
Big Data Research 2 (2015) 166–186
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Reference Architecture and Classification of Technologies, Products and 

Services for Big Data Systems

Pekka Pääkkönen ∗,1, Daniel Pakkala 1

VTT Technical Research Centre of Finland, Kaitoväylä 1, 90570, Oulu, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 April 2014
Received in revised form 18 December 2014
Accepted 11 January 2015
Available online 2 February 2015

Keywords:
Big data
Reference architecture
Classification
Literature survey

Many business cases exploiting big data have been realised in recent years; Twitter, LinkedIn, and 
Facebook are examples of companies in the social networking domain. Other big data use cases have 
focused on capturing of value from streaming of movies (Netflix), monitoring of network traffic, or 
improvement of processes in the manufacturing industry. Also, implementation architectures of the use 
cases have been published. However, conceptual work integrating the approaches into one coherent 
reference architecture has been limited. The contribution of this paper is technology independent 
reference architecture for big data systems, which is based on analysis of published implementation 
architectures of big data use cases. An additional contribution is classification of related implementation 
technologies and products/services, which is based on analysis of the published use cases and survey 
of related work. The reference architecture and associated classification are aimed for facilitating 
architecture design and selection of technologies or commercial solutions, when constructing big data 
systems.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many big data use cases have been realised, which create addi-
tional value for companies, end users and third parties. Currently, 
real time data is gathered from millions of end users via popular 
social networking services. For example, LinkedIn [1] collects data 
from users, and offers services such as “People you may know”, 
skill endorsements or news feed updates to end users based on 
analysis of the data. Another example is Netflix, which uses big 
data for providing recommendations and ranking related services 
to customers [2]. Twitter uses collected data for real time query 
suggestion and spelling corrections of their search algorithm [3]. 
Analysis of collected data also increases understanding of con-
sumers, which is an important asset for the big data companies. 
Value from data can also be extracted with other applications such 
as monitoring of network traffic [4] or improving manufacturing 
process of digital displays [5].

A wide variety of technologies and heterogeneous architectures 
have been applied in the implementation of the big data use cases. 
The publications have mainly concentrated on describing architec-
tures of individual contributions by large big data companies such 

* Corresponding author.
E-mail addresses: pekka.paakkonen@vtt.fi (P. Pääkkönen), daniel.pakkala@vtt.fi

(D. Pakkala).
1 Tel.: +358 207227070.
http://dx.doi.org/10.1016/j.bdr.2015.01.001
2214-5796/© 2015 The Authors. Published by Elsevier Inc. This is an open access article 
as Facebook [6] or LinkedIn [1]. On the other hand, architectural 
work combining the individual reports into one coherent reference 
architecture has been limited, although the first contributions have 
been made [7–10]. Technology independent reference architecture 
and categorization of related implementation technologies and ser-
vices would be valuable for research and development of big data 
systems.

The contribution of this paper is reference architecture for big 
data systems, and classification of related technologies and prod-
ucts/services. First, big data research, reference architectures, and 
use cases are surveyed from literature. Subsequently, the design of 
reference architecture for big data systems is presented, which has 
been constructed inductively based on analysis of the presented 
use cases. Finally, a classification is provided for the purpose of 
creating an overall picture of big data research, related technolo-
gies, products, and services.

The structure of the paper is as follows: Material and methods 
of the study are described in Section 2. Theoretical background is 
provided in Section 3. Design and construction of the reference 
architecture is presented in Section 4. Classification of big data 
technologies and commercial products/services, and survey of re-
lated work are provided in Section 5. The results are analysed in 
Section 6 and discussed in Section 7. A conclusion is provided in 
Section 8. The appendices include: a detailed description of the 
reference architecture (Appendix A), a detailed description of the 
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pekka.paakkonen@vtt.fi
mailto:daniel.pakkala@vtt.fi
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2015.01.001&domain=pdf


P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 167
research method (Appendix B), and references to surveyed com-
mercial products and services (Appendix C).

2. Material and methods

The overall goal of this work is to facilitate realisation of big 
data systems. When a big data system is realised, important con-
siderations include architecture design of the system, and utiliza-
tion of underlying technologies and products/services [11]. The 
goals of this work are: a.) design technology independent reference 
architecture for big data systems b.) classify related technologies 
and products/services with respect to the reference architecture.

Reference architecture would be useful in the following ways: 
It should facilitate creation of concrete architectures [12], and in-
crease understanding as an overall picture by containing typical 
functionality and data flows in a big data system. Classification of 
technologies and products/services should facilitate decision mak-
ing regarding realisation of system functionalities. Also, it would 
be important to understand architecture and performance charac-
teristics of related technologies. The following research questions 
are posed:

The first research question: What elements comprise reference ar-
chitecture for big data systems?
The second research question: How to classify technologies and 
products/services of big data systems?

The reference architecture for big data systems was designed with 
inductive reasoning based on the published use cases described 
in Section 3.3 (research question 1). Particularly, functionality, data 
flows, and data stores of implementation architectures in seven big 
data use cases were analysed. Subsequently, reference architecture 
was constructed based on the analysis. The method for reference 
architecture design is described in detail in the Appendix. A lit-
erature survey was used for answering to the second research 
question.

3. Theory

Section 3.1 presents earlier surveys of big data. Research on big 
data reference architectures is presented in Section 3.2. The latest 
reports of big data use cases are introduced in Section 3.3. Finally, 
a summary of related work in presented in Section 3.4.

3.1. Big data research

Begoli [13] conducted a short survey of state-of-the-art in ar-
chitectures and platforms for large scale data analysis. The survey 
covered adoption of related technologies, platforms for knowledge 
discovery, and architectural taxonomies. Chen et al. presented a 
comprehensive survey of big data [14]. The topics of the survey 
covers related technologies, generation and acquisition of data, 
storage, applications, and outlook to the future. Chen and Zhang 
also surveyed big data [11]. Their work focused on big data oppor-
tunities and challenges, techniques and technologies, design prin-
ciples, and future research. Wu et al. provided a framework for 
big data mining [15]. The authors proposed HACE (Heterogeneous, 
Autonomous sources, Complex and Evolving relationships among 
data) theorem for characterizing big data. The authors also pre-
sented a three layer framework for big data processing, which is 
comprised of big data mining platform, semantics and application 
knowledge, and mining algorithms. Finally, Cuzzocrea et al. dis-
cussed Online Analytical Processing (OLAP) over big data, big data 
posting and privacy as part of big data research agenda [16].
3.2. Reference architecture for big data systems

A framework for design and analysis of software reference ar-
chitectures has been presented [12]. The framework contains a 
multi-dimensional classification space, and five types of reference 
architectures. It is claimed that architecture design based on the 
classified reference architectures should lead to better success. 
Also, empirically-grounded design of software reference architec-
tures has been presented [17]. The design approach is based on 
expected empirical material gathered with interviews, question-
naires, and document analysis. The procedure is a step-wise pro-
cess, which consists of deciding a type for the reference archi-
tecture, selection of design strategy, empirical acquisition of data, 
construction of reference architecture, enabling of variability, and 
evaluation (see Appendix B for details).

Service-oriented reference architecture has been defined for en-
terprise domain [18]. However, in the big data context, there exist 
only few architecture proposals. Schmidt and Möhring [8] pre-
sented a service and deployment model for implementing big data 
pipeline to the cloud domain. Demchenko et al. presented a Big 
Data Architecture Framework, which consists of high-level descrip-
tion of big data lifecycle and infrastructure [9]. Doshi et al. pre-
sented reference architectures for integration of SQL and NewSQL 
databases in order to support different growth patterns in enter-
prise data traffic [19]. Zhong et al. proposed and validated big 
data architecture with high-speed updates and queries [20]. The 
architecture consists of in-memory storage system and distributed 
execution of analysis tasks. Cuesta proposed tiered architecture 
(SOLID) for separating big data management from data generation 
and semantic consumption [10]. Generalized software architecture 
was proposed for predictive analytics of historical and real-time 
temporally structured data [89]. Meier conducted design of refer-
ence architecture covering functionality in realised big data use 
cases (Master’s Thesis [7]). The author initially defined require-
ments for reference architecture, conducted architecture design, 
and validated the presented architecture against published imple-
mentation architectures of Facebook, LinkedIn, and Oracle. The de-
sign was conducted in the empirically-grounded design framework 
for reference architectures [17,12].

3.3. Big data use cases

Many big data use cases have been published. Facebook, Twit-
ter, and LinkedIn are examples in the social network application 
domain. Facebook collects structured and stream-based data from 
users, which is applied for batch-based data analysis [6]. Data sci-
entists at Facebook can specify ad hoc analysis tasks in produc-
tion or development environments for getting deep insight to the 
data. LinkedIn [1] also collects structured and stream-based data, 
which is analysed in development and production environments. 
Additionally, LinkedIn provides new services (e.g. “People you may 
know”) for end users based on data analysis [1]. Twitter [3,21,22]
handles mainly tweets, which have real-time processing require-
ments. Twitter also provides new services for end users e.g. “Who 
to follow” [23].

Netflix is a commercial video-streaming service for end users. 
Netflix collects user events, which are processed and analysed in 
online, offline, and nearline environments [2]. Video recommenda-
tions are provided for end users based on real time data analysis.

Also, network traffic has been analysed for getting value from 
data. BlockMon [4,24] is a high performance streaming analyt-
ics platform, which has been used for telemarketer call detection 
based on Call Data Records (CDR). Another application is monitor-
ing of network traffic for execution of ad hoc Hadoop/MapReduce 
tasks [25,26]. The primary applications are web traffic analysis and 



168 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Fig. 1. High-level design of the reference architecture. Data stores are presented as an ellipsis, functionality as a rectangle, and data flows with arrows.
detection of distributed denial of service attacks. Finally, manufac-
turing process of digital displays has been improved based on data 
analysis [5].

3.4. Summary

Related work on big data architectures includes surveys of big 
data technologies and services (Section 3.1), initial design of refer-
ence architectures (Section 3.2), and reports on big data implemen-
tation architectures (Section 3.3). However, few reference architec-
tures [7] for big data systems have been proposed (research ques-
tion 1). Previous work includes either high-level models [8,9] or 
focus on subset of system functionality [10,19,20,89]. Also, big data 
surveys have been conducted, but a classification of related tech-
nologies, products and services is missing (research question 2).

4. Results

Section 4.1 presents design of the reference architecture. Par-
ticularly, different elements of the architecture are described. Sec-
tion 4.2 presents how the reference architecture was constructed 
based on the published big data use cases.

4.1. Design of the reference architecture

Fig. 1 presents design of the reference architecture. In the fig-
ure functionalities (rectangle), data stores (ellipsis), and data flows 
(arrow) are applied for representation of the architecture. Data 
processing functionality has been presented as a pipeline, where 
data flows mostly from left to right. Similar functionalities have 
been grouped into functional areas. Data stores are presented to-
gether with the respective functional areas. Specification of jobs 
and models has been illustrated separately from the data pipeline. 
A detailed mapping between the reference architecture and use 
case has been provided in Appendix A (Fig. A.1). Concepts of the 
reference architecture are depicted in italics in the following de-
scription:

Data sources are defined in two dimensions, mobility and struc-
ture of data. First, in situ refers to data, which does not move. 
An example of in situ data is a Hadoop file to be processed with 
MapReduce. Streaming data refers to a data flow to be processed 
in real time, e.g. a Twitter stream. Second, structure of the data 
source is defined. Structured data has a strict data model. An exam-
ple is contents of a relational database, which is structured based 
on a database schema. Unstructured data is raw, and is not associ-
ated with a data model. Web page content [92] or images can be 
considered as unstructured data. Semi-structured data is not raw 
data or strictly typed [91]. Other aspects of semi-structured data 
include irregularity, implicitness, and partiality of structure, and an 
evolving and flexible schema/data model [91]. Examples of semi-
structured data include XML and JSON documents.

