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Abstract: Recently, electric vehicles (EVs) using energy storage have gained attention over
conventional vehicles using fossil fuels owing to their advantages such as being eco-friendly and
reducing the operation cost. In a power system, an EV, which operates through the energy stored in
the battery, can be used as a type of load or energy source; hence, an optimal operation of EV clusters
in power systems is being extensively studied. This paper proposes an optimal strategy for charging
EVs in parking lots. This strategy is based on the model predictive control (MPC) framework due to
the uncertainty of loads, renewable energy sources, and EVs, and considers the voltage stability of the
distribution systems. EV chargers in the parking lot charge EVs to minimize the charging cost, which
results in a sudden increase in charge load at a certain time. As a result, an excessive voltage drop
may occur in the power system at that time. Therefore, we need to minimize the charging cost of EVs
while preventing an excessive voltage drop in the power system. The parking lot is stochastically
modeled to consider EV uncertainty under the MPC framework. In the MPC framework, the charging
schedule of an EV charger in the parking lot is optimized by considering both voltage stability and
charging cost minimization in real time. The charging constraints on voltage stability are updated
through parameters that change in real time, and thus, errors caused by uncertainty can be reduced.
Subsequently, this charging strategy is applied to multiple chargers through Monte Carlo simulation.
The proposed charging strategy is verified based on MATLAB/Simulink.

Keywords: power system; electric vehicle; parking lot; model predictive control; voltage stability;
Monte Carlo simulation

1. Introduction

As a new accord that was adopted in 2015 as a replacement for the Kyoto Protocol adopted in 1997,
the Paris Climate Change Accord has led to the implementation of greenhouse gas reduction targets
for all 195 participating countries. Starting with the Paris Climate Change Accord, renewable energy is
spreading globally to become a competitive mainstream energy source for environmentally friendly
development. In accordance with this global trend, recently, power systems have been undergoing
a change from being central operation-based on a power plant using fossil fuels to employing a
distributed operation, which mainly uses renewable energy and energy storage devices. In addition,
there has been considerable research in various fields such as microgrids, energy storage systems,
renewable energy, and electric vehicles (EVs) for operating power systems in a distributed manner.
Of these, EVs are attracting maximum attention because they will be the most influential fields in
the future as their penetration progresses. In addition, since EVs in power systems can be regarded

Energies 2018, 11, 1812; doi:10.3390/en11071812 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/7/1812?type=check_update&version=1
http://dx.doi.org/10.3390/en11071812
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1812 2 of 17

as a sort of mobile battery, power system operators such as the microgrid need to carefully consider
the uncertainties of EVs. Therefore, EVs have been studied by considering their uncertainty patterns.
Specifically, issues such as how EVs are handled and how they affect distributed systems, such as
microgrids and smart grids, are being researched.

Reference [1] proposes a model predictive control (MPC)-based method with the goal of
minimizing the charging energy cost of the charging station when an EV is charged in it. The charging
station performs charging control of the EVs by considering the electric price to exhibit the time-varying
characteristic and the power reference change by providing auxiliary services to the distribution system
operator. Reference [2] proposes a real-time algorithm that coordinates the charge of multiple plug-in
electric vehicles to reduce stress that affects system stability and reliability. When coordinating the
charge for purposes of supplying power to the EV, and thereby, minimizing power loss, it uses voltage
constraints, demand constraints over time, and the user’s preferred charging time. Reference [3]
describes how an aggregator in a system with a medium voltage level reprofiles the charging load
of EVs. Moreover, a reference architecture for managing EVs in a cluster is proposed. Reference [4]
describes in detail the impact that an EV can have when it increases in a low-voltage distribution
grid. As a result, as the number of EVs increases, not only the electrical load but also the thermal
load is increased, which can cause it to deviate from the normal operating range. This means that
adjustments need to be made for charging several EVs simultaneously. Reference [5] suggests a
controller that can handle the plug-and-play of charging of MPC-based EVs. This controller has the
upper and lower limits of the voltage of the busbars of the power network as a constraint, and considers
this constraint when charging an EV. This paper focuses on controller design and achieves a better
control performance by reflecting a change in the connection state of EVs. Reference [6] suggests
ways to reduce congestion in a distribution system by adjusting the charging of EVs by using the
locational marginal pricing scheme. Reference [7] considers the uncertainty of charging EVs through
the probability model and uses it for system operation and system planning. Reference [8] presents
vehicle-to-parking and parking-to-vehicle schemes for EVs in each home and parking lot through a
stochastic model and analyzes their effect on the power system. Reference [9] suggests a way to satisfy
both the minimization of power generation cost and the system constraint by hierarchical charging
control considering the uncertainty of EVs. Reference [10] presents charging control schemes for
EVs considering transmission congestion. Reference [11] proposes a method to estimate the optimal
capacity and location of EV parking lots in a distribution system through a stochastic approach.
In Reference [12], the charging preference of the driver is considered through the utility function,
and the charge scheduling of a plug-in hybrid electric vehicle is performed by adjusting the real-time
charging price based on the charging preference. Reference [13] proposes an optimal charging strategy
at the charging station by considering the navigation of the EV and the condition of the charging
station, and applies a hierarchical game approach that maximizes the benefit of each charging station
through competition between the charging stations. Reference [14] describes a strategy of minimizing
the cost of the charging station by optimizing the charging operation in an EV parking lot by using
two-stage approximate dynamic programming. In addition, strategies that maximize the benefits of
aggregators and sub-components when participating in the market by considering aggregated load and
distributed power and EV together are proposed in [15] and a stability management method of power
systems based on equilibrium price through market-based operation of the aggregator is studied.

