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Abstract—Multi-energy systems are flexible energy systems 

that can benefit from energy resources to supply different energy 

demands. Due to the capabilities of multi-energy systems in 

generating different energy carriers, these systems have been 

rapidly expanded in power systems. After restructuring in power 

system in recent years and appearance of competent energy 

markets, energy systems operated within such environments have 

been usually exposed to uncertainties of various parameters such 

as price, demand and etc. In this paper, a novel optimization 

framework based on hybrid scenario-based/interval/information 

gap decision theory (IGDT) method is developed to investigate 

optimal operation of smart energy hubs (S. E. Hubs) subject to 

economic priorities, technical constraints of distribution network 

and uncertainties. Considering energy hubs equipped to smart 

facilities, demand side management programs (DSMPs) including 

price response and load response services have been available to 

motivate electrical consumers to revise their consumption pattern 

in order to satisfy economic priorities of energy hubs. By using the 

results of employed hybrid uncertainty modeling approach, the 

operator of S. E. Hubs can decide either to take risk-averse or risk-

seeking strategy against the uncertainties. Uncertainty based 

integration of S. E. Hubs into distribution network is evaluated 

regarding the IEEE 33-bus test system and the results obtained 

from simulations are presented for comparison. 

Index Terms— Distribution network, smart energy hubs (S. E. 

Hubs), hybrid scenario-based/interval/information gap decision 

theory (IGDT) method, epsilon-constrained method, fuzzy 

decision making approach, demand side management programs 

(DSMPs). 

NOMENCLATURE  

Indices  
t  Index of time  
c  Index of S. E. Hubs 
,i j  Indices of distribution network buses 

Parameters  
CHP

ge  Gas to electricity efficiency of CHP units (%) 

B  Efficiency of boiler units (%) 

CAC  Efficiency of central air conditioning (CAC) 

units (%) 
net

t  Base hourly price of imported electric power 

from distribution network ($/MWh) 
gas  Price of gas ($/MWh) 
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LS

t  Hourly charge of load curtailment ($/MWh) 

  Uncertainty parameter in IGDT 

BN  Number of buses 

C  Number of S. E. Hubs 

CR  Critical cost for robustness function of IGDT 

CO  Critical cost for opportunity function of IGDT 

maxDRP  Limitation of time-of-use (TOU) of DSMPs 

(%) 

,

load

t cH  Hourly thermal load of S. E. Hubs (MW) 

min,

B

cH  Minimum generated heat by boilers (MW) 

max,

B

cH  Maximum generated heat by boilers (MW) 

max

,i jI  Maximum current flow between the buses i 

and j  (kA) 
CHP

cN  Number of CHP units in S. E. Hub c 

B

cN  Number of boilers in S. E. Hub c 

CAC

cN  Number of CAC units in S. E. Hub c 

,min

net

iP  Minimum active power of ith bus (MW) 

,max

net

iP  Maximum active power of ith bus (MW) 

min,

CAC

cP  Minimum consumed power by CAC units in 

S. E. Hub c (MW) 

max,

CAC

cP  Maximum consumed power by CAC units in 

S. E. Hub c (MW) 

,

load

t iP  Hourly active load of ith bus (MW) 

,

load

t cP  Forecasted hourly electrical load of S. E. 

Hubs without DSMPs (MW) 

,

load

t iQ  Hourly reactive load of ith bus at time t 

(MVAr) 
max

,i jS  Maximum power flow between the buses i 

and j (MVA) 

T  Studied time period 
MinU  Lower level of uncertain parameter  
MaxU  Upper level of uncertain parameter  
min

iV  Minimum voltage of ith bus (kV) 

max

iV  Maximum voltage of ith bus (kV) 

,i jY  Admittance value between buses i and j (℧) 

i,j  Admittance angle between buses i and j (Rad) 
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Variables  

,t cB  Binary variable for load response services of 

DSMPs 

Cost  Total operation cost of S. E. Hubs ($) 