Extraction refers to input of in situ data into the system. When 
in situ data is extracted, it may be stored temporarily into a data 
store (Temp data store) or transferred, and loaded into a Raw data 
store. Streaming data may also be extracted, and stored temporar-
ily (into Stream temp data store). Efficiency may be improved by 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 169
Fig. 2. Data analytics infrastructure at Facebook (adapted from [6]).
compressing extracted data before transfer and load operations. The 
purpose of the Raw data store is to hold unprocessed data. Data 
from the Raw data store may be cleaned or combined, and saved into 
a new Preparation data store, which temporarily holds processed 
data. Cleaning and combining refer to quality improvement of the 
raw unprocessed data. Raw and prepared data may be replicated
between data stores. Also, new information may be extracted from 
the Raw data store for Deep analytics. Information extraction refers 
to storing of raw data in a structured format. The Enterprise data 
store is used for holding of cleaned and processed data. The Sand-
box store is used for containing data for experimental purposes of 
data analysis.

Deep analytics refers to execution of batch-processing jobs for 
in situ data. Results of the analysis may be stored back into the 
original data stores, into a separate Analysis results store or into a 
Publish & subscribe store. Publish & subscribe store enables storage 
and retrieval of analysis results indirectly between subscribers and 
publishers in the system. Stream processing refers to processing 
of extracted streaming data, which may be saved temporarily be-
fore analysis. Stream analysis refers to analysis of streaming data 
(to be saved into Stream analysis results). Results of the data anal-
ysis may also be transformed into a Serving data store, which serve 
interfacing and visualization applications. A typical application for 
transformation and Serving data store is servicing of Online Analyti-
cal Processing (OLAP) queries.

Analysed data may be visualized in several ways. Dashboard-
ing application refers to a simple UI, where typically key informa-
tion (e.g. Key Performance Index (KPI)) is visualized without user 
control. Visualization application provides detailed visualization and 
control functions, and is typically realised with a Business Intel-
ligence tool in the enterprise domain. End user application has a 
limited set of control functions, and could be realised as a mobile 
application for end users.
Batch-processing jobs may be specified in the user interface. The 
jobs may be saved and scheduled with job scheduling tools. Mod-
els/algorithms may also be specified in the user interface (Model 
specification). Machine learning tools may be utilized for training of 
the models based on new extracted data.

4.2. Construction of the reference architecture

In the following, construction of the reference architecture will 
be explained in detail. First, each big data use case is presented 
from architecture implementation point of view. Subsequently, 
mapping of each use case into the reference architecture is de-
scribed. For most accurate information on implementation archi-
tectures, the reader is referred to the original cited work of the 
use cases, because the figures have been adapted for uniform pre-
sentation in this document.

4.2.1. Facebook
Data analytics infrastructure at Facebook [6] has been pre-

sented in Fig. 2. Facebook collects data from two sources. Fed-
erated MySQL tier contains user data, and web servers generate 
event based log data. Data from the web servers is collected to 
Scribe servers, which are executed in Hadoop clusters. The Scribe 
servers aggregate log data, which is written to Hadoop Distributed 
File System (HDFS). The HDFS data is compressed periodically, and 
transferred to Production Hive-Hadoop clusters for further process-
ing. The Data from the Federated MySQL is dumped, compressed 
and transferred into the Production Hive-Hadoop cluster. Facebook 
uses two different clusters for data analysis. Jobs with strict dead-
lines are executed in the Production Hive-Hadoop cluster. Lower 
priority jobs and ad hoc analysis jobs are executed in Ad hoc Hive-
Hadoop cluster. Data is replicated from the Production cluster to 
the Ad hoc cluster. The results of data analysis are saved back to 
Hive-Hadoop cluster or to the MySQL tier for Facebook users. Ad 



170 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Fig. 3. Mapping between Facebook use case and the reference architecture.
hoc analysis queries are specified with a graphical user interface 
(HiPal) or with a Hive command-line interface (Hive CLI). Facebook 
uses a Python framework for execution (Databee) and scheduling 
of periodic batch jobs in the Production cluster. Facebook also uses 
Microstrategy Business Intelligence (BI) tools for dimensional anal-
ysis.

Mapping of the use case to the reference architecture has been 
described in Fig. 3. Facebook extracts semi-structured, streaming log 
data with Scribe (stream extraction). Scribe-Hadoop cluster acts as 
a Stream temp data store. Compression of stream-based data is re-
ferred to as stream processing. Facebook also extracts in situ, struc-
tured data, which is saved temporarily into Federated MySQL (Temp 
data store). Production Hive-Hadoop clusters act as a Raw data store, 
where both structured and streaming data is moved and saved 
(transfer and load).

Transfer and copying of data to the Ad hoc Hive-Hadoop cluster 
is modelled as replication of data. Execution of Hive jobs is mod-
elled as Deep analytics i.e. batch-processing of data. Job specifica-
tion refers to usage of HiPal or CLI user interface. HiPal is also used 
for visualization of results (End user app). Job scheduling corresponds 
to usage of the DataBee framework. Facebook also transforms (cube 
generation) data for further analysis with Microstrategy BI server 
(Serving data store) and Visualization application.

4.2.2. LinkedIn
The data analytics infrastructure at LinkedIn [1] has been pre-

sented in Fig. 4. Data is collected from two sources: database 
snapshots and activity data from users of LinkedIn. The activ-
ity data comprises streaming events, which is collected based on 
usage of LinkedIn’s services. Kafka [27] is a distributed messag-
ing system, which is used for collection of the streaming events. 
Kafka producers report events to topics at a Kafka broker, and 
Kafka consumers read data at their own pace. Kafka’s event data is 
transferred to Hadoop ETL cluster for further processing (combin-
ing, de-duplication). Data from the Hadoop ETL cluster is copied 
into production and development clusters. Azkaban is used as a 
workload scheduler, which supports a diverse set of jobs. An in-
stance of Azkaban is executed in each of the Hadoop environments. 
Scheduled Azkaban workloads are realised as MapReduce, Pig, shell 
script, or Hive jobs. Typically workloads are experimented in the 
development cluster, and are transferred to the production cluster 
after successful review and testing. Results of the analysis in the 
production environment are transferred into an offline debugging 
database or to an online database. Results may also be fed back to 
the Kafka cluster. Avatara [28] is used for preparation of OLAP data. 
Analysed data is read from the Voldemort database, pre-processed, 
and aggregated/cubificated for OLAP, and saved to another Volde-
mort read-only database [28].

LinkedIn extracts semi-structured, streaming event data, and 
structured, in situ database snapshots (Fig. 5). Kafka producer corre-
sponds to stream extraction functionality. Kafka broker can be con-
sidered as a Stream temp data store. Copying of database snaphots 
is referred to as extraction of in situ data. Hadoop HDFS is a Raw 
data store, which holds both types of extracted data. Combining and 
de-duplication (cleaning) is performed to data, which is stored in 
Hadoop HDFS, before it is replicated. Copying of data to different 
clusters is modelled as replication. Processed data in the production 
environment is considered to be stored into an Enterprise data store. 
Data in the development environment is saved into a Sandbox store. 
The results of batch-based analysis (Deep analytics) in the produc-
tion environment are saved either into the production Voldemort 
database (Analysis results store) or into the debugging Voldemort 
data store. Some of the results in the production environment are 
loaded back to the primary Kafka instance (to Stream extraction). 
Analysis results in the production environment are transformed
with the Avatara-tool and loaded into another Voldemort data 
store (Serving data store) for serving OLAP queries from End user 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 171
Fig. 4. Data analytics infrastructure at LinkedIn (adapted based on [1,28,27]).

Fig. 5. Mapping between LinkedIn and the reference architecture.
applications (LinkedIn app). LinkedIn uses Azkaban for specification
and scheduling of batch processing jobs in different domains.

4.2.3. Twitter
Twitter has published two different implementation architec-

tures of their infrastructure. The first architecture was based on 
Hadoop batch processing, which led to performance problems in 
the processing of streaming data [3,21,22]. The second published 
infrastructure meets real-time performance requirements by re-
placing Hadoop-based processing with a custom-made solution [3], 
which is described in Fig. 6.

In the Twitter’s infrastructure for real-time services, a Blender 
brokers all requests coming to Twitter. Requests include searching 
for tweets or user accounts via a QueryHose service. Tweets are 
input via a FireHose service to an ingestion pipeline for tokeniza-
tion and annotation [29]. Subsequently, the processed tweets enter 



172 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Fig. 6. Data analytics infrastructure at Twitter (adapted based on [3,29]).

Fig. 7. Mapping between Twitter and the reference architecture.
to EarlyBird servers for filtering, personalization, and inverted in-
dexing [29]. The EarlyBird servers also serve incoming requests 
from the QueryHose/Blender. The EarlyBird is a real-time retrieval 
engine, which was designed for providing low latency and high 
throughput for search queries.

Additionally, search assistance engines are deployed. Stats col-
lector in the Search assistance engine saves statistics into three 
in-memory stores, when a query or tweet is served. User sessions 
are saved into Sessions store, statistics about individual queries 
are saved into Query statistics store, and statistics about pairs 
of co-occurring queries are saved into Query co-occurrence store. 
A ranking algorithm fetches data from the in-memory stores, and 
analyses the data. The results of analysis are persisted into Hadoop 
HDFS. Finally, Front-end cache polls results of analysis from the 
HDFS, and serves users of Twitter.

Twitter has three streaming data sources (Tweets, Updater, 
queries), from which data is extracted (Fig. 7). Tweets and queries 
are transmitted over REST API in JSON format. Thus, they can 
be considered as streaming, semi-structured data. The format of 
data from Updater is not known (streaming data source). Inges-



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 173
Fig. 8. Data analytics infrastructure at Netflix (adapted based on [2,30]).
tion pipeline and Blender can be considered as Stream temp data 
stores. Tokenization, annotation, filtering, and personalization are 
modelled as stream processing. EarlyBird servers contain processed 
stream-based data (Stream data store). Stats collector is modelled 
as stream processing. The statistical stores may be considered as 
Stream data stores, which store structured information of processed 
data. The ranking algorithm performs Stream analysis functionality. 
Hadoop HDFS storing the analysis results is modelled as a Stream 
analysis data store. Front-end cache (Serving data store) serves the 
End user application (Twitter app).

4.2.4. Netflix
Data analytics infrastructure at Netflix [2] has been presented 

in Fig. 8. The infrastructure is executed entirely in Amazon’s cloud 
domain. Netflix has divided computation to online, nearline, and 
offline parts based on different real-time requirements. Services in 
the online computation have requirements for maximum latency, 
when responding to client applications. The nearline computation 
is similar to the online computation with the exception that com-
puted results can be stored instead of immediate serving of end 
users. The offline computation has most relaxed requirements for 
timing.

End user interacts with Netflix by executing operations (e.g. 
Play, Rate etc.) in the user interface of the service. Recommenda-
tions are provided to the user based on other users’ behaviour. 
Recommendation algorithms require data, models, and signals as 
input. The data is previously processed information, which has 
been stored into a database. The signals are fresh information from 
online services. The models are comprised of parameters, which 
are usually trained initially offline, but are enhanced based on in-
cremental machine learning. Events from end users are distributed 
via the Chukwa framework [30,31] for the offline processing, or via 
user event queue for the nearline processing. Chukwa consists of 
agents, which transmit events in HTTP POSTs to collectors, which 
write data to HDFS file system. Manhattan is a distributed mes-
saging system developed by Netflix. Hermes is a publish/subscribe 
framework, which is used for delivering of data to multiple sub-
scribers in near real-time.