Besides the abovementioned studies, various studies are ongoing as EVs become more influential,
and there are some features that are derived from these EV studies. First, EVs can be considered as
moving batteries, so there is uncertainty as to the usage patterns of users. Second, if multiple EVs are
connected to a power system, they have a significant impact on system stability. Finally, many EVs can
be aggregated in places such as charging stations or parking lots, which can be managed through an
aggregator, and the management of costs such as market participation or charge fees is essential.

For these reasons, this paper proposes an optimal charging strategy of EVs in a parking lot
through an aggregator. To account for the uncertainty of EVs, a stochastic approach is applied to the
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pattern of EVs entering the parking lot and an MPC-based framework is used to reflect the change in
the state of EVs and electric tariff in the charging strategy. In addition, voltage constraints based on the
voltage sensitivity of the system buses are generated to account for voltage drops that can occur when
EVs perform charging in the distribution grid, which is reflected in the charging strategy. Therefore,
the proposed charging strategy can achieve optimization of the charging rate while considering the
voltage stability of the system.

In summary, this paper makes the following contribution.

(1) It is a charging station operation strategy that considers charging rate optimization of EVs
in a parking lot and voltage stability of the power system. This strategy can be applied to an
aggregator that manages parking lots or charging stations where EVs are assembled. This strategy
can be used to prevent the bus voltage drop in the grid due to EV charging during the day, and EV
customers can be provided with a minimum charging rate.

(2) A relatively simple voltage constraint based on voltage sensitivity is used to prevent voltage drop
caused by concentrated charging of EVs. This constraint can be updated in real time and applied
only when needed. Due to the uncertainty of EVs, it is difficult to specify the time at which the
voltage drop will occur, and for the aggregator, there is no guarantee that the state of the power
system will always be verified when the operating strategy is established. When this constraint is
used, basically, the operating strategy is set up through charging rate optimization, and can be
applied only to the section where the voltage drop is expected to occur, so that the influence of
concentrated charging of EVs on the system can be minimized.

(3) Finally, the uncertainty of residual state-of-charge (SOC) and entry time of EVs entering the
parking lot is substantial compared to the deterministic approach, because it is considered as
a stochastic approach. In addition, since the voltage constraint is updated in real time based
on the MPC framework, it is possible to cope with the variation in the condition inside the
charging station.

The rest of this paper is organized as follows. Section 2 presents the basic model for the proposed
strategy, describing the stochastic model, MPC-based framework, and Monte Carlo simulation for the
EV parking lot used. Section 3 describes an optimal charging strategy for EV parking lots. Section 3.1
describes a strategy that is basically aimed at minimizing the charging rate. Section 3.2 describes an
optimal charging strategy that accounts for the voltage variations in the power system. Section 4
presents the simulation results for verification of the proposed strategy. Finally, Section 5 concludes
the study.