( , )f X U  Objective function of standard optimization 

problem with considering uncertainty 

( )Mf X  Average cost of S. E. Hubs ($) 

( )Wf X  Deviation cost of S. E. Hubs ($) 

( )f X  Objective function of standard optimization 

problem without uncertainty 

( )f X
 Upper value of objective function of standard 

optimization problem without uncertainty 

( )f X
 Lower value of objective function of standard 

optimization problem without uncertainty 

( , )g X U  Inequality constraint of standard optimization 

problem considering uncertainty 
net

tG  Imported gas by S. E. Hubs at time t (MW) 

,

CHP

t cG  Consumed gas by CHP units at time t in S. E. 

Hub c (MW) 

,

B

t cG  Consumed gas by boilers at time t in S. E. Hub 

c (MW) 

( , )h X U  Equality constraint of standard optimization 

problem considering uncertainty 

,

CHP

t cH  Generated heat by CHP units at time t in S. E. 

Hub c (MW) 

,

B

t cH  Generated heat by boilers at time t in S. E. 

Hub c (MW) 

,

CAC

t cH  Generated heat by CAC units at time t in S. E. 

Hub c (MW) 

, ,t i jI  Current flow between the buses i and j at time 

t  (kA) 

,
ˆ load

t cP  Actual hourly electrical load of S. E. Hubs 

without DSMPs (MW) 

,

net

t iP  Injected active power to the substation at time 

t (MW) 

,

CAC

t cP  Consumed power by CAC units at time t in S. 

E. Hub c (MW) 

,

CHP

t cP  Generated power by CHP units at time t in S. 

E. Hub c (MW) 

,

net

t cP  Imported power by S. E. Hubs at time t (MW) 

,

wind

t iP  Active power of wind turbine’s converter 

located in the ith bus at time t (MW) 

,

PV

t iP  Active power of photovoltaic system’s (PV) 

converter located in the ith bus at time t (MW) 
,

,

load DSM

t cP  Hourly electrical load of S. E. Hubs with 

DSMPs (MW) 

,

LS

t cP  Curtailed load at time t in S. E. Hub c (MW) 

,

ch

t cP  Charge power of battery storage at time t in  

S. E. Hub c (MW) 

,

dis

t cP  Discharge power of battery storage at time t 

in S. E. Hub c (MW) 

,t iV  Voltage of ith bus at time t (kV) 

,t jV  Voltage of jth bus at time t (kV) 

,

net

t iQ  Injected reactive power to the substation at 

time t (MVAr) 

,

wind

t iQ  Reactive power of wind turbine’s converter 

located in the ith bus at time t (MVAr) 

,

PV

t iQ  Reactive power of PV’s converter located in 

the ith bus at time t  (MVAr) 

, ,t i jS  Power flow between the buses i and j (MVA) 

,

PV

t iS  Apparent power of  PV’s converter located in 

the ith bus at time t (MVA) 

,

wind

t iS  Apparent power of  wind turbine’s converter 

located in the ith bus at time t (MVA) 

tTOU  Increased/decreased power in TOU of 

DSMPs at time t (MW) 

U  Uncertain parameter in the standard 

optimization problem 

,

LS

t cZ  Limitation of curtailed load in load response 

program at time t in S. E. Hub c (MW) 

,t i  Voltage angle of ith bus at time t (Rad) 

,t j  Voltage angle of jth bus at time t (Rad) 

Functions  

ˆ( )rC  Robustness function of IGDT 

ˆ( )oC  Opportunity function of IGDT 

I. INTRODUCTION 

istribution networks can be challenged by various factors 

such as overload, energy losses and uncertainties. These 

issues can be handled by integration of local generation 

units into such networks. In this regard, the role of multi-energy 

systems can be important. Multi-energy systems or so called 

hub energies are energy systems equipped to electrical and gas 

networks to supply different types of energy demands. 

Integration of such flexible and efficient generation units can 

ensure economic and uncertainty-based performance of energy 

systems against the available challenges and issues.  