Netflix has two streaming data sources: online data service and 
Netflix user events (Fig. 9). The event-based data from Netflix users 
and signals from online data service are modelled as streaming 
data. The format of extracted streaming data is unknown. Chukwa 
agent can be considered as a stream extraction process, and Chukwa 
collector as a Stream temp data store. Hadoop HDFS can be mod-
elled as a Raw data store. Execution of offline Pig jobs is modelled 
as Deep analytics. Hermes is a Publish & subscribe store for storing 
and retrieving of offline analysis results.

User data queue is modelled as a Stream temp data store. 
Data transformation by Manhattan is modelled as Stream process-
ing for near-line computation. Intermediate analysis results are 



174 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Fig. 9. Mapping between Netflix and the reference architecture.

Fig. 10. BlockMon streaming analytics platform with VoIPStream (adapted based on [4,24]).
stored (processed streaming data) into Stream data stores (Cassan-
dra, MySQL, EVCache). Online and nearline computation is mod-
elled as a Stream analysis process. Algorithm service acts as a 
Serving data store for Netflix UI clients (End user application). Ad-
ditionally, Models are trained with machine learning algorithms.

4.2.5. BlockMon
BlockMon [4,24] is a high performance streaming analytics plat-

form (Fig. 10). BlockMon consists of small interconnected blocks, 
each of which performs certain type of processing. The intercon-
nected whole can be programmed to perform a larger job. In this 
paper, VoIPStream as an application of BlockMon is presented for 
detection of telemarketer calls in real-time.

VoIPStream has been divided into feature-extraction, process-
ing, and reasoning parts. First, VoIPStream takes a stream of Call 
Data Records (CDR). The CDRs are parsed and features are gath-
ered for basis of the analysis. A processing part keeps track of the 
overall behaviour of each user by computing different metrics with 
bloom filters. Finally, the reasoning part combines calculated met-
rics. A threshold-based decision algorithm determines, if the user 
is acting like a telemarketer.

BlockMon has one streaming, structured data source (CDRs) 
(Fig. 11). Parsing of CDRs, checking of memberships, and Boolean 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 175
Fig. 11. Mapping between BlockMon and the reference architecture.

Fig. 12. Network traffic measurement with Hadoop (adapted based on [25,26]).

Fig. 13. Mapping between Network measurement use case and the reference architecture.
combining can be considered as stream extraction functionalities. 
Bloom filtering, and computation of metrics are considered stream 
processing. Combining of metrics and decision making are mod-
elled as stream analysis. The result of analysis is displayed in a 
simple Dashboarding application (visualization with traffic lights 
in [24]).

4.2.6. Network measurement
Network traffic measurement and analysis solution [25] has 

been presented in Fig. 12. The solution consists of a traffic col-
lector and Hadoop based traffic analysis tools. The traffic collector 
consists of a load balancer and HDFS Datanodes. The load balancer 
has a packet capturer for monitoring of traffic from a router or an-
other network device. It forwards the captured packets to HDFS 
Datanodes based on a flow level hashing function. The received 
packets are saved into HDFS with a new Hadoop API to support 
libpcap format. Also, new formats have been implemented on top 
of HDFS to support processing of HDFS data in the native libpcap 
format [26].

End user can specify jobs/queries interactively in the user inter-
face. The specified jobs are mapped either into Hive or MapReduce 
jobs on a lower level. MapReduce/Hive based tools have been de-
veloped for execution of different type of network analysis.

Packet capture driver is considered as an extractor of stream-
ing, unstructured data (Fig. 13). Hadoop HDFS is modelled as a Raw 
data store. New binary/text formats are considered as extraction 
of information from the raw data i.e. structure is created around 
unstructured raw data. MapReduce tasks are modelled as Deep an-
alytics functionality. The web interface is applied for specification 
of the batch processing jobs (Job specification) and visualization of 
analysis results (Visualization app).



176 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Fig. 14. FIU-Miner data mining platform in a distributed environment (adapter based on [5]).

Fig. 15. Mapping between FIU-Miner and the reference architecture.
4.2.7. FIU-Miner
FIU-Miner [5] is a system for facilitating complex data analysis 

processes. Adapted architectural view of FIU-Miner has been pre-
sented in Fig. 14. The system consists of four architectural layers. 
User interface is used for task configuration and execution, import-
ing of data mining programs to the algorithm library, and moni-
toring of resource utilization. Task and system management layer 
consists of algorithms, integration of workflows, and scheduling of 
jobs. It also includes tracking of job execution, and monitoring and 
management of workers.

The execution of jobs is performed in the abstracted resources 
layer, which has been demonstrated with a case study for optimiz-
ing manufacturing process of digital displays [5]. In the demonstra-
tion a dataset of displays is loaded from HDFS, and is dispatched 
into three feature selection algorithms [32]. The selected features 
are transformed, combined, ranked and stored into a database. The 
extracted feature combinations are highly related to yield ratio of 
the manufacturing process, which depends on parameter setting of 
production equipment.

HDFS file can be considered as an in situ, structured data source
(Fig. 15). HDFS dataloader extracts information from HDFS file, 
which is stored into a Raw data store (Data publisher). Feature se-
lection functionalities can be considered as machine learning, as 
the models are mined with different feature selection algorithms. 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 177
Fig. 16. Classification of big data technologies, products, and services. Technologies/products/services of the reported big data use cases (black) are depicted separately from 
the related work (red). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
The mined stable features (Models) are saved. Finding of frequency 
combinations, and ranking of features can be modelled as Deep an-
alytics functionality. Analysis results are stored into the database 
(Analysis results store). Task configuration and execution interface 
can be considered as Job specification. Program registration inter-
face can be used for model specification. System monitoring inter-
face is used for visualization (visualization app).

5. Review of big data technologies

5.1. Classification of technologies, products and services

An initial classification of technologies, products and services 
was created based on the reviewed big data use cases (Fig. 16), 
which are described in the following: Data in the use cases was 
typically collected into databases or log files. Relational databases 
were applied for storage of important user related data (Face-
book’s MySQL, LinkedIn’s Oracle). NoSQL databases or in-memory 
stores were used for intermediate or final storage of data analysis 
results (LinkedIn’s Voldemort, Netflix’s Cassandra and EV-cache). 
Special log facilities were used for storage of stream-based data 
(Facebook’s Scribe, LinkedIn’s Kafka, Netflix’s Chukwa, Packet cap-
ture driver in the Network measurement case). Structured data 
was typically saved into a distributed file system (e.g. Hadoop 
HDFS).

Data processing technologies of the use cases can be classified 
into batch and stream processing. Jobs with real-time constraints 
require special technologies and algorithms (Twitter’s ranking algo-
rithm and the EarlyBird architecture). Batch processing was used 
for jobs with less strict timing requirements (Facebook’s, Linked-
In’s, and Netflix’s MapReduce, Hive and Pig scripts). Jobs for batch 
processing were scheduled with special tools (LinkedIn’s Azkaban, 
Facebook’s Databee). OLAP processing (LinkedIn’s Avatara) trans-
formed data for serving of OLAP queries. Processed data was also 
visualized with commercial Business Intelligence (BI) tools (Face-
book uses MicroStrategy).



178 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Table 1
Categorization of stream-processing techniques.

Publication Technique Programmer’s view Reported processing performance

MapReduce Online [34] Pipelining between jobs: map task 
pushes data to reducers; Online 
aggregation of jobs.

MapReduce+optional “flush” API –

Faster data analytics [33] Distributed shared memory for 
storing of intermediate MR results; 
RDMA for reduction of network 
latency.

MapReduce Initial simulation results

MapUpdate: Muppet [35] map and update functions as 
streams; distributed slates for storage 
of intermediate results.

MapUpdate Muppet @ Twitter and FourSquare: 
100 M tweets/day, 1.5 M 
check-ins/day; Latency <∼2 s.

S4 [36] Distributed cluster of Processing 
Elements

Processing Elements API ∼1600 clicks/s

SQLStream [38] In-memory storage; streaming SQL SQL API 15 000 CDRs/s

TimeStream [39] Streaming DAG StreamInsight API Sentiment analysis of 9600 tweets/s; 
latency ∼2 s.

D-Streams/Spark [40] Stream divided into short, stateless, 
deterministics tasks in Spark 
streaming engine.

D-Stream API in Spark Streaming 
with Scala/Java programming 
language

640 000 Grep records/s, 250 000 
TopKCount operations/s; latency 
1–2 s

Naiad [41] Timely Dataflow: stateful vertices 
send/received messages along 
directed edges.

Timely Dataflow API; SQL, 
MapReduce, LINQ

32 000 Tweets/s; latency <1 s

Integrated Execution Platform [42] Integration between System-S (IBM) 
and Hadoop.

SPADE (IBM) Stream and batch processing of 
Tweets: latency, CPU usage reported.
5.2. Related work

The analysed use cases cover only partly research and commer-
cial services in the big data area (Fig. 16). The survey of related 
work focuses on stream processing, graph stores, benchmarking, 
virtualization and cloud solutions, business intelligence and vi-
sualization tools, novel technology frameworks, and commercial 
services. These particular categories were focused on, because the 
cited big data use cases did not cover them, but they were impor-
tant for answering to the second research question.

5.2.1. Stream processing
Stream processing solutions have been analysed in terms of 

processing technique, programmer’s view, and performance char-
acteristics (Table 1). First, many extensions to the MapReduce 
framework have been developed for supporting streaming appli-
cations (Table 1), due to its limitations [33]. MapReduce Online 
[34] supports online aggregation of single or multiple jobs in or-
der to get intermediate results of jobs. Also, pipelining enables 
pushing of data from map task to reducer task for enabling stream-
ing capability. Mavani and Ragha proposed usage of distributed 
shared memory for storing of intermediate MapReduce results, 
and Remote Direct Memory Access (RDMA) for reduction of net-
work latency [33]. Example RDMA networks include InfiniBand or 
Quadrics [33]. MapUpdate is another model for processing of fast 
data [35]. Similar to MapReduce, the developer writes map and 
update functions, but processing is performed on streams, which 
may never end. MapUpdate uses distributed in-memory slates for 
storing intermediate results of update functions. Muppet, an im-
plementation of the MapUpdate model, has been used for process-
ing of Twitter and FourSquare streams [35]. Muppet has enabled 
quick development of stream processing applications, and achieved 
low latency and high scalability. Also, many other MapReduce-
based alternatives exist, which have been reviewed by Mavani and 
Ragha [33].

S4 is a distributed platform for stream processing [36]. Compu-
tation in S4 is performed by Processing Elements (PE), each associ-
ated with a keyed attribute, and a value. PEs may be independent 
or may be connected by consuming results produced by other PEs. 
Processing Nodes (PN) host PEs, and are responsible for listening to 
events, and invoking of computation in PEs based on the events. A 
separate communication layer abstraction manages clusters of PNs, 
and maps logical elements to physical nodes. S4 provides an API 
for programming stream processing as an abstraction of PEs. On-
line computation of click-through-rates was performed with a peak 
performance of 1600 events/s [36]. Offline computation in 8-node 
cluster handled ∼12 000 events/s with less than 1% relative error 
[36]. Also, scalability, resource usage, and fault tolerance of S4 has 
been analysed [37].

SQLStream is a product, which is based on parallel in-memory 
storage of log data. It offers SQL standard-based API to the pro-
grammer. Processing is based on a pipeline of streaming SQL op-
erations. 15 000 CDRs per second was processed for a SIP trunking 
provider [38]. Streaming data can also be saved into Hadoop Hive 
for deeper analysis.