2. The Basic Model Configuration for the Proposed Strategy

2.1. Stochastic Modeling of EV Parking Lot

Since an EV is an uncontrollable load for the aggregator, the parking lots for the following three
items are stochastically constructed and modeled to generate new probabilities every hour: (1) the
time when an EV enters the parking lot; (2) the time when an EV leaves the parking lot; and (3) the
remaining SOC of the EV battery when entering. If the charger is already being used by the EVs
determined by the probability of entry and exit, then the next EV cannot use the charger. A charging
index is defined to account for this situation: if the charging index is activated (for example, if it is
considered a binary variable), it means that there is an EV currently being charged in the charger.
Figure 1 shows a schematic of the daily charging schedule according to stochastic EV entry/exit from
the charger perspective.
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Figure 1. Probability Generation Modeling Schematic.

tarr,1, tdep,1, and SOCarr,1 indicate the entry and departure times of the EV that first arrived at
the charger and the remaining SOC, respectively, which are determined stochastically. Based on the
probability of entry time, the EV is determined to be charged at that time and the proposed strategy
is applied according to the remaining SOC and time of departure. In Figure 1, the charging index is
activated from 0 to 1 when EV charging is determined at tarr,1. The charging demand indicates the
result of applying the proposed strategy.

As mentioned above, the times of entry and departure of the vehicle and the remaining SOC
are considered as stochastic variables. Since all three variables are random, some factors need to be
considered. First, if the departure time is earlier than the entry time, it should be excluded, because it
is practically meaningless. Second, while the EV is in the parking lot, the chargeable amount must
not exceed the capacity of the EV battery. Third, the amount to charge must be achievable within
the time in the parking lot. If the user gives the SOC constraint form for the required charge amount
considering the second and third conditions, the physical constraint can be clearly generated, but if
not, the chargeable amount is also determined stochastically. If the condition is not met, it is excluded
from the stochastic results. Figure 1 is an example applied to each charger, and since there are many EV
chargers in the parking lot, the charging strategy of the parking lot during the day can be established by
the result of the probability per charger of the parking lot. Since each charger has its own independent
random variables, in this paper, a charging schedule for several chargers is configured, which are
summed to be considered in the parking lot. The EV battery capacity differs depending on the EV
model; however, in this paper, the capacity is unified through one EV model.

tarr,n < tdep,n (1)

tdep,n − tarr,n = tparking,n (2)

Edemand,n = (SOCpre f ,n − SOCarr,n)× Cbat,n (3)

Edemand,n ≤ tparking,n × ηcharger,nPmax
charger,n (4)

0 < SOCarr,n ≤ 1 (5)

Equations (1) and (2) indicate the constraints on the times at which the n-th EV arrives and leaves
the parking lot. These constraints are used to generate probabilities for EVs. Equation (1) is a condition
according to which the time to arrive at the parking lot, tarr,n, must occur before the time to leave
the parking lot, tdep,n, and Equation (2) is a condition according to which the difference between the
two points is the time when the EV is parked. Equation (3) describes the condition for calculating the
charging demand of the n-th EV. SOCarr,n is the remaining SOC when the n-th EV arrives at the parking
lot, SOCpre f ,n is the required SOC to be input, and Cbat is the battery capacity. The SOCarr,n in Equation (3)
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is determined stochastically. Equation (4) implies that the charge requirement of the EV should be equal
to or less than the maximum chargeable charge during the parked time. ηcharger,n indicates the charging
efficiency of the charger, and Pmax

charger,n indicates the maximum output of the charger. Since tarr,n, tdep,n,
and SOCarr,n are determined stochastically, it cannot occur if the required amount of charge cannot be
satisfied during the parking time, and thus, this case is excluded in Equation (4). Equation (5) represents
the condition for the remaining SOC of the EV arriving at the parking lot.

