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a b s t r a c t 

In this article, we consider the impact of finite production capacity on the optimal quality and pricing 

decisions of a make-to-stock manufacturer. Products are differentiated along a quality index; depending 

on the price and quality levels of the products offered, customers decide to either buy a given prod- 

uct, or not to buy at all. We show that, assuming fixed exogenous lead times and normally distributed 

product demands, the optimal solution has a simple structure (this is referred to as the load-independent 

system). Using numerical experiments, we show that with limited production capacity (which implies 

load-dependent lead times) the manufacturer may have an incentive to limit the quality offered to cus- 

tomers, and to decrease market coverage, especially in settings where higher product quality leads to 

higher congestion in production. Our findings reveal that the simple solution assuming load-independent 

lead times is suboptimal, resulting in a profit loss; yet, this profit loss can be mitigated by constraining 

the system utilization when deciding on quality and price levels. Our results highlight the importance of 

the relationship between marketing decisions and load-dependent production lead times. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

With increased competition and globalization of businesses,

ligning marketing and production decisions have become es-

ential to the profitability for manufacturing firms. Indeed, the

arketing plan specifies among others the quality and price of

he offered products, and the production facility in turn needs to

ulfill the market demands resulting from the product offer. Con-

equently, taking production limits and constraints into account is

ssential to avoid an excellent marketing plan turning into a failure

 Tang, 2010 ). In practice, however, the production limitations are

ften overlooked. For instance, Dr. Karl Kempf, Director of Decision

echnologies at Intel reports that pricing decisions are very often

aken without considering production capabilities ( Pekgün, Griffin,

 Keskinocak, 2008 ). 

In this paper, we study the impact of finite production capacity

n the optimal quality and pricing decisions of a make-to-stock

anufacturer. We take the perspective of a centralized decision

aker, who aims to maximize the expected profit (revenue

rom sales, minus material and inventory-related costs). The
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ake-to-stock perspective is under-studied in the literature on

uality and pricing decisions, see also Section 2 . Yet, it adds

nother dimension to the production-marketing optimization

roblem, as the impact of the production lead times shows up in

he inventory-related costs. 

In a make-to-stock system, inventories of finished products are

eviewed periodically, and replenishment orders are sent to the

roduction facility. Similar to e.g., Dobson and Yano (2002) and

ayaswal, Jewkes, and Ray (2011) , we assume that the different

roducts share the same manufacturing facility. As price and

uality decisions affect product demands, they naturally determine

he load on the production system. This load, in turn, impacts

eplenishment lead times through the congestion effect in pro-

uction. As a result, we have an integrated production/inventory

P/I) system ( Benjaafar, Cooper, & Kim, 2005 ): replenishment

ead times are endogenously generated by the finite-capacity

roduction system and, consequently, are load-dependent . Yet, this

roduction-marketing interaction is largely ignored in the current

iterature (see, e.g., Upasani & Uzsoy, 2008 and the literature

eview in Section 2 ). 

The fact that different product types share the same opera-

ion system is not uncommon: particularly in settings with high

xed capacity investment costs, strong scale economies promote

esource sharing as the bundling of product volumes leads to

ower fixed cost per unit produced ( Van Mieghem & Allon, 2015 ).
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Examples of resource sharing can be found both in the high-tech

and low-tech industries. Consider for instance Barco, a world

leader in the development and production of high-tech screens.

The company assembles different screen variants on the same

finite-capacity line and has to decide on the quality of the offered

screens (which is linked to product attributes such as number of

megapixels and color intensity), their prices, and their stocking

quantities ( Boute, Van den Broeke, & Deneire, 2018 ). Another

example is the bag manufacturer Timbuk2, which shares its

San Francisco-based production capacity between both standard

make-to-stock items and customized make-to-order items, despite

the differences in variety required ( Cattani, Dahan, & Schmidt,

2010 ). Finally, Dobson and Yano (2002) discuss a wheel supplier

that dedicates each production line to a set of wheel types.

Evidently, the range of product types that can be produced on a

given resource depends on the resource’s flexibility; our setting

thus presumes that the production system is flexible. We make

abstraction, though, of the actual configuration of the system. In

reality, multiple types of configurations exist that offer flexibility

(e.g., manufacturing cells, job shops, flexible machining centers,

flexible assembly lines); as our goal is to study the impact of

finite production capacity, we do not model the internal operation

of the system in detail, but conceptualize it as a single-server

capacitated resource. To gain maximal insight in the dynamics of

this system, we limit the assortment to two product types and

fix the quality of one of these. In calculating the expected profit,

we assume that material and inventory-related costs per unit

increase with the quality level of the product; the extent of the in-

crease is case dependent. Analogously, the average and variance of

the product processing time increase with product quality, reflect-

ing the fact that higher quality products are often more complex to

produce. 

We study the following cases: 

1. load-independent optimization : in this case, the decision

maker simply ignores the impact of the finite capacity, and

decides on prices and qualities assuming a fixed exogenous

lead time. As discussed in Section 2 , this assumption re-

mains common in most of the production planning literature

to date, and it might be reasonable in settings with abun-

dant capacity ( Gupta & Benjaafar, 2004 ). Even if capacity is

limited, the complex relation between quality and price lev-

els and production lead times is often overlooked in practice,

and exogenous lead times are assumed. 

2. load-dependent optimization : here, we determine optimal

quality and price levels for the case in which the rela-

tionship between quality and price levels and production

lead times can be exactly evaluated. Optimizing this system

yields the maximum possible profit, given the current ca-

pacity of the system. Load-dependent optimization, however,

can be difficult in practice given the complex relation be-

tween production congestion and demand. 

3. utilization-based optimization : in this approach, the decision

maker uses the expected processing times to constrain the

utilization of the production system, and optimizes price and

quality levels with this utilization constraint. As utilization-

based optimization only requires information on the ex-

pected processing times as a function of quality levels, it

might be more practical than load-dependent optimization

in real-life settings. 

We summarize our main contributions as follows: 

1. We solve the load-independent optimization setting analyt-

ically, and show that the optimal solution follows a simple

structure for normally distributed product demands. This

yields several novel managerial insights for settings with
truly exogenous lead times (e.g., when inventory and pro-

duction systems belong to separate firms or when capacity

is abundant, Benjaafar et al., 2005; Gupta & Benjaafar, 2004 ).

2. We provide a Markov-based approach to analyze the load-

dependent optimization of quality and pricing decisions.

Using numerical experiments, we show that under load-

dependent optimization, it is optimal for the manufacturer

to limit the quality offered to customers, and to opt for a

lower market coverage, especially in settings where higher

product quality leads to higher system congestion. The sim-

ple solution assuming load-independent lead times is then

clearly suboptimal, resulting in a profit loss. We demonstrate

that this profit loss decreases when quality costs increase,

and customers are more price sensitive and/or less quality

sensitive. 

3. We numerically show that utilization-based optimiza-

tion can mitigate the profit loss incurred with load-

independent optimization. Especially in settings where the

dynamic lead time behavior cannot be evaluated (i.e., load-

dependent optimization is difficult), this approach provides

a pragmatic solution that outperforms load-independent

optimization. 

Our work is related to the literature on pricing and assort-

ent optimization, and the research on production planning and

cheduling with load-dependent lead times. Section 2 provides a

rief review, highlighting the novelty of our work. Section 3 pro-

ides the details of our (stylized) model, and Section 4 discusses

he analytical solution of the load-independent optimization ap-

roach. In Section 5 , we consider the production/inventory system

s a queueing system and study the load-dependent optimization.

umerical results are provided in Section 6 , where we also discuss

tilization-based optimization. We conclude in Section 7 . 