Hub energy systems can benefit from higher flexibilities to 

interact with energy networks to satisfy demands in different 

levels [1]. This can leads to different models and concepts [2, 

3] that can be designed for different applications. For instance, 

the energy management model based on hub energy concept 

has been proposed for industrial consumers equipped to 

communication facilities in [4] to satisfy their energy demands 

with respect to economic priorities. In another example, these 

systems have been integrated in neighborhood scales to supply 

building’s energy demand with respect to technical barriers and 

available regulation [5]. Capable of coupling different types of 

energy carriers, these systems can provide demand 

management services for the corresponding end-users like 

integrated demand response [6]. The model introduced in [7, 8] 

enables each energy system to optimize its energy consumption 

while interacting with other energy systems. Different types of 

technologies used in these energy systems such as low carbon 

energy systems [9] including combined heat and power (CHP) 

systems, heat pumps [10, 11], electric vehicles [12], renewable 

generation units [10] and energy storage systems [13, 14] can 

provide a sensible condition for integrating different energy 

networks into each other to meet different energy demands [15, 

16]. The low carbon technologies allows the operator of multi-

carrier energy systems to consider environmental friendly 

decisions [17, 18]. Also, flexibilities of such mentioned local 

generation units can help the operators of distribution networks 

D 
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to configure the statues of lines and loads to achieve the desired 

performance [19] like improved voltage level or optimal power 

procurement plan. In addition to the grid-connected mode, 

these systems can also operate in islanded mode for specific 

purposes. As explored in [20, 21], local generation units within 

hub energy systems including electrical and thermal ones have 

the potential to meet energy demands without any need to the 

upstream network in remote areas. In fact, the presence of 

different energy resources allows different operating strategies 

to be applied in different operating conditions [22]. 

With more emphasize on energy flows within energy 

networks in hub systems, several researches have been carried 

out about design and modeling of linkages in these systems. For 

instance, district heating network and the influence of its 

optimization on the performance of multi-carrier energy system 

has been studied in [23]. Also, optimal energy flow between 

several inter-connected hub energy systems has been optimized 

while variable efficiencies have been taken into account in [24]. 

In another study, the energy flows within hub energy system 

linked to both electrical and heat networks have been modeled 

in [25]. With respect to different energy flows in multi-carrier 

energy systems, optimal power flow of such energy systems is 

a complicated, nonlinear and non-convex problem. In order to 

handle such problems, different solutions have been innovated 

such as time varying acceleration coefficient- gravitational 

search algorithm [26] and mixed-integer linear programming 

[27-29] to convert such non-convex problems into linear 

problems to enhance flexibility and performance of system. 

In order to ensure reliable operation of energy systems 

against the fluctuating behavior of input data and parameters, 

the uncertainty modeling is necessary [30]. For instance, one of 

uncertainty sources is the generation of renewable energy 

systems like PV units. In order to model the uncertainty of PV 

generation in a multi-carrier energy system in the presence of 

electric vehicles, two-point estimate method has been utilized 

in [31]. The other input data and info that may have fluctuating 

performance are demand and price which can belong to 

different sectors. The uncertainty-based optimal operation of 

multi-carrier energy system is studied under price and demand 

uncertainties in [32]. Also, the optimal operation of multi-

carrier energy system is analyzed in [33] considering the 

uncertainties of wind generation and demand. The stochastic 

programming has been used in [34] to model the uncertainties 

of market price, demand and generation of wind unit in a multi-

carrier energy system in which thermal energy market has been 

developed to enhance the performance of system in both 

deterministic and probabilistic operation modes.  

In this paper, optimal integration of S. E. Hubs into 

distribution system is studied subject to economic priorities, 

technical constraints and simultaneous uncertainties through a 

mixed-integer non-linear programming (MINLP). The 

electricity consumers of energy hubs can participate in DSMPs. 