2.2. MPC Framework

MPC is a control algorithm that finds an optimal control signal that minimizes the objective
function defined by the user by considering the constraints based on the mathematical model [16].
In MPC, the state variable or output is predicted using the model and optimization is performed using
an appropriate constraint and cost function over the prediction time horizon. MPC sets the prediction
horizon, which is a prediction interval for the future, and optimizes the predicted value to minimize
errors in the interval. Only the first control input value among the optimization values is used as the
control input of the current time. These predictions are optimal control input values that minimize
the cost function and satisfy the given constraints. In the next time step, the same procedure as above
is repeatedly performed and an optimal control input is applied to the corresponding model, so that
optimized control can always be achieved. The basic system structure of MPC is shown in Figure 2.
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Since MPC is a control technique, only its framework is used in this study to develop the charging
strategy. When the optimal charging strategy is designed, the error between the optimum points can
be substantially reduced by updating the parameters and constraints that change in real time. In this
paper, the constraint that is changed in the MPC framework is the bus voltage limit of the power
system. Since the charging of the EV is always performed in real time, it is necessary to set the charging
limit in advance by predicting the future charging load and voltage limit. Therefore, the charging limit
is set at the time when the voltage drop is expected through the MPC, and is prevented through the
charging constraints at the corresponding charging time.

2.3. Monte Carlo Simulation

Monte Carlo simulation is a simulation method for probabilistically obtaining the value of a
desired equation by using randomly extracted numbers. It is also called the simulated sampling
technique because it randomly selects a number from a probability distribution for use in one
simulation run. The task of estimating the probability distribution of the target function by deriving
the pattern of the unit variable through the generated random number is the core of the Monte Carlo
simulation method.
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In this study, the EV parking lot is designed based on the stochastic model considering the
moving pattern of the EVs. The probabilistic model for the EV charger can be extended based on
Monte Carlo simulation. That is, the total number of repetitions of the Monte Carlo simulation is the
number of chargers that form the entire parking lot, and the probability of being used in the charger is
independent of each repetition of the probability distribution associated with the EV. It is possible to
integrate all charging loads of the EV generated in each charger and regard it as the total load in the
parking lot.

3. Optimal Charging Strategy of EV Parking Lot

This section describes a strategy that optimally charges the EV while considering the voltage
limit of the power system and keeping the charge cost to a minimum when EVs are charging in the
parking lot.

An EV parking lot with this structure, which has several EV chargers, and an aggregator that
includes residential loads, are designed. Overall, the optimal charging strategy comprises a two-level
hierarchical structure. First, the optimum charging simulation is performed considering only the
charging rate. Here, a reference to the optimal charge schedule for 24 h is determined, and the
determined value can be applied as an initial value for the parking lot operation. Second, the aggregator
calculates the corresponding low voltage limit that can mitigate the voltage drop considering the
voltage stability of the entire power system. Based on the calculated voltage limit, each parking lot
operator reconfigures the charging schedule. The second step is performed in the MPC framework
when the current operational state, which means the bus voltage, changes. When charging occurs in
real time, depending on the entry of probabilistic EVs and the variability of local loads, the constraints
on voltage need to change every hour. The aggregator checks the voltage limit according to the current
load condition and updates the low voltage limit every hour if the current low voltage limit deviates
from the minimum voltage limit. That is, if the voltage drop is less than the threshold value defined
by the operator, the second step is not performed, whereas if the voltage deviates from the threshold
value due to a severe voltage drop, the second step is applied. After the updated voltage constraint is
reflected, the EVs are charged to account for charging constraints on the voltage, thereby preventing
an excessive voltage drop. Figure 3 shows the structure of the EV parking lot, which forms the basis of
the strategy proposed in this paper.
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3.1. Optimal Charging Strategy Considering Charging Rate

Based on the probabilistic modeling of the EV parking lot, the first optimal charging schedule
is derived. Depending on the EV charging rate, the charging is performed continuously during the
parking time based on the following three probabilities: the probability of the EV entering the parking
lot, the probability of the EV leaving the parking lot, and the probability of SOC remaining upon entry.
The charge rate for EVs is set as a time-of-use (TOU) charge. Since minimizing the charging rate is
considered in the optimal charging strategy, the optimization proceeds so that the charging rate is
minimized while achieving full charge to meet the conditions during the parking time. The amount of
charge for each time is determined according to the constraint that does not exceed a maximum value
determined according to the efficiency of the charger.

min
tdep,n

∑
t=tarr,n

(CTOU,t × Pdemand,n,t) (6)

tdep,n

∑
t=tarr,n

Pdemand,n,t∆t = Edemand,n (7)

SOCn,t+1 = SOCn,t +
ηEV,nPdemand,t,n

Cbat
∆t (8)

0 ≤ Pdemand,n,t ≤ ηcharger,nPmax
charger,n (9)

0 ≤ SOCn,t ≤ SOCpre f ,n (10)