Qian et al. proposed TimeStream, which is a distributed sys-
tem for processing of low latency streaming data on commodity 
machines [39]. It uses streaming directed acyclic graph (DAG) com-
putation at a lower level. The programming model of the system is 
based on Microsoft’s StreamInsight technology for complex event 
processing applications. It has been extended for distributed exe-
cution supporting parallel execution, fault tolerance, and dynamic 
reconfiguration. The system is able to perform sentiment analysis 
of 10 000 Twitter tweets/s with a 2 s delay in a computer cluster.

Zaharia et al. have developed discretized streams (D-Streams) 
for enabling fault-tolerant streaming computation [40]. D-Streams 
structures stream computations as a set of short, stateless, and de-
terministic tasks, which allows powerful recovery techniques. Tasks 
are stored in-memory as resilient distributed datasets. D-Streams 
has been implemented based on Spark processing engine. It has 
high per-node throughput, scales up to 100 nodes, and achieves 
sub-second fault recovery and latency. D-Streams is developed fur-
ther as part of the Apache Spark project.

Naiad is a new distributed system for executing parallel cyclic 
dataflow programs [41]. It is based on a low level computational 
model (timely dataflow), and modelling with directed graphs. In 
the solution stateful vertices transfer messages along directed 
edges [41]. Naiad is a distributed implementation of the timely 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 179
dataflow, and enables programming with several higher level ab-
stractions (e.g. MapReduce, LINQ). The tests indicate that it can 
achieve equivalent performance with other similar stream process-
ing systems.

Matsuura [42] proposed an integrated execution platform, 
which is able to handle both stream and batch processing jobs 
while satisfying Service Level Agreement (SLA) for stream pro-
cessing applications. The system is based on distributed data 
stream processing middleware (System S by IBM research) and 
Apache Hadoop technologies. In the proposal a dynamic load 
balancing component allocates computing nodes for stream or 
batch processing based on a scheduling strategy. Other important 
stream processing technologies include Apache Storm and Apache 
Flume.

The review indicates that existing stream processing techniques 
are based on MapReduce extensions or modifications [34,33,35], 
streaming SQL operations [38], dividing of streams into small de-
terministic tasks [40], modelling based on acyclic graphs [39,41], 
distributed system of processing elements [36], and simultaneous 
batch and stream processing solutions [42]. From the program-
mer’s viewpoint MapReduce [34,33] and its extensions [35], SQL 
API [38], or completely new APIs [40–42,36] can be utilized. Per-
formance measures of the solutions mainly included latency and 
throughput, and Twitter was used as the main streaming reference 
use case.

5.2.2. Graph models
Graph models are based on the semantics of graph theory [43]. 

A graph data model can be characterized by graph representa-
tion, data manipulation expressed by graph transformation, and 
integrity constraints enforcing data consistency [43]. Graph mod-
elling is applied in big data area, when information about data 
interconnectivity is more important than data itself [43]. This en-
ables more natural modelling of data, and direct referral to the 
graph structure by complex queries [44]. These are important 
properties for applications using graph models such as social or 
biological networks [43].

Implementations of graph database models have been analysed 
and categorized by Angles [45]. Graph databases contain major 
components of a database system such as database language, query 
optimizer, and database engine. Graph stores provide only basic 
facilities for storing and querying of graphs. Related graph tech-
nologies do not store graphs, but use graph notion in the imple-
mentation. Related graph technologies include triple stores of the 
Resource Description Framework (RDF). Also, web and document 
oriented databases, which use graph algorithms or structures in 
implementation, may be considered as related graph technologies 
[45]. Furthermore, Angles compared graph databases and stores in 
terms of data structures, query languages, integrity constraints, and 
support for querying [45].

Typical application needs in graph processing include online 
query processing with low latency requirements, and offline graph 
analytics with high throughput requirements [46]. XGDBench was 
used for benchmarking online graph databases with synthetic 
graph models, which indicated that OrientDB had best perfor-
mance, when compared to the alternatives (AllegroGraph, Fuseki, 
Neo4j, Titan) [47]. Angles proposed a micro-benchmark for test-
ing social networking related databases [48]. Graph databases (DEX 
and Neo4j) achieved best performance, when compared to RDF 
stores or relational database (RDF-3x, Virtuoso and PostgreSQL). 
Abreu et al. [49] analysed graph databases (DEX, Neo4j, Hyper-
graphDB) and RDF engine (RDF-3x) with Berlin SPARQL benchmark 
for consuming and mining of linked data. None of the tested tech-
nologies outperformed others, but RDF-3x exhibited best perfor-
mance in most tasks.
RDF stores can be considered as a sub group of graph stores. 
Huang et al. [50] presented a scalable distributed RDF data man-
agement system, which is based on partitioning of graphs. It en-
ables triples close to each other in the graph to be stored in 
the same RDF store. The approach significantly increases perfor-
mance of serving slow SPARQL queries, when compared to alter-
natives (single node RDF-3x, SHARD). A recently developed graph 
engine manages RDF data in native graph form in a distributed 
in-memory store [51,52]. It achieves much higher performance 
for online SPARQL queries or offline computation than alterna-
tives, which manage data in triple stores or as bitmap matrices 
[51,52].

Specific graph processing systems have also been developed. 
Google published Pregel, a distributed system for large-scale graph 
processing [53]. Pregel exposes a Vertex API for programming of 
graph processing jobs. Apache Giraph is an open source graph pro-
cessing engine inspired by Pregel. Distributed GraphLab [54] is an 
alternative approach, which enables distributed, asynchronous, and 
dynamic processing of graphs. GraphChi [55] is a disk-based sys-
tem for computing graphs with millions of edges. It divides big 
graphs into smaller parts by utilizing a parallel sliding windows 
method, which enables simultaneous execution of data/graph min-
ing and machine learning tasks on a single computer.

Twitter’s “Who to Follow”-service [23] is a real world example 
involving graph processing. Customers are served by storing user 
graph on a single in-memory database (Cassovary) [23]. The server 
handles OLAP queries such as user recommendations, whereas On-
line Transaction Processing (OLTP) based graph manipulations are 
handled by another graph database (FlockDB). Persistent data from 
FlockDB is loaded daily into Cassovary server due to the size of the 
graph.

5.2.3. Business intelligence and visualization
Traditional Business Intelligence relies on Extract-Transform-

Load (ETL) tools for input of data into warehouse servers [56]. 
Typically data is processed and stored to mid-tier servers for pro-
viding a multi-dimensional view on OLAP-server, enterprise search 
engines, or data mining engines for enabling in-depth analysis 
of data. Finally, front-end applications provide user interface and 
functions such as searching, performance management, or tracking 
of key performance indicators.

However, requirement for faster decision making has created 
a need for further development of BI tools and technologies. Choo 
and Park have proposed computational methods for improving per-
formance of visual analytics [57]. The solution is to exploit dis-
crepancies in human perception and screen space by utilizing low-
precision computation, iteration-level interactive visualization, and 
iterative refinement of computational results [57]. Another big data 
visualization challenge has been encountered with electronic mi-
croscope, which may involve long delays in the data pipeline [58]. 
As a solution Beyer et al. have presented a system for exploration 
of peta-scale data volumes in 3D. The system is based on visual-
ization-driven volume data construction and on a multi-resolution 
virtual memory scheme.

In addition to academic work on visualization, several commer-
cial tools are available. Vendors have been categorized to Table 2
in terms of UI capabilities, supported execution environments and 
data sources, capabilities for data analysis, and support for external 
statistical tools.

Most of the reviewed solutions offer visualization with a web 
browser. Also, mobile applications may be provided for extend-
ing the customer experience (Tableau, QlikView, SAS). Most of the 
products can be executed in enterprise or cloud domain. Some 
product offerings have been associated with the execution en-
vironment. For example DataMeer and Tableau provide separate 
products for desktop, server, and cloud environments. Supported 



180 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
Table 2
Analysis of commercial visualization tools. See Appendix C for references.

Vendor UI capabilities Execution environment Data sources Data analysis capability External statistical 
interfaces

Karmasphere Web browser Physical HW, cloud Delimited (CSV, TSV, XML 
etc.), text, extended text, 
sequence, binary.

Analytical functions, batch 
analysis (Hadoop)

–

Datameer Web browser (HTML5) Desktop, server, Hadoop 
cluster

Social media, RSS, RDBMS, 
NoSQL, web/app logs, Java

Batch analysis (Hadoop) R, SPSS, PMML

Platfora Web browser (HTML5) Physical or cloud. Requires 
access to HDFS or Amazon S3.

Delimited text, Hive tables See “Analytics engine”, 
batch analysis (Hadoop)

–

Tableau Web browser. Mobile 
applications for Android, 
iPad, iPhone.

Desktop, server, cloud 
(online). Runs on Windows. 
Virtual env.

Databases, cubes, data 
warehouses, files and 
spreadsheets.

See “Tableau Desktop” R

QlikView Web browser, QlikView 
Mobile for iOS. “Business 
discovery” for organizations.

Physical. Runs on Windows. Data warehouses, Excel 
files, SAP, Salesforce.com

See “Qlikview Developer” –

SAS Visual
Analytics

Mobile apps for iPad and 
Android

Physical, cloud, SaaS Excel, delimited text, SAS 
data, Twitter stream, Oracle 
tables

See SAS Visual Analytics 
Designer

–

Streambase Web browser, mobile client 
access via Restful API

Windows, Linux Various streaming data 
sources (news, social media 
etc.)

See “LiveView Desktop” Matlab, NVidia, R, 
kdb+QDBC
data sources are heterogeneous, although StreamBase differenti-
ates by providing support for analysis of streaming data with low 
latency requirements. A few vendors enable integration by visual-
izing results of Hadoop-based analysis. Some vendors also provide 
adapters for integration with external statistical tools.

5.2.4. Big data benchmarking
Chen et al. analysed MapReduce traces of business critical de-

ployments at Facebook and Cloudera [59]. They found out that 
most workloads are diverse, typically driven by interactive anal-
ysis, and apply query-type of programming frameworks on top of 
MapReduce. Thus, big data benchmarks should characterize diverse 
patterns of workloads.

Currently new benchmarking technologies for big data systems 
are being developed, which have been surveyed by Qin and Zhou 
[60]. The review indicated that many benchmarks exist for big data 
related technologies such as MapReduce, NoSQL databases, graph 
databases [47], Hadoop, and relational databases [60]. However, a 
common benchmark covering complex big data systems and work-
loads [59] is needed, which was also concluded by Wang et al. in 
a review of big data benchmarks [61].

Ghazal et al. have developed BigBench, an end-to-end bench-
mark for simulation of comprehensive workloads [62]. Data model 
of the benchmark adopts a structured part from an existing TPC-
DS benchmark. Semi-structured and unstructured data components 
have been implemented with Parallel Data Generation Framework 
[63]. The proposal covers specification of velocity, variety, and vol-
ume, which are important characteristics of big data. Performance 
of the benchmark was tested against Teradata Aster DBMS in a 
clustered environment. An alternative approach is driven by Big 
Data Benchmarking Community [64]. It aims at defining an end-to-
end application layer benchmark, which would be evolved with a 
concurrent benchmarking model. Armstrong et al. have developed 
LinkBench, which is a benchmark based on Facebook social graph 
[65]. It reflects real-world database workloads for social applica-
tions. The benchmark consists of a loading phase for populating 
a graph store with synthetic data, and execution phase for run-
ning the specified queries and collection of statistics. Wang et al. 
presented BigDataBench [61] for characterizing big data workloads. 
First, real-world data sets were gathered from social networking, e-
commerce, and search engine use cases. Then, 19 workloads were 
chosen covering offline and real-time analytics, and online services. 
BigDataBench has been used for benchmarking of big data systems 
with different hardware platforms [66].

