), minimizing MOCw shown in (7), and satisfying constraints
shown in (8)–(11), (15)–(18), and (20)–(21).

(m) An objective value needs to be assigned to each particle’s position in
the PSO algorithm. To this end, the objective value of total operation
cost of the microgrid (shown in (5)) is calculated based on the op-
timal dispatches of microgrid resources procured in Steps (f) and (l).

(n) Take the particles’ position with the smallest objective value as the
local best solution.

(o) In the case of first iteration, take the local best solution obtained in
Step (n) as the global best solution; otherwise, if the objective value
of the local best solution is smaller than that of the global best
solution, take the local best solution as the global best solution;
otherwise do not change the global best solution.

(p) Take the best set of DERs power factors obtained by the PSO (global
best solution) and the associated hourly dispatch of microgrid re-
sources obtained by the PDIP method as the desired solution.

3.3. MCVM method

In this section, a validation method called MCVM method is em-
ployed to benchmark the effectiveness of the proposed robust model for
microgrid energy management against the stochastic one. The MCVM
method is able to compare the proposed robust model versus the sto-
chastic one with respect to their output (dispatches schedule of the
microgrid resources), regardless of the employed scenarios in the
models. In other words, MCVM method is able to compare two dis-
patches schedules (as shown in (38)) obtained by the robust and sto-
chastic models, regardless of the way by which the schedules are ob-
tained. To this end, the economic and security indices of the system are
evaluated under Nsc random scenarios generated by the Mont Carlo
simulation. In the robust and stochastic models, each of Ns most
probable and dissimilar scenarios are considered once; while in the
MCVM method Nsc scenarios are generated randomly in which most
probable scenarios may be repeated several times with respect to their
probabilities. In fact, in the MCVM method, the variables shown in (38)

Fig. 5. The proposed algorithm for robust energy management of the microgrid with PV inverters.
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are given; and the stochastic variables are determined satisfying con-
straints (8)–(11), (16)–(21), and (39). The load curtailment is just al-
lowed under contingent scenarios. For each dispatches schedule, index
of resources dispatching cost (RDC) is calculated by (40). RDC includes
two parts: if the generated scenario is the non-contingent scenario
which is the most probable scenario ( =β 1s

0 ), the microgrid operation
cost is computed as the first part; otherwise ( =β 0s

0 ), it is calculated as
the second part. Two dispatches schedules are compared based on the
value of RDC index. In fact, the dispatches schedule with lower mi-
crogrid operation cost under the non-contingent scenario and lower
cost of re-dispatching the microgrid resources under the contingent
scenarios is more effective. Through the MCVM method, the dispatches
schedule by which the system is more robust against the probable
contingencies and needs less load curtailment and resources generation
rescheduling, has more optimality.
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Fig. 6. Single line diagram of the modified IEEE
33-bus standard distribution system operating as
a microgrid with variable PVs.
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4. Numerical results

The proposed approach for optimal energy management of the mi-
crogrid is applied to a modified version of IEEE 33-bus standard dis-
tribution system converted into a microgrid with three variable PVs and
four diesel generators [8]. Each PV has the capacity of 400 KW, while
the capacity of each DIG is considered as 800 KW. As shown in Fig. 6,
the system is connected to the main grid through a substation. It has
five tie-lines (looping branches), and a peak demand of 3715 KW and
2300KVAr. The base values are considered as Sbase=1000KVA and
Vbase=12.66 kV. The various demands of the system i.e., residential,
industrial and commercial customers have their own normalized daily
load patterns, as shown in Fig. 7. The mean and standard deviation of
insolation PDFs for each hour, as well as the characteristics of PV
modules are considered as in [19]. Employing the proposed insolation
forecast modeling, the normalized most probable (with no insolation
error (σ=0)) PV output for the 24-h period is obtained as depicted in
Fig. 7. Operation and maintenance (O&M) cost of PVs and DIGs, and
spinning reserves cost of DIGs are considered as 0.1095$/KWh, 0.171$/
KWh and 0.087$/KWh, respectively [36]. Cost of the active and re-
active power supplied by the substation at the peak hour (Hour 21) are
considered as 0.2$/KWh and 0.11$/KVArh, respectively. Normalized
daily cost pattern for active and reactive power supplied by the sub-
station is the same, and presented in Fig. 7 [36]. The value of lost load
(VOLL) and cost of active power losses are considered equal to 0.7$/
KWh and 0.06$/KWh, respectively [37]. Loads located on each bus are
assumed to be of identical type (their importance factors are the same).
αk i, is considered equal to 100 for all the system buses.