Equation (6) represents the objective function for minimizing the charging rate. Here, Pdemand,n,t
and CTOU,t denote the EV charging amount and charging rate for time t, respectively. Equations (7)–(10)
represent constraints on the optimization problem. Equation (7) implies that the stochastically
determined charging demand equals the sum of the charger output results during the parked
time. Equation (8) is the constraint on the SOC update of the EV during the parking time tparking,n,
Equation (9) indicates the upper and lower limits of Pdemand,n,t, and Equation (10) is the SOC upper
and lower limits of the EV battery during the parking time. These equations identify the optimal
charging amount for each time step so that the total cost is at its minimum during the parking time.
Because the optimization problem is solved for one charger, the same problem is applied to multiple
chargers in the parking lot through the Monte Carlo simulation. Therefore, the number of simulations
is specified as the total number of chargers in a single parking lot. As a result, when the charging loads
derived from the results of all simulations are summed up, the load resulting from the charging of the
EVs in a single parking lot can be calculated. Figure 4 is a flowchart of the optimal charging strategy
considering the electric charging rate.

The charging strategy that considers the charging rate is only optimized to minimize the total
charging cost based on the charging rate of the EV. Therefore, the charging load can be concentrated
at a time when the charging rate is low, which may cause an increase in the load in the area and a
serious voltage drop. Minimization of the charge rate has been achieved, but since voltage drops
have occurred, voltage stability may be adversely affected, and so a charging strategy with voltage
limitations is needed. In the next section, the charging strategy is discussed, which can achieve a
minimum charge rate while preventing voltage drop.
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3.2. Optimal Charging Strategy Considering Voltage Stability Based on MPC Framework

To consider the voltage limit, the concept of voltage sensitivity using the relation between the bus
voltage and active power according to the local loads in the power system is used [17]. The voltage
variation effect is a computed result of the effect of load variation of different buses on the voltage
change in a particular bus using voltage sensitivity. Thus, the effect of EV charging with respect to
the voltage on the node and other nodes can be calculated as a voltage variation effect. Since the
proposed voltage variation effect is not considered for line impedance, it may be different from the
actual voltage drop or voltage variation. However, when the power system is designed, the basic
analysis is performed and the voltage sensitivity is set according to the analysis result, so that the
voltage variability for each bus does not change significantly if the system topology is not changed.
Thus, using the voltage variation effect, the estimated active power value for the voltage deviation can
be calculated when the voltage deviation exceeds a certain predefined level.

uij = (Vre f − Vlb,j)/∆Pmax,i =
∆Vmax,j

∆Pmax,i
(11)

U =


u11 u12 · · · u1n
u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn

 (12)

Equation (11) defines the voltage sensitivity, which indicates the relation between the change in
the active power at bus i and the variation in voltage at bus j. This can be used to calculate the variable
active power according to the maximum allowable voltage. Since the voltage level of the power system
and the allowable bus voltage value depend on the grid, sensitivity is defined by the voltage and
power variation values (∆Vmax,j/∆Pmax,i) in order to take into account the voltage stability, and the
constraint on the voltage is to reduce this variation. In Equation (11), the reference voltage refers to the
voltage at the point of common coupling and can be set to a slack voltage value. In addition, ∆Vlb,j
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indicates the variable lower limit of the voltage of the j-th bus and ∆Pmax,i indicates the maximum
value of the allowable active power variation of the i-th bus. A matrix of defined sensitivity indices is
given in Equation (12).

∆V load
e f f ,j,t =

N

∑
i=1

uij(Pload
i,t + ∆Pload

i,t ) (13)

∆VEV
e f f ,j,t =

N

∑
i=1

uij∆PEV
i,t (14)

∆Vtotal
e f f ,j,t = ∆V load

e f f ,j,t + ∆VEV
e f f ,j,t (15)

Using the previously defined sensitivity index matrix, the aggregator finds the voltage variation
of bus j according to the variability of loads on each bus, as shown in Equation (13). It shows the
current state of the voltage variation due to the predicted load and the variation of the load. Similarly,
Equation (14) defines additional voltage variations depending on the charging load of EVs. As a result,
Equation (15) shows the total voltage variation at the present time when the load and load variability
and the charging power of the EVs are all considered.

