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Iron oxide nanoparticles (ION) with superpara-
magnetic properties hold great promise for use
in various biomedical applications;  specific
examples include use as contrast agents for
magnetic resonance imaging, in targeted drug
delivery, and for induced hyperthermia cancer
treatments.  Increasing  potential  applications
raise concerns over their potential effects on
human health. Nevertheless, very lile is cur-
rently known about the toxicity associated with
exposure fo these nanoparticles at different lev-
els of biological organization. This article pro-
vides an overview of recent studies evaluating
ION cytotoxicity, genotoxicity, developmental
toxicity and neurotoxicity. Although the results
of these studies are sometimes controversial,

they generally indicate that surface coatings
and particle size seem to be crucial for the
observed ION-induced effects, as they are criti-
cal determinants of cellular responses and inten-
sity of effects, and influence  potential
mechanisms of toxicity. The studies also suggest
that some ION are safe for certain biomedical
applications, while other uses need to be con-
sidered more carefully. Overall, the available
studies provide insufficient evidence to fully
assess the potential risks for human health
related to ION exposure. Additional research in
this area is required including studies on poten-
tial longterm effects. Environ. Mol. Mutagen.

00:000-000, 2014. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

An engineered nanomaterial may be defined as any
intentionally produced material that has a characteristic
size from 1 to 100 nm in at least one dimension. Because
of this very small size and the resultant high surface to
volume ratio, nanomaterials exhibit properties that are
different from larger-sized materials of the same chemical
composition [Landsiedel et al., 2012]. Nanotechnology
(technology using nanomaterials) has taken advantage of
most of these new properties and so has expanded into
various domains from industrial applications (e.g., which
may lead to stronger and lighter building materials) and
biomedical uses (e.g., as new tools for the diagnosis and
treatment of diseases) to commercially available con-
sumer products including transparent sunscreens, stain-
resistant clothing, self-cleaning glass, paints, sports equip-

© 2014 Wiley Periodicals, Inc.

ment, etc. [Rosi et al., 2005; Card et al., 2008; Iavicoli
et al., 2012].
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The development of nanotechnology has resulted in a
growing public debate on the toxicity and environmental
impact of nanomaterials. The reduction in size provides
greater bioavailability as compared to the bulk material,
leading to enhanced absorption of nanoparticles in biolog-
ical systems [Das et al., 2009]. Living organisms are
made of cells that usually range 10 to 100 um. However,
cellular parts are much smaller, and proteins are even
smaller with a typical range of just 5 to 50 nm. These
size differences enable the potential use of nanoparticles
as very small probes to directly observe cellular machin-
ery without too much interference [Taton, 2002; Salata,
2004]; however, nanomaterials can also interact with cel-
lular components and induce toxic effects. Indeed, parti-
cle toxicology suggests that, for toxic particles in general,
more particle surface equals more toxicity [Borm et al.,
2006].

Although numerous studies have demonstrated different
toxic effects associated with exposure to nanomaterials,
including mitochondrial damage, oxidative stress, chro-
mosomal and oxidative DNA damage, altered cell cycle
regulation and protein denaturation [Gurr et al., 2005; Nel
et al., 2006; Carlson et al., 2008; Karlsson et al., 2008;
Pan et al., 2009; Ahamed et al., 2012], very little is still
known about the underlying mechanisms responsible for
the toxic actions of nanoparticles. One of the most fre-
quently suggested mechanisms involved in toxicity is the
generation of reactive oxygen species (ROS) and develop-
ment of oxidative stress, thereby triggering an inflamma-
tory response by modulating intracellular calcium
concentrations, activating transcription factors and induc-
ing cytokine production [Buzea et al., 2007; Oberdorster
et al., 2008; Moller et al., 2010]. Inflammation and oxida-
tive stress are responsible for damaging biomolecules—
including lipids, proteins and DNA—thus promoting cell
and tissue damage that can culminate in genotoxic, cyto-
toxic and fibrotic responses that are associated with dis-
ease [Johnston et al., 2013]. Nevertheless, one of the
main reasons for the lack of information on the mecha-
nisms of action of nanomaterials is that simple and stand-
ardized screening methods for nanoparticle toxicity have
yet to be established [Auffan et al., 2009; Guichard et al.,
2012].