These consumers can either shift or reduce their electric 

consumption to flatten their consumption pattern and gain 

economic benefits. In this paper, uncertainty-based economic 

performance of S. E. Hubs is investigated under uncertainties 

of renewable units, electricity price and load through a hybrid 

uncertainty modeling approach with considering technical 

limitations of distribution network and energy hubs. Using 

stochastic programming for modeling the uncertainty of 

renewable units, the interval optimization method and IGDT 

are employed to model the uncertainties of price and electrical 

demand at the same time. By combining these methods, the 

operator can benefit from all available options to assess the 

optimal performance of operating hubs against uncertainties. 

So, the novelties and contributions of this paper can be 

expressed as following: 

 S. E. Hubs are economically integrated into distribution 

network under technical constraints. 

 Simultaneous uncertainties of price, load and renewable units 

are modeled through the hybrid interval/IGDT/scenario-

based method. 

 Economic operation and uncertainty-based performance of S. 

E. Hubs are strengthened under DSMPs. 

Remained sections of this paper are categorized as follows: 

the mathematical presentation of studied model is addressed in 

Section II. Scenario-based method as well as IGDT and interval 

approach are explained in Section III. Case studies and results 

are presented in Section IV. Finally, this paper is concluded in 

Section V. 

II. PROBLEM FORMULATION 

    In this section, optimal uncertainty-based integration of S. E. 

Hubs into distribution network is formulated under DSMPs.  

A. Objective function 

    Total cost of purchased energies as well as discomfort cost 

of electrical consumers whose loads are curtailed in DSMPs 

should be minimized as the objective function as:  

      , ,

1

T C
net net LS LS gas net

t t c t t c t

t c

Cost P P G  


 
      

 
     (1) 

B. Distribution network constraints 

    Active and reactive power balance limitations of electric 

distribution system should be satisfied as follows [35]: 

, , , , , , , , , ,cos( )net wind PV load

t i t i t i t i t i t j i j i j t j t i

j BN

P P P P V V Y   


      (2) 

, , , , , , , , , ,sin( )net wind PV load

t i t i t i t i t i t j i j i j t j t i

j BN

Q Q Q Q V V Y   


       (3) 

    The current flow in the lines in distribution system should be 

within the rated values as: 
max

, , ,0 t i j i jI I          (4) 

    The power flow within the lines is limited as follows: 
max

, , ,0 t i j i jS S          (5) 

    As a basic rule in each distribution network, voltage of each 

bus should be within the predefined rated ranges as: 
min max

, , ,t i t i t iV V V          (6) 

    Also, total injected power to the substation of distribution 

network should be within the predefined values as: 

,min , ,max

net net net

i t i iP P P          (7) 

C. Renewable generation units 

    Renewable generation units including PV systems and wind 

turbines are integrated into distribution network to satisfy 

active and reactive energy demands. The mathematical model 

of PV system is adopted from [36]. The reactive power received 

from converter of PV system can be calculated as: 

, , ,

PV PV PV

t i t i t iS P Q          (8) 
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    Also, the model of wind units is adopted from [37]. The 

reactive power received from the converter of wind unit can be 

computed as: 

, , ,

wind wind wind

t i t i t iS P Q          (9) 

    It is noteworthy that the output powers of PV systems and 

wind units are expected values of these units which have been 

calculated based on scenario-based method. 

D. Smart energy hubs (S. E. Hubs) 

    Concept of smart energy systems was first introduced to 

optimally coordinate smart electricity grid and gas network, 

storage technologies and local generation units to obtain an 

optimal operational solution for available sectors [38-41]. In 

this paper, 4 S. E. Hubs connected to both electrical and gas 

networks are operated to satisfy 4 local electrical and thermal 

energy demands. S. E. Hubs are divided into two groups. S. E. 

Hubs type 1 covering energy hubs 1 and 4 and S. E. Hubs type 

2 covering energy hubs 2 and 3. Both S. E. Hubs are 

respectively depicted in Figs. 1-2. It should be noted that 

energy hubs 1, 2, 3 and 4 are connected to the buses 8, 13, 16 

and 33, respectively [19].  