. Literature review 

Our quality and pricing problem relates to the pricing and as-

ortment planning literature. Joint pricing and assortment plan-

ing, however, has not been studied in depth ( Kök, Fisher, &

aidyanathan, 2015; Shin, Park, Lee, & Benton, 2015 ). Many arti-

les take a retailer ’s perspective, and optimize prices and inven-

ory levels for a given assortment. This is referred to as the joint

nventory-pricing problem: see, e.g., the work by Federgruen and

eching (1999) , Song and Xue (2007) , Li and Huh (2011) , and Yang

nd Zhang (2014) (for a recent review, see Chen & Simchi-Levi,

012 ). Prices can be either static , meaning that they are kept un-

hanged over the planning horizon, or dynamic , so they can change

rom period to period ( Zhu & Thonemann, 2009 ). Some papers also

ptimize the assortment carried by the retailer (see Kök et al.,

015 for a recent review). These articles mostly focus on horizon-

ally differentiated products (i.e., items with equivalent quality lev-

ls, Pan & Honhon, 2012 ) and consider static pricing (see, e.g., Kök

 Xu, 2011; Maddah & Bish, 2007 , and Alptekino ̆glu & Semple,

016 ). Pan and Honhon (2012) , on the other hand, consider prod-

cts with different quality levels. 

The optimal policies in all of the above articles are obtained

nder the assumption of negligible replenishment lead times. As

oted by Yang and Zhang (2014) , positive lead times render the

oint inventory-pricing problem extremely difficult, especially in

eriodic review systems with dynamic pricing (see Pang, Chen, &

eng, 2012 for a first attempt to partially characterize the structure

f the optimal solution to this problem, and Bernstein, Li, & Shang,

015 for an effective heuristic). 

The articles that are most closely related to our work are

hose that consider quality and pricing decisions in a manufacturer

etting: unfortunately, many of these articles (see, for instance,
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etessine & Taylor, 2007; Tang & Yin, 2010 , and Rong, Chen, &

hen, 2015 ) do not consider load-dependent lead times ( Upasani

 Uzsoy, 2008 ). Those that do, mostly consider make-to-order

ettings, and focus mainly on optimizing prices and lead time

uotes for a single product (see, for instance, Jayaswal et al., 2011;

alaka, Erlebacher, & Kropp, 1998; Pekgün et al., 2008; Ray &

ewkes, 2004 ,; Hafızo ̆glu, Gel, & Keskinocak, 2016 ). An exception

s Chayet, Kouvelis, and Yu (2011) , who consider two products

nd also optimize product quality levels. For recent reviews

f this literature, we refer to Tang (2010) and Upasani and Uzsoy

2008) . 

To the best of our knowledge, our work is the first to consider

ricing and quality decisions in make-to-stock settings with load-

ependent lead times. Even in the area of production planning and

cheduling, the body of work that considers load-dependent lead

imes remains relatively scarce. Usually, the common assumption

f fixed and constant planned lead times at the aggregate level

f production planning still prevails; yet, it is precisely this as-

umption that is blamed for a variety of problems occurring in cur-

ent planning systems, such as MRP and MRPII (see, e.g., Hopp &

pearman, 2001; Selcuk, Fransoo, & De Kok, 2006 ; Van Nieuwen-

uyse, De Boeck, Lambrecht, & Vandaele, 2011 ) As noted in the

eview by Pahl, Voß, and Woodruff (2007) , “although there is a

arge body of literature concerning queuing models for the analy-

is of the relationship between capacity utilization and lead times,

nd another body of work on control and order release policies that

ake lead times into consideration, there have been relatively few

ggregate planning models that recognize the (nonlinear) relation-

hip between the planned utilization of capacity and lead times ”.

he work so far mainly focuses on approaches to either (par-

ially) avoid load-dependent lead times through job release policies

hat directly control work-in-process (such as KANBAN, CONWIP

r POLCA; see, e.g., Krishnamurthy & Suri, 2009; Spearman, Hopp,

 Woodruff, 1989; Spearman, Woodruff, & Hopp, 1990 ) or directly

ontrol workload ( Land & Gaalman, 1996; Vandaele, Van Nieuwen-

uyse, Claerhout, & Cremmery, 2008 ), or on attempts to integrate

oad-dependent lead times in aggregate production planning us-

ng queueing models (e.g., Lambrecht, Ivens, & Vandaele, 1998;

ijm & Buitenhek, 1996 ) or clearing functions (e.g., Asmundsson,

ardin, & Uzsoy, 2006 ). At this aggregate level, production lot siz-

ng has been put forward as a means to minimize the weighted

verage lead time through production (see, e.g., Lambrecht et al.,

998; Van Nieuwenhuyse et al., 2011 , and Vandaele N., 20 0 0 ),

n particular in settings with parallel and/or sequential process

atching. 

Only few articles so far study integrated production/inventory

ystems with load-dependent lead times. Alptekino ̆glu and Cor-

ett (2010) consider the possibility of make-to-stock production,

n addition to make-to-order. They study a setting where all

roducts have equal costs and production times (products are

hus horizontally differentiated), and focus on the decision which

roducts to produce to stock, versus to order. Wong and Naim

2011) study a similar setting, focusing on the benefits of post-

onement. Van Nyen, Bertrand, and Van Ooijen (2009) study

yclical production planning in a production/inventory system

ith job shop routing. Van Nieuwenhuyse, Vandaele, Rajaram,

nd Karmarkar (2007) and Van Nieuwenhuyse, Mahihenni, and

audelocq (2014) study semi-process industry settings using a

roduction/inventory model, in view of optimizing allocation and

ampaign sizing policies, and/or quantifying trade-offs between

apacity, inventory and customer service. Noblesse, Boute, Lam-

recht, and Van Houdt (2014) focus on optimizing the inventory

arameters in a continuous review (s,S) inventory system. None of

hese articles considers the impact of product prices and attributes

such as quality) on system behavior. 
. Model formulation 

.1. Objective function 

We consider a make-to-stock manufacturer who offers two

roducts i ∈ {1, 2} with qualities f i . We assume f 1 to be fixed and

e optimize f 2 within a discrete and finite set of potential val-

es. Our methodology can technically handle a variable f 1 , in both

oad-independent and load-dependent settings at the expense of

xtra computation time; this, however, does not yield additional

nsights. In each period, the firm earns revenue by offering the

roducts with qualities f i at prices p i (see Section 3.2 for further

etails on the customer choice model). Inventories are periodically

eviewed according to an order-up-to policy (see further details in

ection 3.3 ). 

The decision maker seeks to determine the optimal price levels

f both products ( p ∗
i 
), the quality of the second product ( f ∗

2 
), and

he base-stock inventory levels ( S ∗
i 
) to maximize the steady-state

xpected profit per period: 

= 

2 ∑ 

i =1 

[ 
(p i − c i ) E(D i ) − h i E((NS i ) 

+ ) − b i E((NS i ) 
−) 

] 
, (1)

here D i is the random variable denoting the demand of product

 per period, and NS i is a random variable referring to the steady-

tate net stock (on hand inventory minus backorder) of product i at

he end of an arbitrary period (with (X ) + = max (0 , X ) and (X ) − =
ax (0 , −X ) ). 

The first term in Eq. (1) represents the expected gross profit

er period: we assume that the unit material cost is quadratically

elated to the quality of the product: c i = m f 2 
i 
, where m > 0 is a

onstant. Such a relationship is commonly assumed in the litera-

ure (e.g., Bish & Chen, 2016; Chayet et al., 2011; Heese & Swami-

athan, 2006; Kwark, Chen, & Raghunathan, 2017; Netessine & Tay-

or, 2007; Örsdemir, Kemahlıo ̆glu-Ziya, & Parlaktürk, 2014 ), and re-

ects the fact that it is increasingly more expensive to improve

roduct quality; yet, this impact is mitigated for lower values of

 ( Bish & Chen, 2016 ). 

The last two terms in Eq. (1) reflect the steady-state expected

olding and backorder costs per period. The unit holding and back-

rder costs are assumed to be proportional to the material cost for

ach product i : b i = m b f 
2 
i 

and h i = m h f 
2 
i 
, with m b , m h > 0. Equiva-

ently, Eq. (1) can be written as: 

= 

2 ∑ 

i =1 

[ 
(p i − c i ) E(D i ) − h i E((S i − IO i ) 

+ ) − b i E((IO i − S i ) 
+ ) 

] 
, 

(2) 

here IO i is the steady state distribution of inventory on-order of

roduct i at the end of an arbitrary period. 