Magnetic nanoparticles, made of iron, cobalt, or nickel
oxides, are nanomaterials of great interest, particularly in
biomedicine fields. Due to their magnetic properties they
can be manipulated by an external magnetic field gradi-
ent. Thus, as a result of the intrinsic penetrability of mag-
netic fields into human tissue, they can be directed to a
targeted region of the body to deliver a package, such as
a drug or a gene [Pankhurst et al., 2003], or to be used as
colloidal mediators for induced hyperthermia cancer treat-
ments [Jordan et al., 1999]. They also have applications
as contrast agents for magnetic resonance imaging (MRI)
[Lee et al., 2007]. Furthermore, nanoparticles that are

made of a ferro- or ferromagnetic material can exhibit a
unique form of magnetism called superparamagnetism,
which is highly useful in most biomedical applications
[Huber, 2005]. Each magnetic particle becomes a single
magnetic domain and shows superparamagnetic behavior
when its size is below a critical value, which is dependent
on the material (but is typically around 10-20 nm) and
when the temperature is above the so-called blocking
temperature [Lu et al., 2007]. This means that each indi-
vidual particle has a large constant magnetic moment and
behaves like a giant paramagnetic atom with a fast
response to applied magnetic fields, and with negligible
remanence (residual magnetism) and coercivity (the field
required to bring the magnetization to zero). In contrast
to multiple-domain ferromagnetic materials that retain
their magnetism even after the removal of the magnetic
field, superparamagnetic nanoparticles lose their magnet-
ization when the magnetic field is switched off. This fea-
ture makes superparamagnetic nanoparticles  very
attractive for a broad range of biomedical applications
because they maintain their colloidal stability, and so the
risk of forming agglomerates is negligible at room tem-
perature. The maximum volume particle that can be
superparamagnetic at a given temperature varies directly
with the magnetocrystalline anisotropy. This means that
iron nanoparticles are superparamagnetic at much larger
size than particles of any other magnetic metal [Huber,
2005].

There are several types of iron oxide nanoparticles
(ION), such as hematite (a-Fe,03), maghemite (y-Fe,O3)
and magnetite (Fe;O,4), among which the latter is very
promising because of its proven biocompatibility [Gupta
and Gupta, 2005]. The term ION includes both superpara-
magnetic iron oxide nanoparticles (SPION) and magnetic
ION; these terms are interchangeably used in the litera-
ture. For such biomedical applications, these nanoparticles
must have multifunctional characteristics, including opti-
mized size and modified surface [Hong et al., 2011]. ION
can be metabolized and easily release iron ions, which
can be transported by proteins like ferritin, transferritin
and hemosiderin, and they can be stored in endogenous
iron reserves of the body for later use [Santhosh and
Ulrih, 2013]. That fact that it is well known that iron
ions, and several other transition metal ions, have the
ability to generate ROS and stimulate the peroxidation of
cell membrane lipids [Stohs and Bagchi, 1995; Singh
et al., 2012], reinforces the necessity for risk assessment
and safety regulations of iron oxide nanoparticles.

The use of ION in biomedical research is progressively
gaining importance, leading to the rapid development of
novel ION types. Figure 1 summarizes the scientific
reports on ION published since 1989, showing a dramatic
increase in publications since the early 21st century.
Therefore, as a consequence, a growing number of toxico-
logical studies have now been carried out with a great
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Fig. 1.
Date of search: February 2014.

variety of ION, cell types, incubation conditions, etc.
However, it is still unclear whether ION is generally safe
or should be used prudently. In order to improve knowl-
edge in this field, the aim of this work was to compile
and review the data available on adverse effects related to
exposure to ION, including cytotoxicity, genotoxicity,
neurotoxicity and developmental toxicity, in addition to
considering the different ION types and surface modifica-
tions. Review of these studies helps to fill the significant
knowledge gap on the ION toxicological profile and high-
lights the most imperative research needs in this field.