The review indicated that various benchmarks have been de-
veloped for testing of big data technologies [60]. Also, the first 
end-to-end benchmarks are being developed for characterizing big 
data workloads [62,65,64,61].

5.2.5. Virtualization and cloud-based solutions
Virtualization has been developed for abstracting HW and sys-

tem resources to enable execution of multiple operating systems 
(OS) (Fig. 16). Full virtualization [67] aims at hardware emulation. 
An unmodified OS is used, in which a hypervisor controls execu-
tion of privileged operations. Paravirtualization requires modifica-
tions to the virtualized OS and coordination between the virtual OS 
and hypervisor regarding operations [67]. The benefit is increased 
performance over full virtualization, which is enabled by execution 
of demanding tasks in the host OS. OS-level virtualization approach 
does not require a hypervisor. Instead, the underlying OS is modi-
fied to enable execution of multiple instances of the OS on a single 
machine [67]. Linux versions of OS-based virtualization have been 
referred to as container-based virtualization solutions [68]. The 
main advantage is performance, which is close to execution of a 
native OS [67]. The disadvantage is reliance of multiple VMs on a 
single OS kernel, which may create problems in case of crashes. An 
interesting technology is Docker, which automates deployment of 
applications in standardized execution environments, by utilizing 
container-based virtualization. Native virtualization uses hardware 
support in a processor to enable execution of multiple unmodified 
OSs on the host processor.

Performance of different virtualization models has been com-
pared. Walters et al. examined WMware, Xen, OpenVZ in terms 
of different workloads [67]. OpenVZ as an OS-level virtualiza-
tion solution demonstrated lowest overhead and highest perfor-
mance. Che et al. [69] also evaluated performance of OpenVZ, Xen, 
and KVM as implementations of different virtualization models. 
OpenVZ (OS-based virtualization) had best performance, and KVM 
(full virtualization) had lower performance than Xen (paravirtual-
ization).

Also, full- and paravirtualization models have been compared. 
Younge et al. compared Xen, KVM, VirtualBox, and WMware [70]. 
KVM had best overall performance followed by VirtualBox (full 
virtualization). Full- and paravirtualization models with Xen has 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 181
been studied [71], which indicated that overhead of full virtual-
ization is at least 35% larger, when compared to paravirtualiza-
tion. Li [72] compared a commercial hypervisor, Xen, and KVM 
with different Hadoop-based benchmarks. Biggest performance dif-
ferences were observed with I/O bound benchmarks, while CPU-
bound benchmarks revealed smaller differences between hypervi-
sors. HW-assisted virtualization was tested with Xen and KVM by 
Palit et al. [73]. Particularly, PCI passthrough was used to enable di-
rect access to hardware devices by the VMs. The results indicated 
near-native performance, and Xen achieved better overall results, 
when compared to KVM.

Finally, paravirtualization and OS-based virtualization have 
been compared. Padala et al. compared Xen and OpenVZ in differ-
ent configurations [74]. The results indicated that Xen had larger 
overhead, which resulted in higher performance for OpenVZ. Dif-
ferent OS-level/container-based virtualization solutions have been 
compared to Xen by Xavier et al. [68]. In overall, Xen achieved 
lower performance than the container-based virtualization solu-
tions. LXC achieved best performance among the container-based 
solutions. However, isolation of performance between VMs was 
best with Xen, which may be a disadvantage of OS-based virtual-
ization solutions.

Cloud computing has been characterized by dynamic provision-
ing of computing resources based on service-level agreements be-
tween service provider and consumer [75]. Cloud computing is 
an umbrella concept, which covers also virtualization solutions. 
Many open source implementations have been developed for cloud 
computing [76]. Dukaric and Juric [77] presented a taxonomy 
and architecture for cloud solutions, and provided a mapping be-
tween the framework and different open source cloud implemen-
tations.

Architectural and philosophical differences and similarities be-
tween Eucalyptus, OpenNebula, and Nimbus cloud solutions were 
compared by Sempolinski [78]. Wen et al. [79] compared Open-
Nebula and OpenStack in terms of architecture, support for virtu-
alization hypervisors, cloud APIs, and security aspects. OpenStack, 
OpenNebula, Nimbus and Eucalyptus were compared in terms of 
interfaces, hypervisors, networking, deployment, and storage in or-
der to evaluate suitability for FutureGrid testing environment [80]. 
Also, scalability of provisioning physical and virtual machines was 
tested, and OpenStack was observed to achieve the best perfor-
mance. Huang et al. [81] compared CloudStack, Eucalyptus, and 
OpenNebula for geoscience applications. Especially, the implemen-
tations were compared in terms of features and performance (CPU, 
I/O, memory hierarchy, network transfer, and geoscience appli-
cations). A difference was observed in support for web applica-
tions, where OpenNebula had slightly better performance, because 
traffic is not routed via a cloud controller in the architecture. 
OpenNebula also achieved best performance in geoscience appli-
cations, although with a small margin, when compared to the 
alternatives. Huang et al. also compared afore-mentioned solu-
tions against the performance of a bare-metal cluster [82]. The 
results indicate that cloud solutions have ∼10% overhead from 
virtualization and management, which increases when more vir-
tual machines are used. OpenNebula achieved best performance, 
when compared to the other cloud solutions (CloudStack, Eucalyp-
tus).

5.2.6. New technology frameworks
In addition, completely new analytics frameworks have been 

developed. Borkar et al. present ASTERIX as a new approach, 
which provides an alternative to the Hadoop-based data processing 
paradigm and architecture [83,90]. A new parallel, semi-structured 
information management system has been created, which consists 
of three architectural layers. The bottom layer is called Hyracks, 
which is a data-intensive runtime. The top layer is a full paral-
lel DBMS with a flexible data model and a query language. The 
middle layer is Algebricks, which is a virtual machine for parallel 
query processing and optimization. Performance of the approach 
has been extensively studied, which indicated better results in 
comparison to Hadoop-based systems.

Flink/Stratosphere follows a similar approach as ASTERIX, and is 
currently being developed in Europe [84]. It has two layers. PACT 
is a new programming model, and Nephele is a parallel execu-
tion engine. Nephele is the lower layer, and executes data flow 
graphs. PACT is a generalization of the MapReduce programming 
model, but also includes a richer set of operators. It offers Java and 
Scala APIs for developers. Flink applies in-memory data transfers 
and data pipelining for increasing of performance.

Flink use cases have been published for illustrating the ben-
efits of the framework. Nephele has been extended for detecting 
violations in user-defined QoS constraints, and optimization of job 
execution without user intervention [85]. The approach improved 
processing latency in a video stream augmentation task signifi-
cantly, when compared to alternatives (no optimization, Hadoop 
Online [34]). Flink has also been utilized for data mining of users 
in a social media service [86]. Specifically, PACT programming, ex-
ecution of data flows, and visualization of analysis results has been 
demonstrated [86].

5.2.7. Commercial services
Also, many commercial infrastructure services are available for 

realisation of big data systems (see Appendix C (Table C.1) for ref-
erences). The classification of commercial services in Fig. 16 was 
inspired by Feinleib [87]. Software-as-a-Service (SaaS) companies 
have specialized in the collection and analytics of big data. Ex-
amples include Flurry or Medio, which have specialized in data 
collection and analytics for mobile applications and devices. End 
users apply a Software Development Kit (SDK), which is obtained 
from the SaaS-provider for data collection from mobile devices. 
A user interface is provided for end users for getting access to data 
metrics. Jaspersoft BI for AWS is another SaaS-based solution for 
execution of BI based on Amazon’s infrastructure and services.

Infochimps provides Infrastructure-as-a-Service (IaaS) for data 
collection and analysis in cloud-based deployments. Especially, 
public interfaces are provided for controlling data collection and 
analysis processes. Also, different virtual cloud networking solu-
tions are available for execution of the service. Amazon EC2 and 
Windows Azure are other main IaaS solutions.

Data-as-a-Service (DaaS) providers offer a public API for get-
ting access to data, which has been collected from various sources. 
The extracted data is typically context related. Factual provides an 
API for getting access to location and context-based data, which 
has been collected from Factual’s partners. Factual’s clients can use 
data and other provided tools for building of context-based mobile 
applications. Another example is Gnip, which collects data from 
various social media sources (e.g. Twitter), and provides different 
services for getting access to it.

A Big data system may also be built on company’s enterprise 
infrastructure. Cloudera is an example of an “Analytics infrastruc-
ture”, which provides a Hadoop-based platform for execution of 
data analytics jobs in enterprise environment. Jaspersoft BI Enter-
prise is an analytics platform for enterprise domain, and consists 
of several functionalities (ETL, OLAP, in-memory server, visualiza-
tion). 10Gen provides “Operational infrastructure” for enterprise 
grade databases and management based on MongoDB technology. 
BigMemory from Terracotta enables a distributed in-memory data 
management solution.

Log services enable collection, management, and analysis of log-
ging data collected from various sources. Splunk enables organiza-
tions to collect and analyse machine generated log data. Splunk 
engine can be deployed in enterprise or virtual environments. Log-



182 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
gly applies an alternative approach by executing data collection of 
logs in the cloud environment, and provides a Representational 
State Transfer (REST) interface for log transmission. A web inter-
face is used for getting insights to analysed data.

Additionally, many advertisement, marketing and media solu-
tions utilizing big data are available. Example companies include 
Collective and RocketFuel.

6. Analysis

6.1. Reference architecture

A detailed and high level view of the reference architecture 
(Figs. A.1 and 1) for big data systems was designed inductively 
based on published material of the big data use cases. The ref-
erence architecture for big data systems is comprised of semi-
detailed functional components [12] and data stores, and data 
flows between them (research question 1). The presented design 
contained description of the architectural elements (Section 4.1). 
The high level view (Fig. 1) contains the same elements as the de-
tailed view (Fig. A.1).

The empirical data enabled mainly design at the level of ab-
straction, where data flows, data stores, and functionalities were 
identified. Additionally, the design could include other abstraction 
levels e.g. software interfaces, which should be part of a facilitation 
type of architecture [12]. However, the publications did not expose 
details of related technologies or functionalities, which made ar-
chitecture design with other building blocks difficult.

Visualization functionality has been defined with several ele-
ments due to the heterogeneity of visualization applications. End 
user clients (e.g. Twitter client app, Netflix app), BI visualization 
tools (e.g. Microstrategy UI) or simple Dashboarding UI displaying 
KPIs (BlockMon) may be utilized. Also, Job and Model specifica-
tion may be realised together in the same user interface, which is 
applied for visualization of analysis results. However, these func-
tionalities were specified as separate entities in the model. Finally, 
in many use cases (i.e. LinkedIn, Netflix, FIU-Miner) the visualiza-
tion application for batch processing results was not described in 
the publication.

The reference architecture was created inductively based on the 
published big data implementation architectures. Thus, only the 
observed functional components and data stores are present in the 
architecture. If the model is extended in the future based on other 
big data use cases, the model may need to be updated with new 
functional components or data stores.

6.2. Classification of technologies and services

The classification of technologies and services (Fig. 16) was 
created as an answer to the second research question. It was 
created based on technologies encountered in the analysed big 
data use cases, and additional survey of literature and commercial 
products/services. The survey concentrated on technological areas, 
products and services, which had not been covered in other litera-
ture surveys of big data.

In order for the classification to be more useful, relationship 
to the reference architecture (Fig. 1) should be understood, which 
is analysed in the following. First, data in big data use cases 
may be collected from different sources. When data is collected 
from a streaming data source, log facilities can be applied. This 
corresponds with stream extraction in the reference architecture. 
Streaming data is typically saved into a Temporary stream data 
store (with log facilities (e.g. Kafka/Scribe)) or into a Raw data 
store (e.g. distributed file system) for batch processing. When 
structured data is extracted, data is typically stored into a dis-
tributed file system (Temporary data store or Raw data store). 
Key-value stores were applied in the use cases for storing of anal-
ysis results (Analysis results store). Extensible record stores and 
in-memory stores were used as Stream data stores.