.2. Customer choice process 

Depending on the price and quality levels, customers may de-

ide to buy one of the products or may choose not to purchase

t all. We use the multinomial logit (MNL) model to reflect this

hoice process. As noted by Alptekino ̆glu and Semple (2016) , this

odel is popular in the price and assortment optimization lit-

rature (e.g., Du, Cooper, & Wang, 2016; Sibdari & Pyke, 2010;

opaloglu, 2013; Van Ryzin & Mahajan, 1999 ), and has also been

ommonly used in practice (e.g., Kök & Fisher, 2007 use it to ex-

lain customer choice at the Dutch supermarket chain Albert Heijn,

ulcano, van Ryzin, & Chaar, 2010 successfully apply it in the air-

ine industry, and Rusmevichientong, Shen, & Shmoys, 2010 use it
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Fig. 1. Sequence of events in the periodic review system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

e  

U  

d  

O  

s

 

l  

T  

b  

w  

e  

d  

d  

v  

s

4

 

a  

p  

p  

M  

q  

a  

u  

a

4

l

 

o  

d

�  

 

w  

w  

k

P  

A

S  

w  

t  

w  

q

to explain DVD sales at a large online retailer). In this model, each

customer opts for the choice that maximizes her utility. The ex-

pected utility of product i is denoted by μi : in our case μi = ε f f i +
ε p p i , where εf > 0 and εp < 0 represent the sensitivity of customers

to quality and price, respectively. Increasing the price or decreasing

the quality thus decreases the expected utility. We assume, with-

out loss of generality, that the expected utility of the nonpurchase

(i.e., not purchasing anything) is μ0 = 0 . The MNL model captures

both vertical and horizontal elements of customer choice; even if

prices are equal, some customers still buy the low-quality prod-

uct due to idiosyncratic product preferences which are unknown

to the firm ( Akcay, Natarajan, & Xu, 2010; Anderson, De Palma, &

Thisse, 1992 ). Such a model has also been used in e.g., Dong, Kou-

velis, and Tian (2009) , Davis, Gallego, and Topaloglu (2013) , and

Du et al. (2016) . The probability that a customer chooses product

i (commonly referred to as the market share of product i ) is then

given by ( Train, 2002 ): 

q i (p , f ) = 

e μi 

1 + 

∑ 

i e 
μi 

, (3)

and the nonpurchase probability is q 0 (p , f ) = 1 / (1 + 

∑ 

i e 
μi ) ,

where p and f represent the vector of prices and qualities of both

products. According to this model, increasing the price or decreas-

ing the quality of a product (while keeping everything else con-

stant) reduces its market share, while increasing both the proba-

bility that customers buy the other product, and the nonpurchase

probability. 

We assume static substitution , meaning that if the chosen prod-

uct is not available, customers do not switch to another product,

but demand is backlogged. This is a reasonable assumption as we

consider a high service level and stockouts are thus negligible ( Kök

& Fisher, 2007; Van Ryzin & Mahajan, 1999 ). Let the total num-

ber of customers per period be random, with mean λ and variance

σ 2 . The expected demand for product i in an arbitrary period then

equals E(D i ) = q i λ. Assuming multiplicative demand ( Song & Xue,

2007 ), we have V ar(D i ) = q 2 
i 
σ 2 , which implies that the coefficient

of variation of D i is independent of q i (and, thus, independent of

price and quality levels). 

3.3. Inventory control system 

The manufacturer manages the inventory of finished products

according to a periodic review base-stock policy with order-up-to

level S i for product i . This policy is well-studied, and has been

proven optimal in settings with exogenous lead times, zero fixed

ordering cost, and holding and shortage costs that are convex

and proportional to the volume of on-hand inventory or short-

age ( Nahmias, 1997; Zipkin, 20 0 0 ). In cases with endogenous (i.e.,

load-dependent) lead times, to the best of our knowledge, proofs

about the optimal policy are not yet available. 

Fig. 1 illustrates the sequence of events in our model. Customer

demand observed during a period t is met at the end of the pe-

riod. After meeting the demand (unfilled demands are backlogged),

the inventory positions of both products are reviewed and orders

of size O 1, t and O 2, t are placed to raise these up to S 1 and S 2 ,
espectively. The inventory position at the time of ordering thus

quals S i − D i,t , where D i , t is the demand of item i in period t .

nder i.i.d. demand, the order-up-to levels S i are fixed and the or-

er quantity of product i in period t equals the observed demand:

 i,t = D i,t . Production orders delivered in period t are available to

atisfy the demands of the same period. 

In the load-independent optimization model, the replenishment

ead time is assumed to be exogenous and fixed (see Section 4 ).

his can be reasonable when the inventory and production systems

elong to separate firms, or when capacity is abundant. In settings

ith limited capacity, however, the replenishment lead times are

ndogenously generated by the production system and are load-

ependent ( Benjaafar et al., 2005; Gupta & Benjaafar, 2004 ; see the

iscussion in Section 5 ). Our numerical experiment in Section 6 re-

eals that ignoring this load-dependent lead times can result in

uboptimal price and quality decisions. 

. Load-independent optimization 

We first study the setting where the decision maker assumes

 fixed, exogenous lead time of L periods. To get closed form ex-

ressions, we assume normally distributed product demands per

eriod (as is common in literature, see e.g., Gaur & Honhon, 2006;

addah & Bish, 2007; Mayorga, Ahn, & Aydin, 2013 ): D i ∼ N ( q i λ,

 

2 
i 
σ 2 ) . We first characterize the optimal order-up-to levels S ∗

i 
for

rbitrary prices and quality levels ( Section 4.1 ); this result is then

sed to derive optimal prices p ∗
i 

for any arbitrary f 2 ( Section 4.2 ),

nd finally to derive the optimal quality level f ∗
2 

( Section 4.3 ). 

.1. Optimizing order-up-to levels for arbitrary prices and quality 

evels 

Assuming an exogenous lead time of L periods, the distribution

f IO i in Eq. (2) equals the distribution of the demand of product i

uring L + 1 periods ( Zipkin, 20 0 0 ). Thus, 

= 

2 ∑ 

i =1 

[ 
(p i − c i ) E(D i ) − h i E((S i − D 

L +1 
i 

) + ) − b i E((D 

L +1 
i 

− S i ) 
+ ) 

] 
,

(4)

here D 

L +1 
i 

∼ N((L + 1) q i λ, (L + 1) q 2 
i 
σ 2 ). This function is concave

ith respect to S i ; the optimal S i can thus be obtained by the well-

nown newsvendor expression: 

r (D 

L +1 
i 

≤ S ∗i ) = 

b i 
b i + h i 

= 

m b 

m b + m h 

. (5)

ssuming normally distributed demands, we have: 

 

∗
i = (L + 1) q i λ + �−1 

(
m b 

m b + m h 

)√ 

L + 1 q i σ, (6)

here �−1 (. ) is the standard normal inverse CDF. Eq. (6) reveals

hat the optimal order-up-to level of product i increases linearly

ith its market share q i . Hence, it increases nonlinearly with its

uality, and decreases nonlinearly in its price, see Eq. (3) . 
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Fig. 2. Optimal price difference ( p ∗2 − p ∗1 ) in function of f 2 for different values of υ

(with f 1 = 1 ). 

w  

a

 

f

w

υ  

T  

q  

h  

N  

t  

i

a  

a  

i  

l

 

t

�

w  

a  

�  

h  

o

 

p

F  

I  

p  

t  

s  

s  
.2. Optimizing prices for arbitrary quality levels 

Assuming normal demand, and expressing c i , b i , and h i in terms

f f i , we can expand profit function (4) as follows: 

= 

2 ∑ 

i =1 

[ 
(p i −m f 2 i ) q i λ−m h f 

2 
i (S i −(L + 1) q i λ + 

√ 

L + 1 q i σ L (z i ))