SURFACE MODIFICATION OF IRON OXIDE
NANOPARTICLES

A common problem associated with nanoparticles is
their intrinsic instability over long periods of time, since
they tend to form agglomerates to reduce the energy asso-
ciated with the high surface area to volume ratio. More-
over, naked nanoparticles can be easily trapped by the
immune system as foreign materials, which means that
they cannot reach the target [Santhosh and Ulrih, 2013].
Furthermore, naked metallic nanoparticles are highly
chemically active, and are easily oxidized in air, generally
resulting in loss of magnetism and dispensability [Lu
et al., 2007]. In order to minimize these effects, the sur-
face of commercially available nanoparticles may be
modified by coating with different materials including:
polymeric coatings, natural (gelatine, dextran, chitosan,
pullulan, etc.) or synthetic (polyethylene glycol [PEG],
polyacrylic acid, polyvinyl alcohol, etc.), inorganic mole-
cules (silica, gold, silver, platinum, palladium, iron, car-
bon) and numerous biological molecules (polypeptides,
proteins, antibodies, biotin, etc.). Surface modification
often serves multiple purposes [Kim et al., 2012]. On one
hand, it stabilizes nanoparticles in an environment of

Number of scientific studies published on ION (Source: PubMed). Search terms: “iron oxide nanoparticles.”

slightly alkaline pH or high salt concentrations. For
example, ION coated with silica, which achieves the iso-
electric point at pH of 2 to 3, are negatively charged at
blood pH, helping to avoid aggregate formation in body
fluids [McBain et al., 2008]. On the other hand, surface
modification allows biomolecule binding favoring surface
attachments between ION and antibodies, peptides, hor-
mones or drugs [Sadeghiani et al., 2005]. The polymer
coating significantly increases their overall size, which
may also be used to modify the biodistribution of the par-
ticles, since it may limit their tissue distribution, penetra-
tion, and metabolic clearance [Wang et al., 2001;
Bjornerud and Johansson, 2004]. Moreover, the use of
surface coatings by forming monolayers on the nanopar-
ticle surface, such as stable gold or silica shell structures,
allows for the application of core materials that would be
toxic otherwise.

Certain nanomaterials are attractive probe candidates in
biodiagnostic assays, not only because of their large
surface-to-volume ratio, their chemically modifiable physi-
cal properties and their overall structural robustness, but
also due to their unusual target binding properties [Rosi
and Mirkin, 2005]. The potential of the surface coatings
that enable special probing and/or monitoring of local
physical mechanistic changes at a length scale would
greatly assist in improving disease detection, monitoring,
and treatment [Sun et al., 2008]. For this purpose ION are
required to be magnetically targeted to a particular tissue/
organ in order to benefit a therapeutic or diagnostic appli-
cation. Moreover, in a study using a number of cell lines it
was demonstrated that cellular uptake efficiency of ION is
dependent on surface coating of the nanoparticles, irrespec-
tive of the cell line used [Zhu et al., 2012b]. Hence, a
strategy to adjust the cellular uptake efficiency and preci-
sion of ION is to modify their surface coating.

Some commonly used coatings for ION are: (a) PEG—
which is an ideal coating material because of its good
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compatibility, favorable chemical properties, and solubil-
ity [Yu et al.,, 2012], (b) silica—widely used for bioimag-
ing and bio-sensing purposes as its transparent matrix
allows the efficient passage of excitation and emission
light through them [Alwi et al., 2012], (c) carboxydex-
tran—which provides stability and increases intravascular
retention time of nanoparticles and is used for cell label-
ing [Tong et al., 2011], (d) polyethylene imine—with
high cellular uptake, so it is used as gene/drug delivery
vehicle [Xia et al., 2009], and (e) other polymeric and
non-polymeric coatings are also used [reviewed in Gupta
and Gupta, 2005; Santhosh and Ulrih, 2013].