 
Fig. 1. S. E. Hubs type 1 

 
Fig. 2. S. E. Hubs type 2 

    Electrical demand balance limitation of S. E. Hubs type 1 is 

presented as: 
,

, , , , ,

load DSM ch net CHP dis

t c t c t c t c t cP P P P P        (10) 

    Local thermal demand of S. E. Hubs type 1 should be 

supplied through the generated heat by CHP units and boilers: 

, , ,

load CHP B

t c t c t cH H H        (11) 

    Generated heat by boiler units is limited as: 

min, , max,

B B B

c t c cH H H          (12) 

    Consumed gases by CHP units and boilers are respectively 

expressed in the following: 

, ,( ) /CHP CHP CHP CHP

t c c t c geG N P        (13) 

, ,( ) /B B B B

t c c t cG N H           (14) 

    Total consumed gas by the S. E. Hubs type 1 is calculated as: 

, , , 1,4net CHP B

t c t c t cG G G c          (15) 

    Electrical demand of S. E. Hubs type 2 should be satisfied 

through the generation of CHP units, battery storage and 

purchased power from upstream distribution network as: 
,

, , , , , ,

load DSM ch net CHP CAC dis

t c t c t c t c t c t cP P P P P P         (16) 

    Thermal load of S. E. Hubs type 2 is supplied through the 

generated heats by CHP systems and CAC units as: 

, , ,

load CHP CAC

t c t c t cH H H        (17) 

    The heat generated by CAC units is expressed as: 

, ,

CAC CAC CAC CAC

t c c t cH N P         (18) 

    The consumed electric power by CAC units is limited as: 

min, , max,

CAC CAC CAC

c t c cP P P        (19) 

    Gas consumption of CHP units in S. E. Hubs type 2 is 

calculated as: 

, ,( ) /CHP CHP CHP CHP

t c c t c geG N P        (20) 

    Total consumed gas by S. E. Hubs type 2 is expressed as: 

, , 2,3net CHP

t c t cG G c        (21) 

    Electrical generation and heat production of CHP units 

employed in S. E. Hubs are dependent to each other. Feasible 

region of mentioned CHP units is depicted in Fig. 3 [37]. Also, 

the linear model of these units is taken from [37].  

 
Fig. 3. Feasible region of CHP units 

    Considering the flexibility of S. E. Hubs, battery storage 

systems have been utilized to enhance performance of 

operating system. Model of storages is taken from [37]. 

E. Demand side management programs (DSMPs) 

    Recently, due to the significant improvements in the 

technologies used in power systems, in order to gain economic 

benefits, system operators can participate in demand side 

management programs like price response and load response 

programs. In this paper, shiftable loads as well as curtailable 

loads can participate in the mentioned programs. 

1) Price response program 

    According to the price response program, the consumers are 

motivated to shift their electrical consumption from peak 

periods to off-peak periods. It is noteworthy that this program 

is assumed to be offered to the energy hubs 1 and 2. This 

program can be modeled as follows [42]: 
,

, , 1,2load DSM load

t c t c tP P TOU c        (22) 

max ,

load

t t cTOU DRP P        (23) 

1

0
T

t

t

TOU


       (24) 

2) Load response program 

    In this program, the operator is allowed to curtail the load in 

some periods, preferably peak periods, to reduce the peak load. 