The proposed method is implemented in MATLAB 7.11 software
environment. Matlab Interior Point Solver (MIPS) which is a package of
Matlab language M-files for solving NLPs using PDIP method, is em-
ployed to solve the sub-problem of optimal dispatches of the microgrid
resources for each particles’ position in PSO [38]. The solutions accu-
racy in the PSO algorithm depends on its initial parameters. Conse-
quently, PSO runs several times to set the values of the initial para-
meters. Besides, the optimality of the solutions is improved by a local
search around the procured solution. To demonstrate the effectiveness
of the proposed robust model versus the traditional stochastic one, the
proposed hybrid PSO algorithm and PDIP method versus the pure
classic one (only PDIP method), and to evaluate the efficiency of the
proposed VAR compensation mode utilization of grid-tie PV inverters
versus the conventional utilization of the PVs, four cases are introduced
in this section:

Case I: Robust energy management of the microgrid with VAR
compensation mode of the PVs solved by the hybrid method

Case II: Robust energy management of the microgrid including PVs
with unity PFs solved by the hybrid method

Case III: Stochastic energy management of the microgrid with VAR
compensation mode of the PVs solved by the hybrid method

Case IV: Robust energy management of the microgrid with VAR
compensation mode of the PVs solved by the PDIP method

4.1. Case I: proposed robust model

To detect the worst-case probable 24-h scenario, first 1000 random
24-h scenarios are generated among which 100 most probable ones are
chosen as the final scenarios (NS=100). Then, the BDSG approach is
applied to the proposed WCSD problems under these scenarios to detect
the worst-case probable scenario. The aim is to obtain an efficient so-
lution of BOP (26), which minimizes |μ2(x)−mμ1(x)| over the Pareto
frontier. Here, m is chosen as 1 which indicates that the importance of
the second security objective (BLI) for the microgrid operator is the
same as the importance of the first security objective (VD) (w1= 1/2,
w2= 1/2). It is assumed that when a component encounters a failure,
its repair takes five hours so that it can return to circuit. Outage of Line
1–2 at Hour 18 with the most probable daily PV output as shown in
Fig. 7 (Scenario A) is detected as the worst-case probable scenario.
Solving the energy management problem under the non-contingent
scenario (with no insolation error and component outage) and the
worst-case probable scenario (Scenario A), the hourly dispatches of
microgrid resources are obtained as shown in Figs. 8 and 9. Total energy
and reserves hourly dispatches of microgrid resources and the active
power supplied by the substation for Case I are presented in Fig. 8.
Fig. 9 depicts the reactive power dispatches of microgrid resources and
the reactive power supplied by the substation for Case I. As shown in
Fig. 8, the total scheduled spinning reserves is significantly increased
during Hours 18–22 when Line 1–2 is faulted in worst-case scenario.
Besides, it is seen from Fig. 8, the DIGs are almost fully contributed in
energy and reserves provision during these hours. In fact, the dispatches
of the microgrid resources are scheduled to be capable of withstanding
Scenario A with minimum load curtailment and resources re-dis-
patching. Results show that resources dispatches schedule obtained by
Case I is able to withstand Scenario A with no load curtailment. Fur-
thermore, it can be seen from Fig. 8, active power outputs of microgrid
resources (PVs and DIGs) are considerably increased during peak hours
(Hours 11–15 and 19–22); the reason is that the cost of active power of
substation is higher than the operation cost of the microgrid resources.
As shown in Fig. 9, DIGs are scheduled to operate with almost unity
power factors, except Hours 11–14 when the insolation level is high and
thereby reactive power generation by PVs is low.