The selection of data processing technologies may depend on 
real-time processing requirements. Tasks with loose timing re-
quirements can be executed as batch processing jobs (Deep analyt-
ics). The jobs for batch-based analysis can be specified with tools 
in the user interface (Job scheduling/specification). Additionally, 
machine learning tools may be applied for increasing the quality of 
analysis. Tasks with real-time requirements may be analysed with 
stream processing tools.

The analysis results may be transformed for OLAP queries (OLAP 
processing), stored in a database (Analysis results store, Stream 
analysis results store, Publish & Subscribe store) or visualized 
(Dashboarding app, End user app). Commercial BI tools may be 
utilized for visualization of analysis results (Visualization applica-
tion).

Also, other technologies are related to the realisation of big data 
systems. Benchmarking tools can be used for system testing, and 
simulation of different data sources. Novel technology frameworks 
have been developed as an alternative to data collection and anal-
ysis technologies (e.g. Hadoop/MapReduce based processing frame-
works). Virtualization technologies and cloud-based solutions may 
be utilized, when a platform for data collection and analysis is 
built into a computer cluster.

Commercial services may have large implications from the per-
spective of domain, which is applied for execution of the functional 
components. For example, IaaS, SaaS, and DaaS type of services 
would realise significant portion of the functionality in the ser-
vice provider’s domain. Also, hybrid approaches may be possible. 
As an example, log data may be generated in the enterprise do-
main, which is collected and analysed by a Log service provider, 
and an application would visualize analysis results in the enter-
prise domain. Finally, Analytics and Operational infrastructure may 
be considered as an implementation of complete big data refer-
ence architecture, which is deployed at the customer’s domain of 
choice.

7. Discussion

The related contributions on big data reference architecture 
were either on a very high level [9,8] or have focused on a sub-
set of system functionality [19,20]. However, the results of this 
work can be compared to the reference architecture developed by 
Meier [7]. We used inductive reasoning in the construction of the 
reference architecture, while Meier applied a deductive approach. 
Thus, we differentiated from Meier, and also used more mate-
rial (seven big data use cases) in the design process. Our model 
has many similar elements, when compared to Meier’s detailed 
functional model [7]. As differentiated functional components we 
presented Job specification, Job scheduling, Model specification, 
Machine learning, Combining, Cleaning, Visualization and Com-
pression functionalities. Also, Jobs and Models data stores were 
described. Some of the functionalities and stores of Meier’s refer-
ence architecture are not present in our model, because we did 
not observe these elements in the studied use cases. However, 
many elements between the models are similar (e.g. Raw data 
store corresponds to Raw data storage in Meier’s work). In overall, 
we achieved a similar, but differentiated model, when compared 
to the model presented by Meier [7]. Other researchers may also 
replicate and differentiate our research, as the source material is 
publicly available.

Also, SOLID architecture for big data can be compared to our 
work [10]. SOLID consists of an online layer capturing incoming 
data to the system, merge layer consisting of batch processing, data 
layer as the main storage, index layer providing fast access to data, 



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 183
and service layer providing an interface to end users. The main dif-
ference is that separate stream and batch processing layers are not 
considered in SOLID. Also, many of the elements are absent, which 
we encountered in the realised use cases. However, there is corre-
spondence between the models. Online layer in SOLID corresponds 
to Extraction of data into Temporary data store, merge layer can 
be considered as Deep analytics in our model, data layer is asso-
ciated with the different data stores in our model (e.g. Raw data 
store, Enterprise data store), and service layer may be associated 
with Serving data stores providing access to visualization.

Our work can also be compared to similar surveys in the area of 
big data. Chen et al. [14] presented a comprehensive survey on big 
data, but they did not focus specifically on architectural issues or 
explicit classification of technologies and commercial products/ser-
vices. Chen and Zhang’s survey on big data overlaps with our work 
by covering streaming and visualization technologies [11]. They fo-
cused less on classification of technologies and services, which was 
covered in our work. Furthermore, they identified architecture as 
one of the top priorities in the design of big data systems, which 
was the focus in our work. Begoli’s [13] state-of-the-art survey 
contains many technologies, and architectural taxonomies, which 
are also covered in this document. However, the survey is shorter 
and has a narrower focus. The big data mining framework by Wu 
et al. [15] has a higher level abstraction, and a different focus (data 
mining), when compared to our work. Cuzzocrea et al. [16] dis-
cussed OLAP over big data, big data posting and privacy as part 
of big data research agenda. These aspects may be considered as 
complementary to our focus on other aspects of big data research. 
Westerlund et al. suggested a generalized architecture for predic-
tive analytics [89]. The proposal is mainly focused on generation of 
jobs for machine learning to be executed in a server component, 
which corresponds to a subset of functionality in our reference ar-
chitecture.

A limitation of the proposed classification is concentration 
on selected technologies in the survey. However, other authors 
have covered other technological topics in earlier surveys: batch 
processing [11,15,14], machine learning [11], data mining [15,
11], storage systems [14], statistical tools [14,11], and document-
oriented databases [14].

Another limitation of this work is that the reference architec-
ture should be evaluated with a real big data use case, which 
would complete step 6 of the research method (Appendix A). How-
ever, the model was created inductively based on the realised use 
cases. Thus, the final step (6) [17] in the design of a practice-driven 
reference architecture should be less critical, when compared to 
design based on a research-driven approach [17], which is not 
based on architecture implementations.

8. Conclusion

This paper concentrated on reference architecture, technologies, 
and commercial products/services for big data systems. The aim 
of the work is to facilitate architecture design, and technology or 
commercial product/service selection in the construction of big 
data systems. First, related work on big data surveys, reference 
architectures, and use cases were presented. The main research 
question dealt with elements contained in big data reference archi-
tecture. As an answer, reference architecture was designed, which 
consists of functional components, data stores, and connecting 
data flows. The architecture was constructed with inductive rea-
soning based on empirical data from the published big data use 
cases. Also, a mapping between the architecture model and the 
use cases was presented. Subsequently, related work in big data 
area was surveyed. Especially, the survey focused on stream pro-
cessing, graph modelling, business intelligence and visualization 
technologies, big data benchmarks, virtualization and cloud solu-
tions, new technology frameworks, and commercial products/ser-
vices. The second research question focused on classification of 
technologies and products/services for big data systems. A classifi-
cation was presented as an answer, which included material from 
the reviewed big data use cases and related work.

Acknowledgements

The authors acknowledge Markus Meier for design of the refer-
ence architecture for big data systems, which inspired the authors 
for replication and differentiation in this work. Additionally, we ac-
knowledge developers and publishers of the reviewed big data use 
cases, whose publications were used as empirical material in this 
study.

This research has been carried out in Digile Need for Speed 
program, and it has been partially funded by Tekes (the Finnish 
Funding Agency for Technology and Innovation). The research was 
also partially conducted in ICARE (Innovative Cloud Architecture 
for Entertainment) project, which is funded by Tekes (ITEA3 pro-
gram).

Appendix A. Detailed view of the reference architecture

Fig. A.1 presents a detailed view of the reference architecture. 
Particularly, functionalities, data stores, and data flows of the use 
cases have been mapped to the architecture.

Appendix B. Methods

This section describes the research method for construction of 
the reference architecture. We followed replication study approach 
for research [88]. First, we replicated Meier’s approach in the de-
sign of the reference architecture for big data systems (differen-
tiated replication [88]). Second, we differentiated [88] from the 
original approach by using more big data use cases in the design 
of the reference architecture, and by utilizing inductive reasoning 
in the design. In the following the differentiated research approach 
has been described:

It has been defined that an empirically-grounded architecture 
should be created by following a step-wise approach [17]. The pro-
cedure consists of defining a type for the reference architecture 
(step 1), selecting of a design strategy (step 2), empirical acquisi-
tion of data (step 3), construction of reference architecture (step 4), 
enabling variability (step 5), and evaluation of the reference archi-
tecture (step 6). Initially (step 1), the type of reference architecture 
can be defined based on the framework by Angelov et al. [12], 
which covers goal and context for a reference architecture. A facil-
itation type of reference architecture (type 3 in [12]) was chosen, 
which is designed by an independent organization for utilization 
by multiple organizations. The main components of the reference 
architecture are described in an abstract or semi-detailed level.

Subsequently (step 2), design strategy was selected to be 
practise-driven i.e. architecture was designed based on the exist-
ing big data architectures/realisations. Empirical data was gathered 
(step 3) from publications and blogs by developers of the big data 
use cases for construction of the architecture. The original research 
by Meier was differentiated by using material from seven big data 
use cases (Meier used two similar use cases). We replicated con-
struction of the reference architecture, which was differentiated 
by consideration of the additional use cases (step 4). Additionally, 
we constructed the reference architecture inductively based on the 
realised use cases, whereas Meier applied a deductive approach. 
Especially, functionalities and data stores in the use cases were 
analysed, and generalized into one common reference architecture. 
Variability was not defined to the architecture (step 5). Evaluation 
of the constructed architecture with a real big data use case is left 
for future work (step 6).



184
P.Pääkkönen,D

.Pakkala
/Big

D
ata

Research
2

(2015)
166–186

e mapping between architectural concepts and use cases.
Fig. A.1. Detailed design of the reference architecture. Data stores are depicted as ellipsis, functionalities as rectangles, and data flows as arrows. Letter symbols describ



P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186 185
Appendix C. References to commercial products and services

Table C.1
References to commercial solutions and services.

Product/company Reference

Amazon EC2 http :/ /aws .amazon .com /ec2/
AMD-V http://www.amd.com/us/solutions/servers/virtualization/

Pages/virtualization.aspx
BigMemory http :/ /terracotta .org /products /bigmemory
Cloudera http :/ /www.cloudera .com/
Collective http :/ /collective .com/
Datameer http :/ /www.datameer.com/
Factual http :/ /www.factual .com/
Flurry http :/ /www.flurry.com/
GNIP http :/ /gnip .com/
Infochimps http :/ /www.infochimps .com/
Intel-VT http :/ /ark.intel .com /products /virtualizationtechnology
Jaspersoft http :/ /www.jaspersoft .com/
Karmasphere http :/ /www.karmasphere .com/
Loggly https :/ /www.loggly.com/
Medio http :/ /medio .com/
Platfora http :/ /www.platfora .com/
QlikView http :/ /www.qlik.com /fi-fi
RocketFuel http :/ /rocketfuel .com/
SAS Visual Analytics http :/ /www.sas .com/
Splunk http :/ /www.splunk.com/
Spotfire http :/ /spotfire .tibco .com/
SQLStream http :/ /www.sqlstream .com/
Streambase www.streambase.com/
Tableau http :/ /www.tableausoftware .com/
Windows Azure https :/ /www.windowsazure .com/
WMware http :/ /www.vmware .com/
10Gen http :/ /www.mongodb .com/

References

[1] R. Sumbaly, J. Kreps, S. Shah, The “Big Data” Ecosystem at LinkedIn, in: 2013 
ACM SIGMOD International Conference on Management of Data, New York, 
New York, USA, 22–27 June, 2013.

[2] X. Amatriain, Big & Personal: data and models behind Netflix recommenda-
tions, in: The 2nd International Workshop on Big Data, Streams and Heteroge-
neous Source Mining: Algorithms, Systems, Programming Models and Applica-
tions, Chicago, Illinois, USA, 11 August, 2013.

[3] G. Mishne, Fast data in the era of big data: Twitter’s real-time related query 
suggestion architecture, in: The 2013 ACM SIGMOD International Conference 
on Management of Data, New York, New York, USA, 22–27 June, 2013.