Together with providing a general increased biocom-
patibility, the surface coating may also alter the ION tox-
icity [reviewed in Singh et al., 2010]. For example, a
study investigating the effects of different surface coat-
ings on cell behavior and morphology reported that
dextran-coated magnetite nanoparticles induced more
prominent membrane disruptions than uncoated nanopar-
ticles, although cell death and reduced cell proliferation
was similar for both of them; however, albumin-coated
magnetite did not show cytotoxic effects [Berry et al.,
2003]. Similarly, an in vitro study on A3 human T lym-
phocytes showed that ION coated with carboxyl groups
have a higher cytotoxicity (fluorescein diacetate assay and
WST-1 assay) than those coated with amine groups [Ying
and Hwang, 2010]. Therefore, it is important to carefully
monitor the influence of the surface modifications (coat-
ing, functional groups, and net size) on ION toxicity.

TOXIC EFFECTS OF IRON OXIDE NANOPARTICLES

ION have attracted much attention not only because of
their superparamagnetic properties, which make them
suitable for interesting biomedical applications, but also
because they are associated with low toxicity in the
human body [Hussain et al., 2005; Jeng and Swanson,
2006; Karlsson et al., 2009]. Thus, in general, ION are
classified as biocompatible [Kunzmann et al., 2011]. For
example, an in vitro study comparing several metal oxide
nanoparticles showed ION to be non-cytotoxic below
100 pg/ml [Karlsson et al., 2008]. However, the absence
of cytotoxicity does not guarantee that ION pose no risk
for use in specific applications, as recent studies report
different harmful cellular effects including DNA damage,
oxidative stress, mitochondrial membrane dysfunction,
and changes in gene expression as a result of ION expo-
sure in the absence of cytotoxicity [reviewed in Singh
et al., 2010]. Hence, criteria to define the toxicity of
nanoparticles must be clearly defined [Huang et al.,
2012], and it has been suggested that terms such as
“biocompatibility” be re-evaluated [Singh et al., 2010].
Nevertheless, in a review on application of magnetic
nanoparticles for drug delivery, Kim et al. [2012] sug-

gested that the possible toxicity of these nanoparticles
does not mean that they cannot be applied biomedically,
but optimal benefits and potential risks need to be
identified.

Among the different mechanisms that are potentially
involved in nanoparticle toxicity in the body, it seems
that most toxicity from magnetic ION arise from the pro-
duction of excess ROS [Nel et al., 2006; Unfried et al.,
2007; Shubayev et al., 2009; Soenen and De Cuyper,
2009]. High ROS levels can damage cells by producing
lipid peroxidation, mitochondrial damage, DNA disrup-
tion, gene transcription modulation, and protein oxidation,
which can then trigger a cascade of Ca’?-dependent sig-
naling mechanisms resulting in a decline in physiological
functions and cell apoptosis/death [Stroh et al., 2004].
However, other toxic effects in addition to ROS produc-
tion, including cell cycle alterations and induction of apo-
ptosis, occur in different cell types after ION treatment
[Soenen et al., 2011; Wu et al., 2013].

Despite these studies, information regarding the possi-
ble risk of ION exposure to humans is still very limited
and conflicting. Work addressing the potential toxic
effects of ION is mainly focused on evaluating cytotoxic
effects—principally changes in viability, cytoskeleton dis-
ruptions or ROS production—in in vitro cell cultures.
Much less is known about their toxicity to genetic mate-
rial, the nervous system, or embryonic development, and
other endpoints. In the following sections, together with
going over the main results on ION cytotoxicity, current
knowledge on the ION effects at different levels of bio-
logical organization are reviewed and the main gaps of
information are indicated.