Fig. 7. Normalized most probable daily PV
output, daily cost of power supplied by substa-
tion, and daily demand curve for various custo-
mers.

I. Goroohi Sardou et al. Electrical Power and Energy Systems 98 (2018) 118–132

128



4.2. VAR compensation mode utilization versus the conventional utilization

To demonstrate the effectiveness of the proposed VAR compensa-
tion mode utilization of the PV inverters, two dispatches schemes of the
microgrid resources for Cases I and II are evaluated in this section. In
Case II, it is assumed that the PVs generate no reactive power. The
objective results for the non-contingent scenario of Cases I and II, in-
cluding the energy and reserves costs of microgrid resources, the cost of
active and reactive power supplied by the substation, and the cost of
active power losses, are presented in Table 1. As shown in Fig. 9, the
RPCF available by PV inverters is utilized to supply a significant part of
reactive demand when the insolation is weak, especially during nightly
peak hours (Hours 19–23) when the cost of reactive power supplied by
the substation is high. That is why the total cost of reactive power by
the substation is decreased by 60.71% from Case II to Case I (as shown
in Table 1). Besides, as shown in Fig. 8, active power outputs of PVs are
increased during Hours 11–13 when the insolation level and the costs of
active power supplied by the substation are high. Because of this and
due to reduction of reactive power supplied by the substation, the total
operation cost of the microgrid (MOCn) is decreased by 7.17% from
Case II to Case I (as shown in Table 1). It is also concluded from
Table 1 that the total active power loss is decreased by 6.09% from Case
II to Case I.

4.3. Sensitivity analysis

In order to evaluate the sensitivities of the economic and security
indices of the microgrid to deviation in the generation dispatch of DERs
(PVs and DIGs), a sensitivity analysis is performed. The sensitivity of
the microgrid operation cost (MOC) to small deviation in the active
power generation dispatch of DER d from the microgrid operating point
under non-contingent scenario is procured by (41) using the first order
approximation of Taylor series for the microgrid operation cost. Each
sensitivity is approximated considering the linear relationship between
the microgrid operation cost and the dispatch of each DER [39].

= ∂
∂

≈ = −S MOC
PDER

MOC
PDER

MOC MOC
PDER

Δ
Δ ΔPDER

MOC

d d d

1 0
d (41)

where, MOC0 is the microgrid operation cost in the non-contingent
scenario and MOC1 shows the microgrid operation cost after small de-
viation in active power generation dispatch of DER d (ΔPDERd). Simi-
larity, the sensitivities of indices voltage deviation (VD) and branches
loading index (BLI) to deviation in the active and reactive power gen-
eration dispatch of DER S S S S( , , , )PDER

VD
PDER
BLI

QDER
VD

QDER
BLI

d d d d are calculated.
The microgrid economic and security indices sensitivities are presented
in Table 2.

As shown in Table 2, the sensitivity of microgrid operation cost with
respect to active power generation dispatch of PVs is negative while the

Fig. 8. Total reserves dispatches, and total active
power supplied by microgrid resources and sub-
station in Case I.

Fig. 9. Total reactive power supplied by micro-
grid resources and substation in Case I.
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sensitivity of the microgrid operation cost with respect to active power
generation dispatch of diesel generators is positive. This is due to re-
latively high O&M cost of diesel generators. The sensitivity of the mi-
crogrid operation cost with respect to reactive power generation dis-
patch of PVs and diesel generators is negative. This is because of
reduction of the reactive power supplied by the substation by producing
the reactive power by PVs and DIGs. The sensitivity of BLI index with
respect to active power generation dispatch of PVs and DIGs is negative,
while with respect to active power generation dispatch of the substation
is positive. This means that active power generation by PVs and DIGs
reduces the loading percentage of the branches, while the active power
generation by the substation increases it. Furthermore, Table 2 shows
the impacts of reactive power generation by DIGs and PVs on improving
the voltage profile of the microgrid.