∆Vtotal
e f f ,j,t > LVlim∆Vmax,j (16)

∆Vreduced
e f f ,j,t = ∆Vtotal

e f f ,j,t − LVlim∆Vmax,j (17)

∆PEV
reduced,i,t =

∆Vreduced
e f f ,j,t

uij
(18)

0 ≤ Pdemand,n,i,t ≤ (Pprev
demand,n,i,t − ∆PEV

reduced,i,t) (19)

Equation (16) shows the conditions when additional constraints are generated to reduce voltage
variations. Additional constraints are generated when the total voltage variation is above a certain
level for the maximum allowable variation. If Equation (16) is not satisfied, no additional constraint is
generated. LVlim is a parameter determined by the operator as a specific level of voltage variation.

Equation (17) shows the voltage variations, ∆Vreduced
e f f ,j,t , that need to be reduced. In Equation (18),

the effective power value that is substantially reduced is derived from the voltage variation value
calculated in Equation (17) and the previously defined voltage sensitivity index value. This value is
applied for the total EV charging loads connected to bus i for the corresponding time t, bus j. Equation
(19) shows the constraints that should be additionally considered when the optimization problem
for the EV charge schedule is re-solved. Equation (19) is the upper limit condition, Pprev

demand,n,i,t is the
EV charging load value determined in the previous problem, and Pdemand,n,i,t is the decision variable
in the optimization problem. Since this optimization problem is solved within the MPC framework,
Equation (19) may not apply if the state of the power system changes every hour. That is, when
the value of the voltage variation is recovered within the predetermined range, the corresponding
constraint is again excluded, the rescheduling is performed, and the charging rate is minimized.
Figure 5 shows a flowchart of the optimal charging strategy considering voltage variation in the
MPC-based framework.
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4. Case Study for the Verification of the Proposed Strategy

In this section, strategy verification is performed on the IEEE 15 bus system. In this study,
a simulation model of the system, including an EV parking lot, is constructed by referring to the IEEE
15 bus system and three EV parking lots are set up. Figure 6 shows the IEEE 15 bus system including
the EV parking lot structure used in the simulation. The arrival and departure probabilities in each
EV parking lot are set differently and the simulation is performed under the same conditions as those
for the residual SOC and TOU for charging. The parameters of the IEEE 15 bus system are shown in
Tables 1 and 2. The EV is set to the Nissan Leaf model and the battery capacity is 24 kWh. The charger
is set to a 6.6 kW charge model with 3.3/6.6 kW as a slow charge model, and the time step in the
optimization problem is set to 1 h.
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Table 1. IEEE 15 Bus System Load Data.

Bus PL (kW) Bus PL (kW)

2 44.1 9 70
3 70 10 44.1
4 140 11 70
5 44.1 12 44.1
6 140 13 140
7 70 14 140
8 140 15 70

Table 2. IEEE 15 Bus System Line Data.

From To R (Ω) X (Ω) L (Ω)

1 2 1.35309 1.32349 0.0035107
2 3 1.17024 1.14464 0.0030363
3 4 0.84111 0.82271 0.0021823
4 5 1.53248 1.0276 0.0027258
2 9 2.01317 1.3579 0.0036019
9 10 1.68671 1.1377 0.0030178
2 6 2.55727 1.7249 0.0045754
6 7 1.0082 0.734 0.0019470
6 8 1.25143 0.8441 0.0022390
3 11 1.79533 1.2111 0.0032125
11 12 2.44847 1.6515 0.0043807
12 13 2.01317 1.3579 0.0036019
4 14 2.23081 1.5049 0.0039913
4 15 1.19702 0.8074 0.0021417

Figure 7 shows the probability of EV entry in three EV parking lots, and Figure 8 shows the
probability of EVs departing from the parking lots. The arrival and departure probabilities of each
parking lot are set with reference to [14,15]. As the probabilities of arrival and departure vary,
the charging load required for each parking lot varies. Although the arrival and departure probabilities
of EVs in each parking lot are different, the probability of the remaining SOC and electric price are
simulated using the same probability. The SOC remaining in the EV battery when the EV enters
the parking lot is set by referring to [14]. Figure 9 shows the probability values for the percentage
of remaining SOCs. The TOU electricity price for EV charging is set to the low voltage price in the
summer of the Korea Electric Power Corporation (KEPCO) EV charging price list. Figure 10 shows
the KEPCO electric prices for EV charging used for algorithm verification. The proposed strategy is
performed using MATLAB, and the IEEE 15 bus system is implemented using MATLAB/Simulink
using a computer with an Intel Core i7-6800K 3.4 GHz CPU and 16 GB memory.
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Figure 10. TOU Electricity Charging Rate.