Cytotoxicity

Figure 2 shows the number of articles published to date
on ION cytotoxicity, classified by the endpoint evaluated.
The most frequent outcome reported is oxidative damage,
followed by analysis using the MTT (3-[4,5-dimethylthia-
zol-2-yl]-2,5 diphenyl tetrazolium bromide) assay (viabil-
ity based on mitochondrial functionality), other measures
of viability different using the MTT and LDH (lactate
dehydrogenase) assays, and assessment cell cycle effects.
As an extensive review of ION cytotoxicity was included
in several previous papers [Soenen and De Cuyper, 2009;
Suh et al., 2009], in this review we focus on the most
recent studies summarizing the main cytotoxic effects
evaluated after ION exposure.

Magnetite/maghemite combinations have already been
approved for clinical use as MRI contrast agents [Gould,
2006]. Nevertheless, there are some inconsistencies in the
literature about the cytotoxicological assessment in differ-
ent cells and the interpretation of these results. Based on
this review, it appears that dose, exposure time and cell
type are factors affecting the results obtained. For
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example, Iron (ILIII) oxide nanoparticles induced moder-
ate time- and concentration-dependent cytotoxicity in
Vero cells after 24 hr exposure (MTT assay); however,
they proved to be devoid of mutagenic effect (bacterial
reverse mutation assay in Salmonella typhimurium and
Escherichia coli), and they did not induce histopathologi-
cal changes in rats after a single intratracheal instillation
[Szalay et al., 2012]. A slight degree of cytotoxicity, eval-
uated by trypan blue exclusion, in human alveolar epithe-
lial A549 cells was also reported for Fe,O3; nanoparticles,
but not for Fe;04 nanoparticles [Karlsson et al., 2009]. In
addition, biocompatibility tests on L-929 fibroblast cells
using the MTT assay revealed very little generation of
cytotoxicity for either Fe;0, at mesoporous silica compo-
sites (potentially used for drug delivery) [Huang et al.,
2012] or various ION coated with polyvinyl alcohol
(PVA) [Mahmoudi et al., 2009]. Although in another
study using L.-929 fibroblasts ION modified with different
functional groups induced a dose-dependent reduction in
viability, using highly water-soluble tetrazolium salt
(WST-8, similar to MTT), the observations suggested that
ION concentration is more critical for cytotoxicity than
any other factor including surface modification or size
[Hong et al., 2011]. Nevertheless, ION cytotoxicity was
also reported to be mainly dependent on nanoparticle size
and surface coating [Ying and Hwang, 2010; Rivet et al.,
2012]. Thus, uncoated Fe;0,4 nanoparticles were not cyto-
toxic (trypan blue exclusion assay), while oleate-coated
Fe;0,4 nanoparticles were cytotoxic in a dose-dependent
manner, and intrinsic properties of sodium oleate were
excluded as a cause of the toxic effect [Magdolenova
et al., 2013]. Furthermore, a comparative cytotoxicity
study (measuring intracellular enzymatic activity with
calcein-AM and membrane disruption with ethidium
homodimer-1) in a human cervical cancer cell line
(HeLa) and an immortalized normal human retinal pig-
ment epithelial cell line (RPE) indicated that, although
uncoated magnetite nanoparticles at a high concentration

(0.40 mg/ml) were toxic to both HeLa and RPE cells,
their cytotoxicity at low concentrations was cell-type spe-
cific, with RPE cells being more susceptible than HeLa
cells [Li et al., 2012].

Investigations aimed at using ION-labeled stem cells in
regenerative therapies did not report cytotoxic effects for
these nanoparticles. No effects on cardiac differentiation
potential and functional properties of mouse embryonic
stem cells were observed over a time course of 1 to 2
weeks of in vivo non-invasive tracking of ION-labeled
transplanted cells [Au et al., 2009]. In addition, no signifi-
cant toxicity and successful chondrogenesis occurred in
human mesenchymal stem cells incubated for 24 or 72 hr
with ferucarbotran (a clinically approved and commer-
cially available carboxydextran-coated ION that is used
as a negative MRI contrast agent for hepatic imaging)
[Yang et al., 2011]. Likewise, carboxydextran-coated ION
internalization did not alter survival, cell cycle, prolifera-
tion, metabolism, and phenotype of human Amniotic
Fluid Cells (hAFC), and the transplantation of ION-
labeled hAFC in the lateral ventricles of wobbler (a
murine model of amyotrophic lateral sclerosis) did not
influence mouse survival [Bigini et al., 2012]. On the
basis of these studies, ION seem to be safe for tracking
the fate of transplanted stem cells. However, several
reports have stated that these particles can in fact exert
large effects on cell wellbeing [reviewed in Soenen and
De Cuyper, 2009].