4.4. Robust model versus stochastic model

In this section, proposed MCVM method is employed to benchmark the
effectiveness of the proposed robust model for microgrid energy manage-
ment (Case I) against the stochastic model proposed in [30] (Case III). For
the fair comparison, in the stochastic model, 1000 random 24-h scenarios
are generated among which 100 most probable ones are employed as the
final scenarios. The problem of the microgrid energy management is solved
under these final scenarios. In the stochastic model, the most likely sce-
narios are used, while the worst-case probable scenario causing maximum
indices of VD and BLI, is employed in the proposed robust model. MCVM
method is able to compare two dispatches schedules (as shown in (38))
obtained by the robust and stochastic models, regardless of the scenarios
under which the schedules are obtained. To this end, the economic and
security indices of the system are evaluated under 1000 random scenarios
generated by the Mont Carlo simulation (NSC=1000). 100 final most
probable scenarios employed in robust and stochastic models are repeated
several times with respect to their probabilities, so that they consist about
71.2% of 1000 generated scenarios. The non-contingent scenario with no
insolation error and component outage which is the most probable scenario
is repeated 320 times. As shown in Table 1, energy and reserves costs are
increased in Case I in compared to Case III, to withstand the worst-case
scenario with optimized objectives (total operation cost is increased by
3.08% from Case III to Case I). Economic and security indices obtained by

the MCVMmethod for Case I and III are presented in Table 3. These indices
include resources re-dispatching cost (RDC), average energy not supplied
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SC . As shown in Table 3, the load curtailments to

withstand the contingencies are significantly decreased in Case I in com-
pared to Case III (AENS is decreased by 29.61% from Case III to Case I).
That is why although the operation cost under non-contingent scenario is
increased in Case I in compared to Case III (see Table 1), the index of RDC is
decreased by 11.83% from Case III to Case I. This demonstrates more op-
timality of the dispatches schedule of the microgrid resources obtained by
the robust model in compared to that of the stochastic model. The reason is
that in the stochastic model, share of each scenario in the expected values of
the objectives is computed with respect to the normalized value of that
scenario probability. This does not guarantee the optimal optimization of
the objective functions in the mathematical optimization scenario-based
problem. Besides, the security indices of AVD and ABLI are compared be-
tween two Cases I and III in Table 3. As shown in this table, indices of AVD
and ABLI are decreased by 18.19% and 4.02% in Case I in compared to Case
III. This is due to integration of these security indices into the objectives of
WCSD problems in the proposed robust model. In fact, in the robust model,
the resources dispatches are scheduled to optimize the economic objective
under the contingent scenario with the severest effects on the security in-
dices of voltage profile and branches loading index. This leads to more
robust solution in compared to the stochastic model, as shown in Table 3.
To more analysis, the operational performances of resources dispatches
schedules obtained by Cases I and III are compared under a scenario cor-
responding to outage of Line 2–3 at Hour 11 with the same most probable
daily PV output shown in Fig. 7 (Scenario B). This scenario is not included
in either 100 final scenarios of the robust model or 100 final scenarios of the
stochastic model. No load curtailment is allowed in solving the energy
management problem of both cases under the contingent Scenario B. The
results show that the optimization does not converge to a solution for Case
III, while Case I is able to withstand this contingency without any load
curtailment. This is because some variables such as the flow of lines and the
buses voltages violate their limits in Case III.

Voltage profile of the system buses under contingent Scenario B, at
Hour 15 is compared between Cases I and III in Fig. 10. As shown in this
figure, the voltage profile of the system buses is significantly improved
in Case I in compared to Case III. The voltages of Buses 17, 18 and 32 in
Case III violate the lower limit (0.95 p.u), while in Case I, all the buses
voltages satisfy their limits. The reason is that the stochastic model may
not provide sufficient security level to find a more economical solution.
This is while, the resources dispatches schedule obtained by Case I is
able to withstand all the contingent scenarios employed in the sto-
chastic model, since it is procured to maintain the system security

Table 1
Operation costs for the non-contingent scenario of Cases I, II and III.