[4] D. Simoncelli, M. Dusi, F. Gringoli, S. Niccolini, Stream-monitoring with Block-
Mon: convergence of network measurements and data analytics platforms, 
ACM SIGCOMM Commun. Rev. 43 (2013) 29–35.

[5] C. Zeng, et al., FIU-miner: a fast, integrated, and user-friendly system for data 
mining in distributed environment, in: 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 11–14 
August, 2013.

[6] A. Thusoo, et al., Data warehousing and analytics infrastructure at Facebook, 
in: 2010 ACM SIGMOD International Conference on Management of Data, Indi-
anapolis, Indiana, USA, 6–11 June, 2010.

[7] M. Meier, Towards a big data reference architecture, Master’s thesis, Eindhoven 
University of Technology, October 2013.

[8] R. Schmidt, M. Möhring, Strategic alignment of cloud-based architectures for 
big data, in: 17th IEEE International Enterprise Distributed Object Computing 
Conference Workshops, Vancouver, Canada, 9–13 September, 2013.

[9] Y. Demchenko, C. Ngo, P. Membrey, Architecture framework and components 
for the Big Data Ecosystem, SNE Technical Report, University of Amsterdam, 
September 12, 2013.

[10] C.E. Cuesta, M.A. Martinez-Prieto, J.D. Fernandez, Towards an architecture for 
managing big semantic data in real-time, in: 7th European Conference on Soft-
ware Architecture, Montpellier, France, 1–5 July, 2013.

[11] C.L.P. Chen, C. Zhang, Data-intensive applications, challenges, techniques and 
technologies: a survey on Big Data, Inf. Sci. 275 (2014) 314–347.

[12] A. Angelov, P. Grefen, D. Greefhorst, A framework for analysis and design of 
software reference architectures, Inf. Softw. Technol. 54 (2012) 417–431.

[13] E. Begoli, A short survey on the state of the art in architectures and platforms 
for large scale data analysis and knowledge discovery from data, in: The 10th 
Working IEEE/IFIP Conference on Software Architecture & 6th European Confer-
ence on Software Architecture (WICSA/ECSA), Helsinki, Finland, 20–24 August, 
2012.
[14] M. Chen, S. Mao, Y. Liu, Big data: a survey, Mob. Netw. Appl. 18 (2014).
[15] X. Wu, G. Wu, W. Ding, Data mining with big data, IEEE Trans. Knowl. Data 

Eng. 28 (2014) 97–106.
[16] A. Cuzzocrea, D. Sacca, J.D. Ullman, Big data: a research agenda, in: The 

17th International Database Engineering & Applications Symposium, Barcelona, 
Spain, 09–11 October, 2013.

[17] M. Galster, P. Avgeriou, Empirically-grounded reference architectures: a pro-
posal, in: Joint ACM SIGSOFT Conference on Quality of Software Architectures 
and ACM SIGSOFT Conference on Quality of Software Architectures and ACM 
SIGSOFT Symposium on Architecting Critical Systems, Boulder, Colorado, USA, 
June 20–24, 2011.

[18] A. Zimmermann, et al., Towards and integrated service-oriented reference en-
terprise architecture, in: International Workshop on Ecosystem Architectures, 
Saint Petersburg, Russia, 19 August, 2013.

[19] K.A. Doshi, et al., Blending SQL and NewSQL approaches reference architec-
tures for enterprise big data challenges, in: The International Conference on 
Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, 
10–12 October, 2013.

[20] T. Zhong, et al., On mixing high-speed updates and in-memory queries a big-
data architecture for real-time analytics, in: IEEE International Conference on 
Big Data, Santa Clara, California, USA, 6–9 October, 2013.

[21] J. Lin, D. Ryaboy, Scaling big data mining infrastructure: the Twitter experience, 
ACM SIGKDD Explor. Newsl. 14 (2013) 6–19.

[22] G.L. Lee, J. Lin, C. Liu, A. Lorek, D. Ryaboy, The unified logging infrastructure for 
data analytics at Twitter, in: The 38th International Conference on Very Large 
Databases, Istanbul, Turkey, 27–31 August, 2012.

[23] P. Gupta, et al., WTF: the who to follow service at Twitter, in: The International 
World Wide Web Conference, Rio de Janeiro, Brazil, 13–17 May, 2013.

[24] M. Dusi, et al., BlockMon: flexible and high-performance big data stream ana-
lytics platform and its use cases, NEC Tech. J. 7 (2012) 102–106.

[25] Y. Lee, Y. Lee, Toward scalable internet traffic measurement and analysis with 
hadoop, ACM SIGCOMM Commun. Rev. 43 (2013) 5–13.

[26] Y. Lee, W. Kang, Y. Lee, A hadoop-based packet trace processing tool, in: In-
ternational Workshop on Traffic Monitoring and Analysis, Vienna, Austria, April 
27, 2011.

[27] J. Kreps, N. Narkhede, J. Rao, Kafka: a distributed messaging system for log pro-
cessing, in: The 6th International Workshop on Networking Meets Databases, 
Athens, Greece, 12 June, 2011.

[28] L. Wu, et al., Avatara: OLAP for web-scale analytics products, in: 38th Inter-
national Conference on Very Large Databases, Istanbul, Turkey, 27–31 August, 
2012.

[29] M. Busch, et al., EarlyBird: real-time search at Twitter, in: 2012 IEEE 28th In-
ternational Conference on Data Engineering, Washington, DC, USA, 1–5 April, 
2012.

[30] X. Amatriain, System architectures for personalized recommendations, Avail-
able via Netflix, http://techblog.netflix.com/2013/03/system-architectures-for.
html, accessed 25 Nov., 2013.

[31] J. Boulon, et al., Chukwa: a large-scale monitoring system, in: Cloud Computing 
and its Applications, Chicago, Illinois, USA, 22–23 October, 2008.

[32] A. Woznica, R. Nguyen, A. Kalousis, Model mining for robust feature selection, 
in: The 18th ACM SIGKDD Conference on Knowledge Discovery and Data Min-
ing, Beijing, China, 12–16 August, 2012.

[33] M. Mavani, L. Ragha, MapReduce frame work: investigating suitability for faster 
data analytics, Adv. Comput. Commun. Control CCIS 361 (2013) 119–130.

[34] T. Condie, et al., MapReduce online, in: The 7th USENIX Conference on Net-
worked Systems Design and Implementation, San Jose, California, USA, 28–30 
April, 2010.

[35] W. Lam, et al., Muppet: MapReduce-style processing of fast data, in: The 38th 
International Conference on Very Large Databases, Istanbul, Turkey, 27–31 Au-
gust, 2012.

[36] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing 
platform, in: The IEEE International Conference on Data Mining Workshops, 13 
December, 2010.

[37] J. Chauhan, S.A. Chowdhury, D. Makaroff, Performance evaluation of Yahoo! S4: 
a first look, in: The 7th International Conference on P2P, Parallel, Grid, Cloud 
and Internet Computing, Victoria, Canada, 12–14 November, 2012.

[38] SQLStream, processing and analysing streams of CDRs in real time, http://
www.sqlstream.com/wp-content/uploads/2014/02/SQLstream_Whitepaper_CDR-
Analytics-update.pdf, accessed 13/04/2014.

[39] Z. Qian, et al., TimeStream: reliable stream computation in the cloud, in: Eu-
rosys Conference, Prague, Czech Republic, 14–17 April, 2013.

[40] M. Zaharia, et al., Discretized streams: fault-tolerant streaming computation at 
scale, in: 24th ACM Symposium on Operating System Principles, Farmington, 
Pennsylvania, USA, 3–8 November, 2013.

[41] D.G. Murray, et al., Naiad: a timely dataflow system, in: The 24th ACM Sym-
posium on Operating System Principles, Farmington, Pennsylvania, USA, 3–6 
November, 2013.

[42] H. Matsuura, M. Ganse, T. Suzumura, A highly efficient consolidated platform 
for stream computing and hadoop, in: The 26th International Parallel and Dis-
tributed Processing Symposium, Shanghai, China, 21–25 May, 2012.

http://aws.amazon.com/ec2/
http://www.amd.com/us/solutions/servers/virtualization/Pages/virtualization.aspx
http://www.amd.com/us/solutions/servers/virtualization/Pages/virtualization.aspx
http://terracotta.org/products/bigmemory
http://www.cloudera.com/
http://collective.com/
http://www.datameer.com/
http://www.factual.com/
http://www.flurry.com/
http://gnip.com/
http://www.infochimps.com/
http://ark.intel.com/products/virtualizationtechnology
http://www.jaspersoft.com/
http://www.karmasphere.com/
https://www.loggly.com/
http://medio.com/
http://www.platfora.com/
http://www.qlik.com/fi-fi
http://rocketfuel.com/
http://www.sas.com/
http://www.splunk.com/
http://spotfire.tibco.com/
http://www.sqlstream.com/
http://www.streambase.com/
http://www.tableausoftware.com/
https://www.windowsazure.com/
http://www.vmware.com/
http://www.mongodb.com/
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib31s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib31s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib31s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib32s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib32s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib32s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib32s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib33s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib33s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib33s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib34s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib34s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib34s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib35s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib35s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib35s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib35s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib36s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib36s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib36s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib37s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib37s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib38s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib38s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib38s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib39s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib39s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib39s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3130s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3130s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3130s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3131s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3131s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3132s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3132s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3133s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3133s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3133s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3133s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3133s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3134s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3135s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3135s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3136s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3136s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3136s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3137s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3137s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3137s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3137s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3137s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3138s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3138s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3138s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3139s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3139s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3139s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3139s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3230s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3230s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3230s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3231s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3231s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3232s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3232s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3232s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3233s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3233s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3234s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3234s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3235s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3235s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3236s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3236s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3236s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3237s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3237s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3237s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3238s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3238s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3238s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3239s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3239s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3239s1
http://techblog.netflix.com/2013/03/system-architectures-for.html
http://techblog.netflix.com/2013/03/system-architectures-for.html
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3331s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3331s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3332s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3332s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3332s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3333s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3333s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3334s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3334s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3334s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3335s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3335s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3335s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3336s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3336s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3336s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3337s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3337s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3337s1
http://www.sqlstream.com/wp-content/uploads/2014/02/SQLstream_Whitepaper_CDR-Analytics-update.pdf
http://www.sqlstream.com/wp-content/uploads/2014/02/SQLstream_Whitepaper_CDR-Analytics-update.pdf
http://www.sqlstream.com/wp-content/uploads/2014/02/SQLstream_Whitepaper_CDR-Analytics-update.pdf
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3339s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3339s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3430s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3430s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3430s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3431s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3431s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3431s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3432s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3432s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3432s1


186 P. Pääkkönen, D. Pakkala / Big Data Research 2 (2015) 166–186
[43] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput. Surv. 
40 (2008) 1–39.

[44] M. Stonebraker, S. Madden, P. Dubey, Intel “Big Data” science and technology 
center vision and execution plan, SIGMOD Rec. 42 (2013) 44–49.

[45] R. Angles, A comparison of current graph database models, in: The 28th IEEE 
International Conference on Data Engineering Workshops, Arlington, Virginia, 
USA, 1–5 April, 2012.

[46] B. Shao, H. Wang, Y. Xiao, Managing and mining large graphs: systems and 
implementations, in: SIGMOD 2012, Scottsdale, Arizona, USA, 20–24 May, 2012.

[47] M. Dayarathna, T. Suzumura, Graph database benchmarking on cloud environ-
ments with XGDBench, Autom. Softw. Eng. 21 (2013).