− m b f 
2 
i 

√ 

L + 1 q i σ L (z i ) 
] 
, (7)

here z i = (S i − (L + 1) q i λ) / 
√ 

L + 1 q i σ, and L (z) = φ(z) − z(1 −
(z)) is the standard normal loss function ( φ and � are stan-

ard normal density and cumulative distribution functions). Using

q. (6) , the profit function (7) simplifies to (see Appendix A ): 

(p 1 , p 2 , f 2 ) = 

2 ∑ 

i =1 

[ 
(p i −m f 2 i ) q i λ−(m b + m h ) f 

2 
i 

√ 

L + 1 q i σφ(z c ) 
] 
, 

(8) 

ith z c = �−1 ( 
m b 

m b + m h 
) . For given quality levels, this profit func-

ion is in general not concave with respect to prices. Following the

NL model in Eq. (3) , we can write prices in terms of the market

hares: 

p i (q 1 , q 2 ) = 

1 

ε p 

(
ln (q i ) − ε f f i − ln (1 − q 1 − q 2 ) 

)
, (9)

uch that the expected profit ( Eq. (8) ) can be written as: 

(q 1 , q 2 ) = 

2 ∑ 

i =1 

[ 
1 

ε p 
ln (q i ) q i λ − ε f 

ε p 
f i q i λ

− m f 2 i q i λ − (m b + m h ) f 
2 
i 

√ 

L + 1 q i σφ(z c ) 
] 

− 1 

ε p 
ln (1 − q 1 − q 2 )(q 1 + q 2 ) λ. (10) 

heorem 1. The profit function �( q 1 , q 2 ) in the load-independent

ead time setting is jointly concave in q 1 and q 2 . 

roof. See Appendix B . �

Following Theorem 1 , we optimize prices indirectly by optimiz-

ng the market shares (analogous to Song & Xue, 2007 and Dong

t al., 2009 ). From Eqs. (9) and (10) , we have: 

∂�(q 1 , q 2 ) 

∂q i 
= λp i (q 1 , q 2 ) + 

λ

ε p 

− m f 2 i λ − (m b + m h ) f 
2 
i 

√ 

L + 1 σφ(z c ) 

+ 

λ(q 1 + q 2 ) 

ε p (1 − q 1 − q 2 ) 
, (11) 

hich yields 

p i (q ∗1 , q 
∗
2 ) = p ∗i = m f 2 i + 

(m b + m h ) f 
2 
i 

√ 

L + 1 σφ(z c ) 

λ

− q ∗1 + q ∗2 
ε p (1 − q ∗

1 
− q ∗

2 
) 

− 1 

ε p 
. (12) 

his leads to the following insights: 

heorem 2. In the setting with load-independent lead times, the op-

imal price of product i is always larger than its material cost (i.e.,

p ∗
i 

> m f 2 
i 

). The resulting optimal profit is always positive. 

roof. . All the terms in Eq. (12) are positive since εp < 0 and q 1 +
 2 ≤ 1 and, therefore, the optimal prices are always positive and

arger than the corresponding material costs. Replacing the prices

n Eq. (8) by (12) , after simplification, we obtain: 

(p ∗1 , p 
∗
2 ) = 

−λ (q ∗1 + q ∗2 ) 
ε p (1 − q ∗ − q ∗ ) 

= 

−λ

ε p 
(e ε f f 1 + ε p p 

∗
1 + e ε f f 2 + ε p p 

∗
2 ) , (13)
1 2 
hich shows that the optimal profit for arbitrary quality levels is

lso always positive. �

Using Eqs. (13) and (12) , we can write the optimal prices as

ollows: 

p ∗i = υ f 2 i + 

�(p ∗1 , p 
∗
2 ) 

λ
− 1 

ε p 
, (14) 

here 

= [ m + (m b + m h ) σφ(z c ) 
√ 

L + 1 /λ] > 0 . (15)

he coefficient υ can be interpreted as a cost penalty for increasing

uality, and is always strictly positive. Evidently, it increases when

igher quality is more costly for the firm (higher m , m b , and m h ).

ote that the impact of the inventory-related costs is mediated by

he demand coefficient of variation ( σ / λ): as this gets larger, the

nventory-related costs play a bigger role in υ (conversely, as σ / λ
pproaches zero, υ approaches the material cost m and backorder

nd holding costs become irrelevant). Lead time also affects the

mpact of inventory-related costs: the impact becomes stronger as

ead time increases. 

Combining (13) and (14) , we obtain the following expression for

he profit function: 

(p ∗1 , p 
∗
2 ) = 

−λ

ε p 
×

2 ∑ 

i =1 

exp 

[
ε f f i + ε p υ f 2 i + 

ε p �(p ∗1 , p 
∗
2 ) 

λ
− 1 

]
, 

(16) 

hich can be solved numerically for the unknown �(p ∗
1 
, p ∗

2 
) for

ny arbitrary quality values. As the left-hand side is increasing in

(p ∗
1 
, p ∗

2 
) while the right-hand side is decreasing, this equation

as a single solution. Once �(p ∗
1 
, p ∗

2 
) is obtained, we can find the

ptimal prices, for given quality levels, using Eq. (14) . 

As evident from Eq. (12) , the difference between the optimal

roduct prices is as follows: 

p ∗2 − p ∗1 = 

[
m + 

(m b + m h ) σφ(z c ) 
√ 

L + 1 

λ

]
( f 2 2 − f 2 1 ) = υ( f 2 2 − f 2 1 ) . 

(17) 

ig. 2 illustrates this relationship, for different υ values and f 1 = 1 .

t is thus always optimal to sell a higher quality product at a higher

rice compared to the lower quality product; if the products have

he same quality (and, thus, the same costs), their prices must be

et equal. In settings where increasing the quality is more expen-

ive (i.e., higher values of υ), the optimal price difference between
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the products will be larger, which in turn reduces the demand

of the high-quality product and thus lowers the total inventory-

related costs. Also, as the coefficient of variation of demand de-

creases, the optimal price difference approaches the difference be-

tween material costs (i.e., p ∗2 − p ∗1 = m f 2 2 − m f 2 1 , see Eq. (17) ). In

other words, in these cases, the optimal prices are characterized

by “equal profit margins” ( p ∗
2 

− c 2 = p ∗
1 

− c 1 ); a similar conclusion

is obtained in Maddah and Bish (2007) , among others. 

Theorem 3. The optimal price of the second product p ∗
2 

increases

with its quality level f 2 ; the optimal price of the first product p ∗1 first

increases with higher values of f 2 and then decreases, reaching a max-

imum at f 2 = −ε f / (2 υε p ) . 

Proof. See Appendix C . �

4.3. Optimizing the quality of the second product 

Now that we have derived the optimal price and order-up-to

levels for both products, we optimize the quality level of the sec-

ond product. From Eq. (16) we can derive the optimal quality of

the second product (for a given fixed quality level f 1 ). This yields: 

Theorem 4. With load-independent lead times, the optimal quality of

the second product is given by: 

f ∗2 = 

−ε f 
2 υε p 

. (18)

Proof. See Appendix D . �

The optimal quality of the second product is thus independent

of the quality of the first product; it is lower in environments with

longer lead times, higher demand uncertainty (as measured by its

coefficient of variation σ / λ), or when the cost of quality is higher

(i.e., higher values of m , m b , m h ). Conversely, f ∗2 is higher as cus-

tomers become more sensitive to quality (i.e., higher εf ) and/or less

sensitive to price (i.e., lower | εp |). 

With load-independent lead times, the optimal solution thus

has a simple structure. The optimal quality level f ∗
2 

can be ob-

tained from Eq. (18) ; we can then obtain the optimal profit by nu-

merically solving Eq. (16) . The optimal price levels can be readily

calculated from Eq. (14) , and Eq. (6) gives the optimal order-up-to

levels. 

Market coverage is defined as the portion of customers who

purchase a product; it is equal to 1 − q 0 , where q 0 is the nonpur-

chase probability in Eq. (3) ( Gaur & Honhon, 2006 ). For the load-

independent setting, we find: 

Theorem 5. The market coverage with optimal price and quality lev-

els is lower when customers are more sensitive to price (i.e., higher

| εp | ) or less sensitive to quality (i.e., lower εf ), in environments with

longer lead times, or higher demand uncertainty, and in high-cost en-

vironments, (i.e., high values of m , m b , m h ). In these environments,

the optimal profit levels will also be lower. 