Numerous studies showing cytotoxicity following ION
exposure relate this effect to oxidative stress and ROS
generation [Auffan et al., 2008; Buyukhatipoglu and
Clyne, 2011; Ahamed et al., 2012; Zhang et al., 2012;
Dwivedi et al., 2014; Malvindi et al., 2014]. ROS produc-
tion, glutathione depletion and inactivation of several
antioxidant enzymes were observed in Chinese hamster
lung cells after 36 hr of exposure to L-glutamic acid-
coated ION (Fe,O3) [Zhang et al., 2012]. Also, when
ION coated with Tween 80 were applied at 300 pg/ml
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and higher concentrations for 6 hr, the viability of murine
macrophage J774 cells decreased significantly; these
effects were not detected at lower concentrations or ear-
lier exposure times and were related to enhanced intracel-
lular ROS generation [Naqvi et al., 2010]. However,
although 24 hr exposure of A549 cells to magnetite in the
nano-range enhanced ROS production and increased mito-
chondrial membrane depolarization to a significant extent,
and the nanoparticles were effectively internalized by
endocytosis, this effect was not accompanied by cytotox-
icity [Konczol et al., 2011]. In contrast, Pd-coated magne-
tite nanoparticles did not initiate ROS production and
caused little impact on the viability of human skin
(HaCaT) and colon (CaCo-2) cell lines, and on a rainbow
trout gill cell line (RTgill-W1), even at very high concen-
trations [Hildebrand et al., 2010]; thus, the authors sug-
gested that modification of the surface coating could
mediate the cytotoxicity of ION.

ROS were also reported to be induced by ION in dif-
ferent studies in vascular endothelial cells. ION (maghe-
mite) were efficiently taken up by human umbilical
vascular endothelial cells (HUVEC), but provoked cell
death 24 hr after the exposure, most likely through the
oxidative stress pathway [Hanini et al., 2011]. Similarly,
Fe,O; and Fe;0, nanoparticles were proposed to affect
the endothelial system by generating oxidative stress and
inducing cytotoxicity and suppression of cellular viability
in human aortic endothelial cells [Zhu et al., 2011].
Induced ROS production by ION (maghemite) in human
microvascular endothelial cells was also reported to
enhance cell permeability through the remodeling of
microtubules [Apopa et al., 2009]. Likewise, dose- and
time-dependent intracellular ROS formation (which
increased more than 800% after 3 hr of exposure at
0.5 mg/ml) and decrease in cell viability was reported in
porcine aortic endothelial cells treated with bare ION; in
addition, previous incubation with the ROS scavengers
N-acetyl cysteine and sodium pyruvate enhanced cell via-
bility [Buyukhatipoglu and Clyne, 2011].

Upon metabolization of ION, free iron can be shuttled
out of the endocytic compartment into the normal cellular
iron pool [Soenen and De Cuyper, 2010]. Iron is an
innate metal that is essential for life, mainly because of
its ability to accept and donate electrons readily by
switching between ferrous (Fe?") and ferric (Fe’") ions
[Kim et al., 2012]. This reduction-oxidation reaction plays
a critical role in energy production and in many other
metabolic pathways such as DNA synthesis, mitochon-
drial oxidative phosphorylation, oxygen transport, and
cytochrome P450 function [Shander et al., 2009]. The
total quantity of iron in the body is tightly regulated,
because excess iron can be extremely toxic; therefore, it
is important to avoid administration of ION in high doses
or repeated dosing over a short time interval in order not
to exceed the normal capacity for handling of iron [Kunz-