Figures 11 and 12 show the total charging load of 30 chargers in each parking lot and the voltage
drop at the bus to which the parking lot is connected, respectively. The number of chargers is set
considering the existing load data of the IEEE 15 bus system, as shown in Table 1. Figure 11 shows
the concentration of EVs charging from 6:00 to 8:00 in all parking lots because the EVs are optimally
charged to minimize the total charging cost considering only the TOU electric price, and TOU is low at
that time. On the other hand, the EVs hardly charge at 9:00 to 11:00 and 13:00 to 16:00 with high TOU.

This is considered to affect the voltage stability of the power system when a voltage drop occurs
when the voltage variation exceeds 10%. In this paper, when the maximum variability in the voltage is
set to 10% and the voltage of the bus connected to the parking lot is lower than 0.9 [pu], the constraint
considering the bus voltage is set to be generated. As a result, according to the TOU, the charge of
the EVs is concentrated at a certain time (6:00–8:00) and the bus voltage to which each parking lot is
connected is confirmed to drop below 0.9 [pu] at 7:00 to 8:00.

Figures 13 and 14 show the total charging load results and bus voltage where each parking
lot is connected when additional constraints for the voltage drop are considered in the MPC-based
framework. Each operator of the parking lot performs optimization through the receding horizon in
the MPC framework, and then, the aggregator checks the bus voltage and updates the constraints for
the charging power considering the voltage variation in real time.
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In Figure 13, the red and green lines show that the upper limit can be changed by the aggregator
according to the conditions for that time. The red line indicates the charge upper limit generated when
an initial bus voltage drop is expected. If the aggregator calculates the voltage variation value every
hour, taking into account the local load at that time, and updates the constraint accordingly, the red
line can be changed to a green line. In other words, the green line indicates the constraint modified by
the aggregator for that time.

In the MPC framework, the upper limit for charging in parking lots 1 and 2 is reduced by the
aggregator compared to the initially set value. This result means that a tighter constraint is created
because more voltage variations are expected than those initially expected at that time. On the other
hand, in the case of parking lot 3, the updated upper limit is relaxed compared to the initial value.
Since the purpose of EV charging is to minimize the cost, if the voltage variation is within an acceptable
range, the constraint is relaxed to charge as much as possible at the time the electric price is low.

At other times, the same strategy is applied, but since the creation of additional constraints is not
necessary, the charging schedule is determined by only taking into account the minimization of the
charging rate. As mentioned earlier, due to the constraints applied at 7:00 and 8:00, charging is limited
at that time. Therefore, it can be confirmed that the charging is performed at a higher electric price
in order to satisfy the condition for the required charging amount during the time when the EVs are
parked in the parking lot. As shown in Figure 14, when optimum charging is performed considering
the voltage limit, it is confirmed that the voltage variation is always less than 10%.

5. Conclusions

This paper proposes an optimal charging strategy for EVs considering the voltage stability of
the power system by using an MPC-based framework in the EV parking lot. The EV parking lot is
stochastically modeled by considering the uncertain characteristics of the EVs, the voltage limit of
the power system is analyzed in real time through the MPC framework, and the optimal charging
limit is set to prevent voltage variation. The aggregator identifies and sets the charging limit in real
time according to which the EV can minimize the impact on the power system while charging at
a minimum cost. The proposed charging strategy is verified using MATLAB/Simulink based on
the IEEE 15 bus system with EV parking lots. When the voltage drop violating the condition for
voltage variation of the power system is not expected, the charging is implemented for minimizing the
charging cost considering only the electric price of the charging. As a result, when only the charging
rate is considered, many EVs are charged at an inexpensive time, resulting in an overload and severe
voltage variation. However, when the proposed strategy is applied, a voltage variation beyond the
limit does not always occur.

In the future, it is necessary to study the EV charging scheme and V2G operation plan in a power
system such as the DC microgrid, where there are various distributed energy sources including the
renewable energy sources such as wind and solar power.
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