Proof. See Appendix E . �

All of the conditions in Theorem 5 result in a lower f ∗
2 

(see

Eq. (18) ). For instance, as price sensitivity increases, f ∗
2 

decreases.

The optimal price levels p ∗1 and p ∗2 also decrease (see Appendix E );

yet, Theorem 5 implies that this decrease is insufficient to com-

pensate customers for the lower quality: in the optimum, the firm

will thus have lower market coverage. This confirms the observa-

tion by Li, Webster, Mason, and Kempf (2017) , that market cover-

age and profit are often conflicting objectives. The other parame-

ters in Theorem 5 have the same impact on f ∗2 , and thus follow

the same argument. 
. Load-dependent optimization 

In this section, we explain how to optimize price and qual-

ty levels in the load-dependent optimization model, i.e., taking

nto account the impact of price and quality levels on the prod-

ct demands and the resulting production load. We first introduce

he key assumptions and notation ( Section 5.1 ); next, we explain

ow to determine the optimal order-up-to levels in the result-

ng production/inventory (P/I) system ( Section 5.2 ). Section 5.3 ex-

lains how to numerically optimize the quality levels and the cor-

esponding product prices. 

.1. Assumptions and notation 

Following the periodic review policy ( Section 3.3 ), replenish-

ent orders are sent to the production system with determinis-

ic time intervals (equal to a single period or d time units). As

oth products have the same review period, each replenishment

rder consists of a number of items of both products; if produc-

ion is busy, the order waits in queue (orders are processed FCFS

ithout setup times). As mentioned in the introduction, we make

bstraction of the actual configuration of the production system;

o capture the impact of finite capacity on production lead times,

e model the system as a single server. When the server becomes

vailable, all items in the replenishment order are processed one

y one. Once the whole order is finished, the items are sent to

heir respective inventories. For computational reasons (see Sec-

ion 6.2 in Boute, Lambrecht, & Van Houdt, 2007 ), we model the

roduction system as a discrete manufacturing system, having dis-

rete unit production times M i for product i . M i follows a dis-

rete phase-type (PH) distribution with a mean and standard de-

iation that increase quadratically with the product quality level:

(M i ) = m p f 
2 
i 

and 

√ 

V ar(M i ) = CV m p f 
2 
i 
, with CV the coefficient of

ariation of the unit production times. Discrete PH distributions

an approximate any non-negative discrete distribution arbitrarily

losely and if the distribution is finite, the approximation is ex-

ct ( Latouche & Ramaswami, 1999 ). The quadratic relation between

he expected unit production time and quality presumes that it

s increasingly more time-consuming to produce a higher quality

roduct; yet, the impact is mitigated for lower values of m p . 

As the production system is a discrete manufacturing system,

e also model the demand by a discrete distribution. More specif-

cally, we use the outcomes of the customer choice model ( E ( D i )

nd Var ( D i )) to fit a discrete phase-type distribution to the demand

f each individual product i , using the procedure in Section 6.1 of

oute et al. (2007) . 

.2. Optimizing order-up-to levels for arbitrary prices and quality 

evels 

To determine the expected profit in Eq. (2) , we need to evaluate

he distribution of IO i (i.e., the number of units of product i queue-

ng at the production facility, or being processed). This steady state

istribution also determines the optimal order-up-to levels S ∗
i 
. Tak-

ng the derivative of Eq. (2) , we have: 

 IO i (S ∗i ) = b i / (h i + b i ) , (19)

here G IO i 
is the cumulative distribution function of IO i . 

As lead times are endogenous and load-dependent, IO i is given

y the amount of product i in queue prior to production, as well

s the amount of product i in service , at the end of an arbitrary

eriod t . Assume that the age of the order in service at time t is

qual to k periods (which implies that the order was placed k pe-

iods ago; see Fig. 3 for an example), we then have (recall that
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Fig. 3. An example of inventory on-order at the end of period t , immediately after 

sending O t . Each period equals d time units. 
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 i,t = D i,t , see Section 3.3 ): 

O i,t = D i,t−k + 

k −1 ∑ 

j=0 

D i,t− j , (20)

ith D i,t−k the amount of product i in service at time t , and
 k −1 
j=0 D i,t− j the amount of product i included in the k orders

hat are waiting in the production queue. The distribution of the

mount in queue can be obtained from the k -fold convolution of

he demand of product i . The distribution of the amount of prod-

cts in service is more complex to determine: larger orders are

ore likely to have longer production times, implying that the age

nd the size of the order in production are correlated. We thus

eed to determine the joint probability that, at the end of an ar-

itrary period, the order in service has an age of k periods and

ontains a specific amount of product i . To that end, we model the

roduction/inventory system as a discrete D / PH /1 queueing system,

hich can handle arbitrary processing time distributions. Boute

t al. (2007) analyze such a queuing system but for a single prod-

ct, we adapt their methodology for two products, and analyze

he resulting Markov chain exactly using matrix-geometric meth-

ds ( Neuts, 1981 ), see Online Appendix G for full details. 

.3. Optimizing prices and quality levels 

In presence of load-dependent lead times, it is impossible to

btain closed form expressions for the optimal prices and the op-

imal quality of the second product. We thus resort to numerical

echniques. Analogous to the exogenous lead time case, we opti-

ize prices by first finding optimal market shares, and then apply-

ng Eq. (9) . Although the expected profit function of the P/I sys-

em is not concave in market shares (we found examples showing

hat it might be non-concave), we prefer to optimize market shares

ince their feasible domain is clearly bounded ( 0 < q 1 + q 2 < 1 ). To

void exhaustive search (which is very time-consuming), we use

 neighborhood search to find the optimal market shares for each

alue of f 2 . 

The procedure starts from a point ( q 1 , q 2 ) and moves to the

eighboring point with the highest improvement in expected profit

each point has 8 neighbors, the expected profit is calculated from

q. (2) , IO i is obtained by solving the Markov chain). The search

tops when no further improvement can be found. As the profit

unction might be non-concave, the neighborhood search may not

onverge to the global maximum. We mitigate this issue by using

ultiple starting points (this still does not guarantee global con-

ergence, but reduces the chance of getting stuck in a local opti-

um). Based on some initial experiments and the computational

ime, we opted for 5 starting points. 

. Numerical experiments 

This section compares the results of load-independent and

oad-dependent optimization. We demonstrate that the exogenous
ead time assumption (i.e., ignoring finite capacity) leads to subop-

imal price and quality levels in settings where production capacity

s limited, with lower profits as a result ( Section 6.1 ). We also show

ow adding a utilization constraint based on expected processing

imes can mitigate this profit loss ( Section 6.2 ). As our goal is to

emonstrate the impact of congestion on optimal quality and pric-

ng decisions, we focus on scenarios where the optimal solution

f the load-independent optimization causes notable congestion in

he production facility. As in these scenarios, the lead time L has

nly a minor effect on the optimal price and quality levels in the

oad-independent system (see Online Appendix H), without loss of

enerality, we set L = 0 periods (i.e., all orders arrive within one

eriod after being placed, see Fig. 1 ). Finally, Section 6.3 discusses

he generalizability of our observations. 

Table 1 summarizes the parameter values of the base case sce-

ario. We consider a period length of one day and use minutes as

ur time unit (i.e., d = 1440 minutes). In the MNL model, we set

he quality sensitivity ε f = 1 and the price sensitivity ε p = −0 . 8 ,

eaning that the customers are willing to pay up to 1 / 0 . 8 = 1 . 25

nits more for a unit increase in quality level f i ( Train, 2002 ). In

ractice, these sensitivities can be estimated by collecting data us-

ng software such as BIOGEME ( Bierlaire, 2003 ). 