mann et al.,, 2011]. This metal can affect cellular func-
tionality (e.g., by altering the level of transferrin receptor
expression) [Schafer et al., 2007], as well as cellular pro-
liferation capacity [Huang et al., 2009], among others.
Moreover, organs such as heart, liver, and pancreatic beta
cells, which have highly active mitochondria, are espe-
cially vulnerable to iron toxicity [Eaton and Qian, 2002].
Recently, Malvindi et al. [2014] demonstrated that ION
coated with silica were able to release iron ions when
they were suspended in an acidic medium (pH 4.5), mim-
icking the lysosomal environment, but not under neutral
conditions employing ultrapure water or cell culture
medium (pH 7), suggesting that these ION must be inter-
nalized by cells before releasing ions. Indeed, increased
intracellular iron levels were found in different cells after
ION exposure, though usually not initially associated with
cytotoxicity [Geppert et al., 2009, 2011; Rosenberg et al.,
2012]. However, the degradation rate of ION, and conse-
quently their ability to release iron ions, is influenced by
the presence/absence of coating and the physical-chemi-
cal properties of the coating [Levy et al., 2010; Mahon
et al., 2012].

Together with ROS production and iron ion release,
other forms of cytotoxicity reported after ION exposure
that may be or may be not related to these mechanisms
include cell cycle alterations [Wu and Sun, 2011],
decreases in cell viability [Wang et al., 2010a], cytoskele-
ton alterations [Wu et al., 2010], and disruption of mito-
chondrial membrane potential [Zhu et al., 2010].

Genotoxicity

Most studies on the genetic toxicity of nanomaterials in
the literature use standard genotoxicity tests (Table I). In
vitro DNA damage tests (especially the comet assay) and
in vitro chromosome mutation assays (especially micronu-
cleus [MN] test) are the most frequently employed to
evaluate JON genotoxicity. In general, the results of these
published ION genotoxicity studies are inconsistent, even
at similar doses. A positive response was observed in
A549 alveolar cells treated with bare nanomagnetite both
in the comet assay and MN test, but the damaging effect
was reduced by simultaneous exposure to N-acetylcys-
teine or by pretreatment with butylated hydroxyanisole,
both ROS scavengers [Konczol et al., 2011]. However, it
was recently reported that oxidative stress plays, at most,
a marginal role in the induction of genotoxicity (eval-
uated by comet assay) by surface-modified magnetite
nanoparticles [MesaroSova et al., 2014]. MN induction
was also observed in human MCLS5 lymphoblastoid cells
treated with dextran-coated y-Fe,O3 nanoparticles for 24
hr [Singh et al., 2012]. In addition, comet assay evalua-
tion of murine L-929 fibroblast cells treated with ION
coated with (3-aminopropyl)trimethoxysilane (APTMS),
tetracthyl orthosilicate (TEOS)-APTMS, or citrate showed
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Results
None of the coated ION pro-

duced any significant increase
in oxidative damage to DNA

were nearly equal to those
in either of these cell lines.

observed in control cells.

the surface coating induced a
DNA damage in -treated cells

significant increase in the
level of DNA strand breaks.

A549 cells: all ION regardless
HEL12469: the levels of

Treatment conditions
A549: 0.1-0.5 mM for
24 hr. HEL 124609:
0.05-0.4 mM for 24

hr

Methods
and without FPG

Comet assay (with
enzyme)

Cellular model/organism

Human lung adenocarci-
noma A549 cells and
human embryonic lung
HEL12469 fibroblasts

Physical—chemical
characterization
107" em?, 18.137 X 107"
cm? and 75.439 X 10"

mV, respectively. Surface
cm?, respectively

Particle size (Dy): 44 nm,
76 nm and 155 nm, respec-
tively. Zeta potential; —41.8
mV, —42.3 mV and —50
area per particle: 6.079 X