Case PVs energy cost
($)

DIGs Cost of active power of substation
($)

Cost of reactive power of substation
($)

Cost of active loss
($)

Total ($)

Reserves cost ($) Energy cost ($)

Case I 981 1639 2656 4744 308 108 10433
Case II 1006 1943 2031 5360 784 115 11239
Case III 1035 1328 2653 4685 318 102 10121

Table 2
Sensitivities of the economic and security indices of the microgrid to deviation in the
active and reactive power generation dispatch of DERs at daily peak hour (Hour 11) for
Case I.

DERs SPDERd
MOC

($/KW)

SPDERd
VD

(kV/KW)

SPDERd
BLI

(MVA/
KW)

SQDERd
MOC

($/KVAr)

SQDERd
VD

(kV/
KVAr)

SQDERd
BLI

(MVA/
KVAr)

PV1 −12.74 0.0167 −0.6904 −3.597 −0.0789 −0.1849
PV2 −19.64 0.0174 −0.531 −6.116 −0.0817 0.1697
PV3 −15.21 −0.0119 −0.6915 −5.486 −0.0812 −0.173
DIG1 8.03 0.0155 −0.6888 −6.34 −0.0689 −0.2208
DIG2 6.73 0.0117 −0.5957 −4.79 −0.0781 0.2124
DIG3 13.11 −0.013 −0.6579 −1.628 −0.0611 0.1875
DIG4 4.36 −0.0149 −0.5279 −5.777 −0.0799 0.2292
Substation 38.93 0.0197 0.8311 18.63 −0.0563 −0.1689

Table 3
Economic and security indices obtained by the MCVM method for Cases I and III.

Case RDC ($) AENS (p.u) AVD (p.u) ABLI (p.u) Solution time (s)

Case I 15918 5.11 14.25 707.63 1542
Case III 18053 7.26 17.42 737.28 2324
Case IV 19332 6.9 20.08 745.91 974

I. Goroohi Sardou et al. Electrical Power and Energy Systems 98 (2018) 118–132

130



against the worst-case event. Consequently, the dispatches schedule
obtained by the robust model is more likely to withstand a contingency
out of the final scenarios considered to procure the schedule. Further-
more, as presented in Table 3, the computational burden is significantly
decreased in Case I in compared to Case III. Voltage profile of the test
system at Hour 15, under contingent Scenario B are also compared
between Cases I and II in Fig. 10. In this hour, the total active and
reactive power outputs of PVs in Case I are 0.79 p.u and 0.14 p.u, re-
spectively, while the PVs are just generating 0.84 p.u active power in
Case II. As shown in Fig. 10, the voltages profile of the system buses is
significantly improved in Case I in compared to Case II due to the RPCF
capability provided by the PVs’ inverters.

4.4. Hybrid method versus pure classic method

To benchmark the efficiency of the proposed hybrid PSO algorithm
and PDIP method (Case I) versus the pure classic PDIP method (Case IV)
for the robust energy management of the microgrid, MCVM method, as
explained in Section 4.4, is employed to compare the dispatches sche-
dules obtained by both cases by evaluating the economic and security
indices of the system under 1000 generated random scenarios. In con-
trast to Case I, in Case IV, all decision variables including the dispatches
of the energy and reserves resources and optimal PFs of DERs, as well as
active and reactive power supplied by the substation are determined as
the scenario dependent decision variables by the PDIP method. Then,
the aggregated solution is obtained by the expected value operator. As
shown in Table 3, although the number of decision variables are in-
creased in Case IV in compared to Case I, the computational burden is
decreased by 36.83%. This is due to relatively high computational cost
of the PSO algorithm in Case 1. However, as shown in Table 3, the
indices of RDC, AENS, AVD, and ABLI are increased by 21.45%,
35.03%, 40.91%, and 5.41%, from Case I to Case IV, respectively. This
is because in case I some decision variables including the dispatches of
the reserves resources and optimal PFs of DERs are defined as scenario
independent variables which are obtained by the PSO algorithm. These
variables act as constant parameters in the NLP problem solved by the
PDIP method. This reduces the complexity and nonlinearity of the op-
timization problem, and eliminates the need for a scenario aggregation
approach which decreases the solution optimality in Case IV.