We set m p = 5 , indicating that it takes on average 5 minutes to

rocess a unit of product with quality level 1. The per unit average

rocessing time of product i with quality f i is thus 5 f 2 
i 

minutes.

he material cost of product i is c i = m f 2 
i 

where we set m = 0 . 1 .

he per unit holding cost of product i per year is 20%, implying a

er unit holding cost per day of h i = 0 . 2 c i / 365 = 0 . 0 0 0 055 f 2 
i 

. The

ervice level equals m b / (m b + m h ) = 0 . 995 . Unless otherwise men-

ioned, we set the quality of the first product to f 1 = 1 meaning

hat this product is always the lower quality product. 

To ensure that load-independent and load-dependent systems

re compared with the same conditions, we adopt the discrete PH

istributions for product demands in the load-independent model

s well; yet, this implies that the load-independent expected profit

 Eq. (4) ) no longer has a closed form, and is evaluated numerically.

.1. Comparison of load-independent and load-dependent 

ptimization 

bservation 1. Load-independent optimization results in under-

ricing of the high-quality and (possibly) overpricing of the low-

uality product compared to load-dependent optimization. 

Fig. 4 compares the optimal product prices in the load-

ndependent and load-dependent optimization models for different

alues of f 2 : in both models p ∗2 > p ∗1 (as product 2 is the higher

uality product), but the optimal price difference between the

roducts is markedly larger in the load-dependent case. The rea-

on for this behavior is evident: as load-independent optimization

isregards the impact of price and quality levels on the produc-

ion load, it results in demands that are too high; in our case, de-

and can even exceed the production capacity, see Fig. 5 . In prac-

ice, such overloaded settings are not sustainable in the long run:

he company will either have to adjust capacity (for instance by

utsourcing), or will have to adjust its product offer. In the load-

ependent optimization, the system implicitly controls the conges-

ion in production by shifting demand away from the high-quality

roduct (which is most time-consuming to produce) to the low-

uality product. This is achieved by increasing the price of the

igh-quality, while decreasing the price of the low-quality product.

bservation 2. The optimal quality level f ∗
2 

resulting from load-

ependent optimization is lower than that resulting from load-

ndependent optimization; moreover, it decreases as the (fixed)

uality of the first product ( f ) is higher. 
1 
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Table 1 

Parameter values in the base case scenario. 

Value 

Parameters 

• Average and standard deviation of total demand per period ( λ and σ ) 100,10 

• Quality of product 1 ( f 1 ) 1 

• Quality sensitivity ( εf ) 1 

• Price sensitivity ( εp ) −0 . 8 

• Material, backorder, and holding cost coefficient ( m , m b , m h ) 0.1, 0.0109, 0.0 0 0 055 

• Single unit production time coefficient ( m p ) 5 

• Coefficient of variation of single unit production time ( CV ) 0.5 

• Time units for one period ( d ) 1440 minutes 

• Fixed lead time of load-independent system ( L ) 0 

Feasible domain for decision variables 

• Quality of second product ( f 2 ) 1: 0.2: 8 

• Market share of product i ( q i ) 0: 0.01: 0.999 

• Feasible domain in load-independent setting q 1 + q 2 ≤ 0 . 999 

• Feasible domain in load-dependent setting q 1 + q 2 ≤ 0 . 999 and 

[(q 1 λ)(m p f 
2 
1 ) + (q 2 λ)(m p f 

2 
2 )] /d < 0 . 98 

Fig. 4. Optimal product prices in the load-independent and load-dependent lead 

time optimization for different values of f 2 ( f 1 = 1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Utilization in production corresponding to the optimal price configuration 

for different values of f 2 ( f 1 = 1 ). 
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This is evident from Fig. 6 , which shows the optimal expected

profit for different values of f 2 . With load-independent optimiza-

tion, the optimal quality of the second product is f ∗
2 

= 6 . 2 , while

with load-dependent optimization f ∗
2 

= 2 . 8 , for f 1 = 1 (see Fig. 6 ).

For f 1 = 2 , f ∗2 remains the same with load-independent optimiza-

tion (see Eq. (18) ); in contrast, f ∗
2 

reduces to 2.6 with load-

dependent optimization. Again, this behavior can be explained by

the system’s attempt to control congestion: the (high) quality level

resulting from load-independent optimization cannot be optimal

in the load-dependent setting as it would require high price lev-

els to control the congestion; such prices, in turn, result in low

market coverage and profit loss. This is evident from Fig. 7 , which

shows the market coverage under optimized prices for different

values of f 2 . It is thus intuitive that the optimal quality of the

load-dependent model cannot exceed the optimal quality of load-

independent optimization, due to this price reaction. The impact

on optimal market coverage follows immediately: 

Observation 3. The market coverage resulting from load-

dependent optimization will never exceed the market coverage

resulting from load-independent optimization. 

For load-independent optimization, higher average total de-

mand ( λ) decreases υ (i.e., the cost penalty for higher quality,

see Eq. (15) ), which in turn leads to higher f ∗ and higher market

2 
overage (see Theorems 4 and 5 ). This is no longer true with

oad-dependent optimization: 

bservation 4. With load-dependent optimization, higher average

otal demand ( λ) may lead to lower values of f ∗
2 

and result in

ower market coverage. 

This contrasts with Theorems 4 and 5 in the case of load-

ndependent optimization. Increasing average total demand in the

ase case from λ = 100 to λ = 200 , for instance, results in f ∗
2 

= 2 . 2

versus f ∗2 = 2 . 8 when λ = 100 ) and an optimal market coverage

f 46% (down from 50%) with load-dependent optimization; for

igher demand levels, the market coverage must indeed be de-

reased to control the congestion in production. 

Observations 1 –4 show that the optimal price and quality lev-

ls resulting from load-independent and load-dependent optimiza-

ion differ; im plementing the load-independent solution in settings

ith endogenous lead times may thus substantially hurt profits.

he profit loss may be minor, though, in settings that are less

rone to congestion. 

As an illustration, Table 2 shows the profit loss for the base

ase scenario (see Table 1 ) and a number of variants (the differ-

nce with regard to the base case is shown in column 1). The

econd column reports the percentage profit loss when imple-

enting the prices, quality, and order-up-to levels resulting from
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Fig. 6. Profit corresponding to the optimal prices in the load-independent and load- 

dependent optimization ( Fig. 4 ) for different values of f 2 . 

Fig. 7. Market coverage corresponding to the optimal price levels in the load- 

independent and load-dependent lead time settings for different values of f 2 ; f 1 = 

1 . 
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oad-independent optimization in the corresponding P/I system.

hen this solution results in an unstable queue (as in the base

ase scenario), the profit loss is reported as ∞ . 

In settings with high cost coefficients, high price sensitivity or

ow quality sensitivity, the profit loss is minor: as Eq. (18) reveals,

hese conditions decrease the f ∗
2 

in the load-independent opti-

ization, such that the impact on utilization is minor. The same

esult is observed when the average and/or variance of the per-unit
Table 2 

Percentage profit loss with load-independent and utilization-based optimization ( δ den

Variant 

0) Base case ( λ = 100 , σ = 10 , m = 0 . 1 , m b = 0 . 0109 , m h = 0 . 0 0 0 055 , m p = 5 , CV = 

1) High cost environment ( m = 0 . 22 , m b = 0 . 024 , m h = 0 . 0 0 012 ) 

2) High price sensitivity ( ε p = −1 . 8 ) 

3) Low quality sensitivity ( ε f = 0 . 5 ) 

4) Low average processing time per unit ( m p = 0 . 6 , CV = 0 . 5 ) 

5) Low average processing time per unit with high uncertainty ( m p = 0 . 6 , CV = 0 . 8 ) 
rocessing time is reduced (i.e., lower m p and CV ), as the impact

f f ∗2 on system utilization is then automatically mitigated. This is

ummarized in the following observation: 

bservation 5. The profit loss resulting from load-independent

ptimization is minor when average per unit processing times are

hort, processing time variability is low, cost of quality is high, and

ustomers have high price sensitivity and/or low quality sensitivity.