However, the operator should pay the consumers for the 

mentioned curtailment. This payment is appeared in the 

objective function as the discomfort cost of consumers. It is 

noteworthy that this program is offered to the energy hubs 3 

and 4. This program can be modeled as follows [43]: 
,

, , , 3,4load DSM load LS

t c t c t cP P P c        (25) 

, , ,0 LS LS

t c t c t cP B Z         (26) 
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III. UNCERTAINTY MODELING 

1) Scenario-based method 

    In order to model the uncertainties of PV systems and wind 

units, Monte Carlo method is used to generate large number of 

scenarios. Using the scenario reduction method introduced in 

[44], the number of scenarios is reduced to 10. Then, the 

expected values of uncertain parameters are calculated and 

utilized in IGDT and Interval method. Probabilities of reduced 

scenarios are presented in Table I.  
TABLE I 

REDUCED SCENARIOS 

Scenarios Probability Scenarios Probability 

S1 0.17 S6 0.14 

S2 0.06 S7 0.07 

S3 0.02 S8 0.20 

S4 0.09 S9 0.08 

S5 0.12 S10 0.05 

2) Information gap decision theory (IGDT) 

IGDT was firstly introduced by Yakov Ben-Haim [45]. The 

main feature of IGDT is that it doesn’t need much data for 

uncertainty modeling. It benefits from two immunity functions 

namely robustness and opportunity functions to inform the 

operator about the negative and positive results of uncertainty 

[46]. Using these info, the operator can take the appropriate 

decisions against uncertainty. In this paper, the uncertainty of 

load is modeled by IGDT and the worst and the best possible 

conditions for load uncertainty are determined. Then the 

interval approach is applied to model the price uncertainty 

under the determined conditions. The robustness function of 

IGDT is modeled as:  

ˆ( )CR Max                   (27) 

. .s t  

 Max Cost CR                 (28) 

, ,
ˆ (1 )load load

t c t cP P                  (29) 

. (1) - (26)Eqs                   (30) 

Also, the opportunity function is modeled as: 

ˆ( )CO Min                   (31) 

. .s t  

 Min Cost CO                 (32) 

, ,
ˆ (1 )load load

t c t cP P                  (33) 

. (1) - (26)Eqs                   (34) 

    It is noteworthy that   (Alfa) is usually defined to be   

(Beta) in the opportunity function for more clarification. 

3) Interval optimization method 

    This approach was firstly introduced by Moore [47]. The 

upper and lower bonds of uncertain parameter are the only 

necessary info for uncertainty modeling in this approach. In this 

method, interval numbers are used to model the uncertainty 

[48]. This is while exact information of probability distribution 

is not required. In fact, using interval optimization method, 

uncertainty-based problem is converted into a deterministic 

multi-objective problem which can be easily solved by ε-

constraint technique and fuzzy decision making algorithm.  

    For more clarification, a simple optimization problem is 

expressed in the following in which the objective function 

should be minimized subject to equal and unequal limitations 

and uncertainty of parameter U . 

( , )Min f X U                      (35) 

. .s t  

( , ) 0g X U                         (36) 

( , ) 0h X U      (37) 

    According to this method, the uncertain parameter is 

expressed as an interval with upper and lower values equal to 
MaxU  and MinU , respectively. Then, the whole uncertainty 

limitations as well as uncertain objective function are converted 

into deterministic constraints and objective function including 

upper and lower values. The upper and lower values of 

objective function can be respectively calculated as: 

( ) max ( )f X f X                 (38) 

( ) min ( )f X f X                  (39) 

    Using the obtained upper and lower values, the average 

( ( ))Mf X  and deviation ( ( ))Wf X  values can be calculated as: 

 ( ) ( ) ( ) / 2Mf X f X f X              (40) 

 ( ) ( ) ( ) / 2Wf X f X f X              (41) 

    According to interval method, the desired optimal value of 

objective function is expressed by ( )Mf X  and the uncertainty 

level of objective function is expressed by ( )Mf X . Both of 

these values should be minimized to reach the best possible 

economic performance and mitigate the impact of uncertainty. 

Since optimization of each one of mentioned values leads to 

degradation of other one, therefore, a trade-off solution 

satisfying both conflicting values should be determined. To do 

this, multi-objective optimization model can be employed. So, 

the deterministic objective function which should be minimized 

can be expressed as: 

 ( ) ( ) ( )M WMin f X Min f X f X         (42) 

In order to solve the multi-objective optimization problem, 

ε-constraint technique is employed and fuzzy decision making 

algorithm is used to select the trade-off solution between 

average and deviation costs of S. E. Hubs. These methods are 

explained step by step in [42]. 