[48] R. Angles, A. Prat-Perez, D. Dominguez-Sal, J. Larriba-Pey, Benchmarking 
database systems for social network applications, in: The 1st International 
Workshop on Graph Data Management Experience and Systems, New York, 
USA, June 23, 2013.

[49] D.D. Abreu, et al., Choosing between graph databases and RDF engines for con-
suming and mining linked data, in: 4th International Workshop on Consuming 
Linked Data, Sydney, Australia, 22 October, 2013.

[50] J. Huang, D.J. Abadi, K. Ren, Scalable SPARQL querying of large graphs, in: The 
37th International Conference on Very Large Data Bases, Seattle, Washington, 
USA, 29 August–3 September, 2011.

[51] K. Zeng, et al., A distributed graph engine for web scale RDF data, in: 39th 
International Conference on Very Large Databases, Riva del Garda, Trento, Italy, 
26–30 August, 2013.

[52] B. Shao, H. Wang, Y. Li, Trinity: a distributed graph engine on a memory cloud, 
in: 2013 ACM SIGMOD International Conference on Management of Data, New 
York, New York, USA, 22–27 June, 2013.

[53] G. Malewicz, et al., Pregel: a system for large-scale graph processing, in: SIG-
MOD 2010, Indianapolis, Indiana, USA, 6–11 June, 2010.

[54] Y. Low, et al., Distributed GraphLab: a framework for machine learning and 
data mining in the cloud, in: The 38th International Conference on Very Large 
Databases, Istanbul, Turkey, 27–31 August, 2012.

[55] A. Kyrölä, G. Blelloch, C. Guestrin, in: Proceedings of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation, Hollywood, California, 
8–10 October, 2012.

[56] S. Chaudhuri, U. Dayal, V. Narasayya, An overview of business intelligence tech-
nology, Commun. ACM 54 (2011) 88–98.

[57] J. Choo, H. Park, Customizing computational methods for visual analytics with 
big data, IEEE Comput. Graph. Appl. 33 (2013) 22–28.

[58] J. Beyer, et al., Exploring the connectome petascale volume visualization of mi-
croscopy data streams, IEEE Comput. Graph. Appl. 33 (2013) 50–61.

[59] Y. Chen, S. Alspaugh, R. Katz, Interactive analytical processing in big data sys-
tems: a cross-industry study of MapReduce workloads, in: The 38th Interna-
tional Conference on Very Large Databases (VLDB’12), Istanbul, Turkey, 27–31 
August, 2012.

[60] X. Qin, X. Zhou, A survey on benchmarks for big data and some more consid-
erations, in: 14th International Conference on Intelligent Data Engineering and 
Automated Learning, Hefei, Anhui, China, 20–23 October, 2013.

[61] L. Wang, et al., BigDataBench: a big data benchmark suite from internet ser-
vices, in: 20th IEEE International Symposium on High Performance Computer 
Architecture (HPCA-2014), Orlando, Florida, USA, 15–19 February, 2014.

[62] A. Ghazal, et al., BigBench: towards an industry standard benchmark for big 
data analytics, in: SIGMOD 2013, New York, USA, 22–27 June, 2013.

[63] T. Rabl, H. Jacobsen, Big data generation, in: Workshop on Big Data Benchmark-
ing, San Diego, California, USA, 8–9 May, 2012.

[64] C. Baru, et al., Benchmarking big data systems and the BigData Top100 list, Big 
Data J. 1 (2013).

[65] T.G. Armstrong, V. Ponnekanti, D. Borthakur, LinkBench: a database benchmark 
based on the Facebook social graph, in: SIGMOD 2013, New York, USA, 22–27 
June, 2013.

[66] J. Quan, Y. Shi, M. Zhao, W. Yang, The implications from benchmarking three 
big data systems, in: IEEE International Conference on Big Data, Santa Clara, 
California, USA, 6–9 October, 2013.

[67] J.P. Walters, et al., A comparison of virtualization technologies for HPC, in: 22nd 
International Conference on Advanced Information Networking and Applica-
tions, Ginowan, Okinawa, Japan, 25–28 March, 2008.
[68] M.G. Xavier, Performance evaluation of container-based virtualization for high 
performance computing environments, in: 21st Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing, Belfast, Northern 
Ireland, 27 February–1 March, 2013.

[69] J. Che, et al., A synthetical performance evaluation of OpenVZ, Xen and KVM, 
in: The IEEE Asia-Pacific Services Computing Conference, Hangzhou, China, 
6–10 December, 2010.

[70] A.J. Younge, et al., Analysis of virtualization technologies for high performance 
computing environments, in: IEEE 4th International Conference on Cloud Com-
puting, Washington, DC, USA, 4–9 July, 2011.

[71] H. Fayyad-Kazan, L. Perneel, M. Timmerman, Full and para-virtualization with 
Xen: a performance comparison, J. Emerg. Trends Comput. Infor. Sci. 4 (2013) 
719–727.

[72] J. Li, et al., Performance overhead among three hypervisors: an experimental 
study using hadoop benchmarks, in: IEEE International Congress on Big Data, 
Santa Clara, CA, USA, 6–9 October, 2013.

[73] H.N. Palit, et al., Evaluating hardware-assisted virtualization for deploying HPC-
as-a-Service, in: Virtualization Technologies in Distributed Computing, New 
York, NY, USA, 18 June, 2013.

[74] P. Padala, et al., Performance Evaluation of Virtualization Technologies for 
Server Consolidation, HP Laboratories Palo Alto, April 11, 2007.

[75] R. Buyya, et al., Cloud computing and emerging IT platforms: vision, hype, and 
reality for delivering computing as the 5th utility, Future Gener. Comput. Syst. 
25 (2009) 599–616.

[76] E. Voras, et al., Evaluating open-source cloud computing solutions, in: 34th In-
ternational Convention MIPRO 2011, Opatija, Croatia, 23–27 May, 2011.

[77] R. Dukaric, M.B. Juric, Towards a unified taxonomy and architecture of cloud 
frameworks, Future Gener. Comput. Syst. 29 (2013) 1196–1210.

[78] P. Sempolinski, D. Thain, A comparison and critique of eucalyptus, OpenNeb-
ula and Nimbus, in: 2nd IEEE International Conference on Cloud Computing 
Technology and Science, Indianapolis, Indiana, USA, 30 November–3 December, 
2013.

[79] X. Wen, et al., Comparison of open-source cloud management platforms: Open-
Stack and OpenNebula, in: 9th International Conference on Fully Systems and 
Knowledge Discovery, Chongqing, Sichuan, China, 29–31 May, 2012.

[80] G. von Laszewski, et al., Comparison of multiple cloud networks, in: 5th Inter-
national Conference on Cloud Computing, Honolulu, Hawaii, USA, 24–29 June, 
2012.

[81] Q. Huang, et al., Evaluating open source cloud computing solutions for geo-
sciences, Comput. Geosci. 59 (2013) 41–52.

[82] Q. Huang, et al., An experimental study of open-source cloud platforms for 
dust storm forecasting, in: AMC SIGSPATIAL, Redondo Beach, California, USA, 
6–9 November, 2012.

[83] V. Borkar, M.J. Carey, C. Li, Inside “Big Data Management”: ogres, onions, or 
parfaits?, in: 15th International Conference on Extending Database Technology, 
Berlin, Germany, 27–30 March, 2012.

[84] S. Ewen, Iterative parallel data processing with stratosphere: an inside look, in: 
SIGMOD 2013, New York, USA, 22–27 June, 2013.

[85] B. Lohrmann, D. Warneke, O. Kao, Nephele streaming: stream processing under 
QoS constraints at scale, J. Cluster Comput. 16 (2013).

[86] C. Boden, V. Markl, M. Karnstedt, M. Fernandez, Large-scale social-media ana-
lytics on stratosphere, in: The International World Wide Web Conference, Rio 
de Janeiro, Brazil, 13–17 May, 2013.

[87] D. Feinleib, Big data landscape, http://blogs-images.forbes.com/davefeinleib/
files/2012/07/Big-Data-Landscape-Jul-4-2012.00111.png, accessed 01/01/2014.

[88] R.M. Lindsay, A.S.C. Ehrenberg, The design of replicated studies, Am. Stat. 47 
(1993) 217–228.

[89] M. Westerlund, et al., A generalized scalable software architecture for analyz-
ing temporally structured big data in the cloud, New Perspect. Inform. Syst. 
Technol. 1 (2014) 559–569.

[90] S. Alsubaiee, et al., AsterixDB: a scalable, open source BDMS, in: The 40th In-
ternational Conference on Very Large Databases (VLDB’14), Hangzhou, China, 
1–5 September, 2014.

[91] S. Abiteboul, Querying semi-structured data, in: International Conference on 
Database Theory, Delphi, Greece, 8–10 January, 1997.

[92] J. Chen, et al., Big data challenge: a data management perspective, Front. Com-
put. Sci. 2 (2013) 157–164.

http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3433s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3433s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3434s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3434s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3435s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3435s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3435s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3436s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3436s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3437s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3437s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3438s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3438s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3438s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3438s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3439s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3439s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3439s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3530s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3530s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3530s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3531s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3531s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3531s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3532s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3532s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3532s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3533s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3533s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3534s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3534s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3534s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3535s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3535s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3535s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3536s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3536s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3537s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3537s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3538s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3538s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3539s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3539s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3539s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3539s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3630s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3630s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3630s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3631s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3631s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3631s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3632s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3632s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3633s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3633s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3634s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3634s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3635s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3635s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3635s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3636s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3636s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3636s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3637s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3637s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3637s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3638s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3638s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3638s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3638s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3639s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3639s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3639s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3730s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3730s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3730s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3731s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3731s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3731s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3732s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3732s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3732s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3733s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3733s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3733s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3734s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3734s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3735s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3735s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3735s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3736s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3736s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3737s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3737s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3738s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3738s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3738s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3738s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3739s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3739s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3739s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3830s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3830s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3830s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3831s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3831s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3832s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3832s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3832s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3833s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3833s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3833s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3834s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3834s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3835s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3835s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3836s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3836s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3836s1
http://blogs-images.forbes.com/davefeinleib/files/2012/07/Big-Data-Landscape-Jul-4-2012.00111.png
http://blogs-images.forbes.com/davefeinleib/files/2012/07/Big-Data-Landscape-Jul-4-2012.00111.png
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3838s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3838s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3839s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3839s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3839s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3930s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3930s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3930s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3931s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3931s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3932s1
http://refhub.elsevier.com/S2214-5796(15)00002-7/bib3932s1

	Reference Architecture and Classiﬁcation of Technologies, Products and Services for Big Data Systems
	1 Introduction
	2 Material and methods
	3 Theory
	3.1 Big data research
	3.2 Reference architecture for big data systems
	3.3 Big data use cases
	3.4 Summary

	4 Results
	4.1 Design of the reference architecture
	4.2 Construction of the reference architecture
	4.2.1 Facebook
	4.2.2 LinkedIn
	4.2.3 Twitter
	4.2.4 Netﬂix
	4.2.5 BlockMon
	4.2.6 Network measurement
	4.2.7 FIU-Miner


	5 Review of big data technologies
	5.1 Classiﬁcation of technologies, products and services
	5.2 Related work
	5.2.1 Stream processing
	5.2.2 Graph models
	5.2.3 Business intelligence and visualization
	5.2.4 Big data benchmarking
	5.2.5 Virtualization and cloud-based solutions
	5.2.6 New technology frameworks
	5.2.7 Commercial services


	6 Analysis
	6.1 Reference architecture
	6.2 Classiﬁcation of technologies and services

	7 Discussion
	8 Conclusion
	Acknowledgements
	Appendix A Detailed view of the reference architecture
	Appendix B Methods
	Appendix C References to commercial products and services
	References