.2. Utilization-based optimization 

The question remains how to mitigate the profit loss in settings

here it is substantial. Estimating the impact of marketing deci-

ions on replenishment lead times may be difficult in practice, as

t requires to explicitly account for congestion and variability ef-

ects. One approach is to optimize decisions subject to an explicit

tilization constraint: 

 q 1 λE(M 1 ) + q 2 λE(M 2 )] /d < δ. (21)

here we set δ = min (0 . 99 , utilization of the optimal load-

ndependent solution). The third column in Table 2 reports the per-

entage profit loss resulting from this utilization-based optimiza-

ion, along with the value of δ. Evidently, this approach is most

ffective when load-independent optimization results in high con-

estion (as in the base case). 

The advantage of this approach is that, contrary to load-

ependent optimization, it only requires insight into the relation-

hip between quality levels and the per unit average processing

imes (i.e., E(M i ) = m p f 
2 
i 

). We acknowledge that that this approach

an be further fine-tuned, as the choice for the utilization thresh-

ld ( δ) may be improved. We hope our work may provide a step-

ing stone for researchers to help develop other pragmatic ap-

roaches for optimizing decisions in P/I systems with endogenous

ead times. 

.3. Discussion 

Although some of our insights are based on numerical observa-

ions, we are confident that they are not specific to the values used

nd can be generalized, as the underlying “mechanics” are ubiq-

itous in practice: with scarce capacity, the firm needs to adjust

he price and quality levels to control the congestion in the load-

ependent system. Increasing the price of the high-quality prod-

ct dampens its demand and, consequently, decreases congestion

as the high-quality product is more time-consuming to produce).

owering its quality level also decreases its demand, and addition-

lly relieves congestion by shortening the average per-unit produc-

ion time. It also lowers the per-unit backorder and holding costs,

aking the impact of congestion less costly. As we have shown,

t may thus be optimal to both increase the price and decrease

he quality of the high-quality product in P/I systems with load-

ependent lead times. 

Although our observations rely on several functional assump-

ions, these are not restrictive for our main insights. For instance,
otes the utilization threshold for utilization-based optimization). 

Percentage profit loss Percentage profit loss 

under load-independent under utilization-based 

optimization optimization 

0 . 5 , ε p = −0 . 8 , ε f = 1 ) ∞ 1.17 ( δ = 0 . 99 ) 

1.01 0.71 ( δ = 0 . 9 ) 

1.05 0.7 ( δ = 0 . 9 ) 

0.79 0.42 ( δ = 0 . 91 ) 

2.6 2.06 ( δ = 0 . 91 ) 

3.14 2.61 ( δ = 0 . 91 ) 
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1 
we opted for the Multinomial Logit model to reflect customer

choice, as it conveniently allows for modeling customers’ reaction

to price and quality. In fact, regardless of the choice model used,

ignoring congestion-related costs naturally makes decision makers

aim for higher quality levels at lower prices, as they believe that

the increase in market coverage will lead to higher expected profit.

The quadratic relation between quality and material cost ( c = m f α

with α = 2 ) is convex, as is commonly observed in practice ( Jerath,

Kim, & Swinney, 2017 ). In fact, our insights hold for any α ≥ 1, as

the actual value of α only impacts the extent to which quality im-

pacts costs, and has no direct impact on the congestion-related in-

sights. 

We assumed that the average per unit production time in-

creases quadratically in the quality level ( E(M i ) = m p f 
β
i 

with β =
2 ). In practice, this production time might increase at a slower rate.

Even when β = 1 , load-independent optimization may still overes-

timate the quality of the high-quality product as an excessive qual-

ity level may lead to high demands and high per-unit production

costs (see Online Appendix I for an example). 

7. Conclusions 

This paper has shown that the optimal prices and qualities of

the products offered by a finite-capacity make-to-stock manufac-

turer are impacted by the endogeneity of the (load-dependent)

production lead times. While the assumption of fixed, exogenous

lead times is common in current research, and in many real-life

planning systems, it results in a product offer that aims for an

excessive market coverage, resulting in profit loss due to the in-

creased congestion in the production system. Only in case of abun-

dant capacity, or when the system is not prone to congestion (e.g.,

low unit processing times in production, low quality sensitivity

in the market), assuming load-independent and fixed lead times

is justified. In that case, closed form results can be obtained for

the optimal price and quality levels. Though our insights are partly

based on numerical results, we are confident that they are general-

izable, as the main drivers of system behavior (e.g., negative price

sensitivity, positive quality sensitivity, unit processing times that

are increasing in product quality level, endogenous production lead

times) are ubiquitous in practice. 
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Appendix A. Calculations for Eq. (8) 

Replacing the order-up-to levels with their optimal expres-

sions S ∗
i 

= (L + 1) q i λ + �−1 ( 
m b 

m b + m h 
) 
√ 

L + 1 q i σ, the z i = (S i − (L +
1) q i λ) / 

√ 

L + 1 q i σ becomes z c = �−1 ( 
m b 

m b + m h 
) . Therefore, instead of

L ( z i ), we obtain: 

L (z c ) = φ(z c ) − z c (1 − �(z c )) = φ(z c ) − z c 

(
m h 

m b + m h 

)
, 

and we can re-write the profit function (7) : 

� = 

2 ∑ 

i =1 

[ 
(p i −m f 2 i ) q i λ−m h f 

2 
i (S ∗i −(L + 1) q i λ+ 

√ 

L + 1 q i σ L (z c ))

− m b f 
2 
i 

√ 

L + 1 q i σ L (z c ) 
] 
. (22)

Expanding S ∗
i 
, we have: 
(p 1 , p 2 ) = 

2 ∑ 

i =1 

[ 
(p i − m f 2 i ) q i λ − (m h + m b ) f 

2 
i 

√ 

L + 1 q i σ L (z c ) 

− m h 

√ 

L + 1 f 2 i q i σ z c 

] 
. (23)

xpanding L ( z c ) in the second term, we obtain expression (8) . 

ppendix B. Proof of Theorem 1 

All the terms inside the summation sign in Eq. (10) are jointly

oncave in q 1 and q 2 . The last term is also jointly concave because

ts Hessian is negative semi-definite. Indeed, 

essian = 

[
T T 
T T 

]
, T = 

2 λ

ε p (1 − q 1 − q 2 ) 

+ 

(q 1 + q 2 ) λ

ε p (1 − q 1 − q 2 ) 2 
< 0 as ε p < 0 , 

uch that, for any real numbers x and y , we obtain 

x y 
)[T T 

T T 

](
x 
y 

)
= T (x + y ) 2 ≤ 0 . 

s the sum of concave terms is concave, this proves Theorem 1 . 

ppendix C. Proof of Theorem 3 

In this appendix we prove that ∂ p ∗2 /∂ f 2 > 0 . Using Eq. (13) in

14) , we have: 

p ∗i = υ f 2 i − 1 

ε p 
(e ε f f 1 + ε p p 

∗
1 + e ε f f 2 + ε p p 

∗
2 ) − 1 

ε p 
. (24)

sing implicit differentiation, we obtain: 

∂ p ∗2 
∂ f 2 

=2 υ f 2 − 1 

ε p 

(
ε p 

∂ p ∗1 
∂ f 2 

)
e ε f f 1 +ε p p ∗1 − 1 

ε p 

(
ε f +ε p 

∂ p ∗2 
∂ f 2 

)
e ε f f 2 + ε p p 

∗
2 . 

(25)

fter simplification, we have: 

1 + e ε f f 2 + ε p p 
∗
2 

)∂ p ∗2 
∂ f 2 

= 2 υ f 2 −
∂ p ∗1 
∂ f 2 

e ε f f 1 + ε p p 
∗
1 − ε f 

ε p 
e ε f f 2 + ε p p 

∗
2 . 

(26)

nalogously, 

∂ p ∗1 
∂ f 2 

= − 1 

ε p 

(
ε p 

∂ p ∗1 
∂ f 2 

)
e ε f f 1 + ε p p 

∗
1 − 1 

ε p 

(
ε f + ε p 

∂ p ∗2 
∂ f 2 

)
e ε f f 2 + ε p p 

∗
2 . 