 For more clarification, flowchart of employed hybrid 

technique is presented step by step in Fig. 4. 

 
Fig. 4. Uncertainty modeling method 

IV. NUMERICAL STUDY 

In this section, optimal uncertainty-based integration of S. E. 

Hubs in an IEEE 33-bus distribution network under 

uncertainties of renewable generation units, load and upstream 

network price is simulated in the presence of DSMPs and the 

corresponding results are presented for comparison. 
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A. Input data 

Data and info about prices, operation costs and technical 

constraints of battery storage systems as well as local units 

inducing CHP units, boiler units and CAC systems are taken 

from [19, 34 and 37] and the necessary data and info of IEEE 

test system are adopted from [49]. It is noteworthy that the 

upstream distribution network price is set to be variable within 

0.80 and 1.20 of its nominal value. General algebraic modeling 

system (GAMS) is utilized to solve the studied model under 

MINLP. It is noteworthy that the scheduling process is 

considered to be done for a 24-hour time period. 

B. Results 

1) Deterministic scheduling results 

In this case, optimal integration of S. E. Hubs into 

distribution network is studied without considering 

uncertainties. Considering/ignoring the participation of 

electrical demands in DSMPs, the economic results are 

obtained which are summarized in Table II.  According to this 

Table, the economic performance of S. E. Hubs is enhanced 

under DSMPs. 

2) Uncertainty-based scheduling results 

In this case, S. E. Hubs are integrated into distribution 

networks under uncertainties of renewable generation units, 

upstream distribution network price and load. Using the IGDT, 

the most sustainable value of load is determined with and 

without DSMPs which is 1.069 and 1.0812 of base value, 

respectively. On the other hand, the least value of load is 0.929 

and 0.849 of base value without and with DSMPs, respectively. 

These values are determined by the Alfa and Beta variables of 

IGDT which values are presented in Table II. In the next step, 

by applying interval method, the Pareto solutions are obtained 

in different cases which are depicted in Figs. 5-6. 

 
Fig. 5. Pareto solutions in the interval case with the max Alfa 

 
Fig. 6. Pareto solutions in the interval case with the min Beta 

By using fuzzy decision making algorithm, the trade-off 

solutions are selected in different cases which are presented in 

Table II. According to the selected solutions in the interval 

method with the maximum Alfa, in order to tackle the 

uncertainties impact, the operation cost of S. E. Hubs is 

increased in both without/with DSMPs. Comparing these 

values with the results of deterministic case, it can be concluded 

that the increase rate of operation cost under DSMPs is less that 

the case in which DSMPs are ignored. In other words, the 

economic performance of S. E. Hubs under uncertainties is 

enhanced via DSMPs.  

On the other hand, according to the selected solutions in the 

interval method with the minimum Beta, it can be seen that 

uncertainties are handled while the operation cost of S. E. Hubs 

is reduced in both without/with DSMPs. In fact, by taking risk-

seeking strategy against the uncertainty of load, operator of S. 

E. Hubs can tackle price uncertainty while gaining economic 

benefit. In other words, the operator can overcome to the 

negative impact of uncertainties through taking risk-seeking 

decisions. Alike the former case, it can be seen from Table II 

that under DSMPs, the economic goals within uncertainties in 

the interval method with the minimum Beta are satisfied more 

in comparison with the case that DSMPs are not considered.   
TABLE II 

COMPARISON RESULTS 

Case studies Operation 

cost ($) 

Deviation 

cost ($) 

Alfa 

(%) 

Beta 

(%) 

Deterministic No DSM 15375.636 1613.341 - - 

With DSM 12995.069 1181.234 - - 

Interval with 

the most Alfa 

No DSM 16441.415 1346.408 6.9 - 

With DSM 14002.234 1043.150 8.12 - 

Interval with 

the least Beta 

No DSM 14429.276 1194.078 - 7.1 

With DSM 12025.805 970.288 - 15.1 

As a result of obtained solutions, the imported power and gas 

from upstream distribution and gas networks in different cases 

are illustrated in Figs. 7 and 8, respectively. 