It is to be noted that, the studied test system acts as a realistic test
case which is close to real-world network specification. Therefore, the
proposed robust model which is evaluated and validated based on the
studies on this test system, can be generalized to any large-scale real-

world microgrid with the cost of higher computation burden. The
proposed robust optimization problem takes 25min and 42 s of CPU
time using serial computation on a personal computer with CPU-
2.6 GHz Core i5 and 4 GB RAM, as shown in Table 3. In other words, all
scenarios are sequentially solved on this personal computer. As the
proposed robust energy management model is well-suited for parallel
processing computer systems, computation time can be significantly
decreased. Besides, some simplifications are made for mitigating the
dimensionality issue. Furthermore, it is noted that the provided results
for the robust microgrid energy management are outcomes of prototype
software executed on a simple hardware set in our lab, since the main
focus is on presenting the underlying ideas. To procure an industrial
software package from a prototype computer code, different software
techniques are usually employed to optimize the written code by im-
proving its computation burden and memory usage. Moreover, micro-
grid operators are usually equipped with much powerful computers for
energy management process than our simple hardware set.

In hierarchical architecture of grid-tied microgrids, the local con-
trollers of the energy resources are governed by a central controller
[40]. Efficiency and reliability of microgrid control and operation are
recently enhanced with the advancement of computer communication
technologies and smart meters in smart grids. SCADA is one of these
communication technologies which facilitates the control, configura-
tion and supervision of the microgrids [41]. The solution obtained by
the proposed robust energy management model provides a new hourly
strategy for the central controller of the microgrid to govern the local
controllers of the energy resources. To implement the proposed energy
management model in the field, first the proposed optimization pro-
blem is solved considering the relevant constant parameters of the
microgrid including physical parameters, operational parameters of the
energy sources and associated cost values. Then the obtained hourly
dispatches schedule of the energy and reserves resources is im-
plemented by the central controller of the microgrid to govern the local
controllers of the energy sources using SCADA elements.

5. Conclusion

In this paper, an effective model was presented for the robust energy
management of the microgrid considering VAR compensation mode of
the PV inverters. In the proposed model, first, the worst-case scenario
with the severest effects on the system security is detected among the
probable scenarios. To this end, a bi-objective energy management
problem maximizing the indices of VD and BLI are solved under the

Fig. 10. Voltage profile at Hour 15 for all cases under contingent Scenario B.
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probable scenarios. After detection of the worst-case probable scenario,
the main energy management problem of the microgrid is solved under
this scenario, minimizing the microgrid operation cost. The hybrid PSO
algorithm and PDIP method is employed to solve the proposed micro-
grid energy management problem. Proposed MCVM method is em-
ployed to evaluate the effectiveness of the proposed robust model
versus the stochastic one, and the proposed hybrid method versus the
pure classic method (only PDIP method). Besides, the effectiveness of
the RPCF capability provided by the PVs’ inverters is verified against
the conventional utilization of the PVs. The following results were
concluded:

– Although the resources dispatches schedule obtained by the pro-
posed robust model leads to higher microgrid operation cost under
the non-contingent scenario in compared to that of the stochastic
model, results of the MCVM method throughout 1000 real world
scenarios demonstrate that the dispatches schedule obtained by the
proposed robust model is generally more optimal than that of the
stochastic model and leads to lower re-dispatching cost under gen-
erated scenarios.

– The stochastic model may not provide sufficient security level to
find a more economical solution, and a robust model based on the
worst-case probable scenario is required to ensure the system se-
curity against the probable severe contingencies. The resources
dispatches schedule obtained by the robust model is more likely to
withstand a contingency out of the final scenarios considered to
procure the schedule. Besides, the robust model leads to lower
computational burden.

– Combining the features of both classic and heuristic methods which
reduces the complexity and nonlinearity of the microgrid energy
management optimization problem and eliminates the need for a
scenario aggregation approach increases the solution optimality in
compared to the pure classic method.

– RPCF capability provided by the inverters significantly reduces total
operation cost of the microgrid by decreasing the reactive power
supplied by the substation, especially at nightly peak hours when
the insolation level is low and the cost of reactive power supplied by
the substation is high.
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