(27)

rom Eqs. (25) and (27) , it follows that 

∂ p ∗1 
∂ f 2 

= 

∂ p ∗2 
∂ f 2 

− 2 υ f 2 , (28)

uch that Eq. (26) reduces to 

1 + e ε f f 2 + ε p p 
∗
2 

)∂ p ∗2 
∂ f 2 

= 2 υ f 2 −
(

∂ p ∗2 
∂ f 2 

− 2 υ f 2 

)
e ε f f 1 + ε p p 

∗
1 

− ε f 
ε p 

e ε f f 2 + ε p p 
∗
2 , (29)

nd thus 

∂ p ∗2 
∂ f 2 

= 

2 υ f 2 
(
1 + e ε f f 1 + ε p p 

∗
1 

)
− ε f 

ε p 
e ε f f 2 + ε p p 

∗
2 

1 + e ε f f 1 + ε p p ∗1 + e ε f f 2 + ε p p ∗2 
> 0 . (30)

he above expression is always positive (recall that υ > 0 and

p < 0), proving that the optimal price of the second product in-

reases as its quality increases. The relationship between p ∗ and f 2 
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s not monotone. From Eqs. (30) and (28) , it follows that: 

∂ p ∗1 
∂ f 2 

= 

(
− ε f 

ε p 
− 2 υ f 2 

)
e ε f f 2 + ε p p 

∗
2 

1 + e ε f f 1 + ε p p ∗1 + e ε f f 2 + ε p p ∗2 

{
< 0 if f 2 > −ε f / (2 υε p ) 

> 0 if f 2 < −ε f / (2 υε p ) , 

(31) 

uch that the sign of ∂ p ∗
1 
/∂ f 2 depends on f 2 . 

ppendix D. Proof of Theorem 4 

Eq. (16) can be rewritten as follows: 

−ε p �(p ∗1 , p 
∗
2 ) 

λ
e 

−ε p �(p ∗
1 

,p ∗
2 
) 

λ = e ε f f 1 + υε p f 2 1 −1 + e ε f f 2 + υε p f 2 2 −1 . 

he left-hand side is nondecreasing in �(p ∗
1 
, p ∗

2 
) ; consequently,

he larger the right-hand side, the larger the value of �(p ∗
1 
, p ∗

2 
)

hat satisfies the equation. The quality of the first product ( f 1 ) is

xed; thus, the right-hand side reaches a maximum when ε f f 2 +
ε p f 2 2 − 1 is at its maximum, which happens at f 2 = −ε f / (2 υε p ) . 

ppendix E. Proof of Theorem 5 

The probability that an arriving customer doesn’t purchase any

f the products (i.e., nonpurchase probability) is given by the MNL

odel ( Eq. (3) ): 

 0 = 

1 

1 + exp (ε f f 1 + ε p p 1 ) + exp (ε f f 2 + ε p p 2 ) 
. (32) 

herefore, the expected size of the market that remains uncovered

s q 0 λ. For the optimal quality of the second product ( −ε f / (2 υε p ) ),
he optimal prices in Eq. (12) can be written as: 

p ∗1 = υ f 2 1 −
1 

ε p q ∗∗
0 

, 

p ∗2 = υ

(
ε 2 

f 

4 υ2 ε 2 p 

)
− 1 

ε p q ∗∗
0 

, (33) 

here q ∗∗
0 

denotes the nonpurchase probability when p 1 , p 2 , and f 2 
re chosen optimally. Therefore, from Eq. (32) , we have: 

 

∗∗
0 = 

1 

1 + exp (ε f f 1 + ε p υ f 2 
1 
−1 /q ∗∗

0 
) + exp (−ε 2 

f 
/ (2 υε p ) + ε 2 

f 
/ (4 υε p ) −1 /q ∗∗

0 
) 

= 

1 

1 + exp (ε f f 1 + ε p υ f 2 
1 

− 1 /q ∗∗
0 

) + exp (−ε 2 
f 
/ (4 υε p ) − 1 /q ∗∗

0 
) 
. 

(34) 

sing implicit differentiation, we calculate the derivative of q ∗∗
0 

ith respect to υ, ε f , and ε p and show how the optimal market

overage ( 1 − q ∗∗
0 

) changes with these parameters. To simplify the

otations, let exp (μ∗∗
1 ) = exp (ε f f 1 + ε p υ f 2 1 − 1 /q ∗∗

0 ) and exp (μ∗∗
2 )

 exp (−ε 2 
f 
/ (4 υε p ) − 1 /q ∗∗

0 
) : 

∂q ∗∗
0 

∂ε p 
= 

−
[ (

υ f 2 1 + 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

1 ) + 

(
ε 2 

f 

4 υε 2 p 
+ 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

2 ) 
] 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 

 

∂q ∗∗
0 

∂ε p 
= 

−υ f 2 1 exp (μ∗∗
1 )−

ε 2 
f 

4 υε 2 p 
exp (μ∗∗

2 ) 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 + exp (μ∗∗
1 

) / (q ∗∗
0 

) 2 + exp (μ∗∗
2 

) / (q ∗∗
0 

) 2 
<0 . 

(35) 

Thus, as εp decreases (higher price sensitivity), optimal market
overage decreases (higher q ∗∗

0 ). Analogously: 

∂q ∗∗
0 

∂ε f 
= 

−
[ (

f 1 + 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

1 ) + 

(
−2 ε f 
4 υε p 

+ 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

2 ) 
] 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 

 

∂q ∗∗
0 

∂ε f 
= 

− f 1 exp (μ∗∗
1 )+ 

ε f 
2 υε p 

exp (μ∗∗
2 ) 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 + exp (μ∗∗
1 

) / (q ∗∗
0 

) 2 + exp (μ∗∗
2 

) / (q ∗∗
0 

) 2 
<0 , 

(36) 
hich shows that optimal market coverage decreases as customers
ecome less sensitive to quality. Finally, we have: 

∂q ∗∗
0 

∂υ
= 

−
[ (

ε p f 2 1 + 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

1 ) + 

(
ε 2 

f 

4 υ2 ε p 
+ 

1 
(q ∗∗

0 
) 2 

× ∂q ∗∗
0 

∂ε p 

)
exp (μ∗∗

2 ) 
] 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 

 

∂q ∗∗
0 

∂υ
= 

−ε p f 2 1 exp (μ∗∗
1 )−

ε 2 
f 

4 υ2 ε p 
exp (μ∗∗

2 ) 

[1 + exp (μ∗∗
1 

) + exp (μ∗∗
2 

)] 2 + exp (μ∗∗
1 

) / (q ∗∗
0 

) 2 + exp (μ∗∗
2 

) / (q ∗∗
0 

) 2 
>0 , 

(37) 

hus, the optimal market coverage decreases as υ increases (which

ccurs when lead time increases, cost coefficients increase, or the

oefficient of variation of demand increases). 

Based on the above results and Eq. (33) , we can readily show

hat p ∗
1 

and p ∗
2 

decrease with higher | εp | and lower εf . As υ in-

reases, p ∗2 decreases but p ∗1 may increase or decrease depending

n the fixed value of f 1 . 

It remains to be shown that the resulting profit also decreases.

rom Eq. (13) , we have: 

∗ = − λ

ε p 

(
1 

q ∗∗
0 

− 1 

)
, (38) 

nd, thus, 

∂�∗

∂ε p 
= 

λ

ε 2 p 

(
1 

q ∗∗
0 

− 1 

)
− λ

ε p 
×

− ∂q ∗∗
0 

∂ε p 

(q ∗∗
0 

) 2 
> 0 , 

∂�∗

∂ε f 
= − λ

ε p 
×

− ∂q ∗∗
0 

∂ε f 

(q ∗∗
0 

) 2 
> 0 , 

∂�∗

∂υ
= − λ

ε p 
× − ∂q ∗∗

0 

∂υ

(q ∗∗
0 

) 2 
< 0 . (39) 

onsequently, as | εp | increases, εf decreases, or υ increases, the

ptimal profit drops. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2018.06.013 . 
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