 
Fig. 7. Imported power from upstream distribution network 

 
Fig. 8. Imported gas from gas network 
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According to Fig. 7, in order to mitigate the negative impact 

of price uncertainty in the interval cases (uncertain price with 

the max Alfa/min Beta), the imported power is reduced in 

comparison with deterministic case. It should be noted that by 

taking risk-seeking strategy against the uncertainty of load 

which is determined by the opportunity function of IGDT, the 

reduction of purchased power becomes more sensible. On the 

other hand, in order to make up the reduction in the imported 

power in the interval cases, imported gas from gas network is 

increased. As depicted in Fig. 8, by taking risk-seeking strategy 

against the load uncertainty, imported gas is increased less in 

comparison with the case that risk-averse strategy is taken. It is 

noteworthy that due to flexible nature of hub energy systems, 

the shares of electricity and gas networks in supplying demand 

are optimally adjusted under DSM programs to gain the 

maximum possible economic benefit. 

Considering these results, total produced power by CHP 

units in different cases is depicted in Fig. 9. 

 
Fig. 9. Total generated power by CHP units 

As a result of reduction of distribution network power in the 

interval cases, generated power by CHP units in these cases is 

increased to supply demands. By taking risk-averse strategy, 

the possible negative consequences of load uncertainty are 

taken into account and therefore total generated power by CHP 

units is increased more in comparison with the case that risk-

seeking strategy is taken. Also, due to the available 

uncertainties in the electrical sectors, total consumed power by 

CAC units in the interval cases is reduced and therefore 

generated heat by CAC units in these cases is reduced which is 

depicted in Fig. 10.  

 
Fig. 10. Total generated heat by CAC units 

With respect to these results, total generated heat by CHP 

units in different cases can is depicted in Fig. 11. 

 
Fig. 11. Total generated heat by CHP units 

V. CONCLUSION  

    In this paper, uncertainty-based optimal integration of S. E. 

Hubs into distribution network is investigated under DSMPs. 

Optimal integration of S. E. Hubs into distribution network 

under load response and price response programs is studied as 

a MINLP while the uncertainties of distribution network price, 

renewable units and local energy demands of S. E. Hubs are 

modeled through a hybrid interval/scenario-based/IGDT 

method. Calculating the expected values of generation of PV 

units and wind turbines, the maximum and minimum possible 

values of local loads are determined using robustness and 

opportunity functions of IGDT. Then, interval optimization 

method is applied to model the uncertainty of price with respect 

to the results of IGDT. Solving the multi-objective optimization 

problem resulted by interval method through epsilon-

constrained method, optimal Pareto solutions are obtained for 

different cases. According to the selected trade-off solutions by 

fuzzy decision making algorithm, it can be seen that by taking 

risk-averse strategy against the uncertainties, total operation 

cost of S. E. Hubs is increased to tackle the mentioned 

uncertainties. According to the results, the robustness level of 

S. E. Hubs against uncertainties is strengthened under DSMPs. 

On the other hand, when the operator of S. E. Hubs takes risk-

seeking strategy, uncertainties are handled while total operation 

cost of S. E. Hubs is reduced. In fact, negative economic 

impacts of uncertainties are mitigated through the taken risk-

seeking decisions. It should be noted that alike the risk-averse 

operation mode, economic performance of S. E. Hubs within 

uncertainties is improved under DSMPs. 

So, by analyzing the obtained results it can be concluded that 

by taking the provided appropriate strategies by the developed 

hybrid method under DSMPs through MINLP: 1) S. E. Hubs 

can be optimally integrated into energy networks under 

available technical constraints 2) Economic priorities can be 

satisfied 3) Negative impacts of uncertainties can be mitigated 

as much as possible. 
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