Magnetite inner core: 7.6 nm.

modification
ide-co-glycolic acid]
(SO-PEG-PLGA-

modified with sodium
oleate (SO-Fe;0y,),

SO + polyethylene
glycol (SO-PEG-

SO + PEG + poly[lact-
FC304)

ION type and surface
Fe304), and

Magnetite surface-

[2014]
sole; CA, chromosome aberrations; DLS, dynamic light scattering; EDX, energy dispersive X-ray analysis; ELISA, enzyme-linked immunosorbent assay; FapyA, 2,4-diamino-5-formamidopyrimidine;

FapyG, 2,6-diamino-4-hydroxy-5-formamidopyrimidine; FPG, formamidopyrimidine-DNA glycosylase; GC, gas chromatography; ION, iron oxide nanoparticles; LDV, laser Doppler velocimetry;

LLS, laser light scattering; MN, micronucleus; MS, mass spectrometry; NAC, N-acetylcysteine; n/a, not available; PBL, peripheral blood lymphocytes; ROS, reactive oxygen species; SEM, scanning
electron microscopy; SSA, specific surface area; TEM, transmission electron microscopy; TEOS, tetracthyl orthosilicate; TG, thymine glycol; VSM, vibrating sample magnetometer; and XRD, X-ray

5-OH-5MeHyd, 5-hydroxy-5-methylhydantoin; 8-OHdG, 8-hydroxy-2’-deoxyguanosine; APTMS, aminopropyltrimethoxysilane; BET, Brunauer-Emmett-Teller method; BHA, butylated hydroxyani-
diffraction.

TABLE I. (continued).

Reference
Mesdrosova et al.
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Effects of Iron Oxide Nanoparticles n

a concentration dependent increase in tail content of DNA
compared to control cells, indicating the presence of DNA
damage, although no damage to DNA was observed after
treatment of the cells with bare or TEOS-coated ION
[Hong et al., 2011]. Similarly, primary and oxidative DNA
damage (evaluated by means of comet assay) was reported
in human lymphoblastoid TK6 cells and primary human
leukocytes exposed to oleate-coated nanomagnetite, while
no damage was observed in cells treated with uncoated
nanomagnetite [Magdolenova et al., 2013]. Employing the
same technique, nanohematite was previously found to
induce DNA damage in human IMR-90 lung fibroblasts
and human BEAS-2B bronchial epithelial cells [Bhatta-
charya et al., 2009], and also smooth nanomagnetite
induced DNA damage in both skin epithelial A431 and
lung epithelial A549 cells [Ahamed et al., 2012].

Despite the positive association between ION exposure
and genotoxicity noted above, studies showing negative
results for ION genotoxicity are more frequent. Karlsson
et al. [2008, 2009] exposed A549 cells to ION (Fe,O3
and Fe;0,) and observed no induction of primary DNA
damage as evaluated by the standard comet assay,
although Fe;O, nanoparticles produced increases in oxi-
dative DNA damage. In addition, no increase in MN fre-
quency was found in human lymphoblastoid cells treated
with uncoated +vy-Fe,O; nanoparticles or with either
uncoated or dextran-coated Fe;O, nanoparticles [Singh
et al., 2012]. Similarly, Fe,O3 (primarily maghemite) and
Fe;0,4 nanoparticle exposure to Syrian hamster embryo
cells Guichard et al. [2012] caused no increase in DNA
damage (comet assay) or induction of MN formation. The
same tests were applied to assess the genotoxicity associ-
ated with exposure of Chinese hamster lung cells to glu-
tamic acid-coated Fe,O; nanoparticles; although cell
redox status was slightly disturbed no significant geno-
toxic response was observed [Zhang et al., 2012]. Nega-
tive results were also obtained in the comet assay with
normal human fibroblasts incubated with meso-2,3-
dimercaptosuccinic acid (DMSA)-coated maghemite
nanoparticles, attributed in part to the DMSA coating that
serves as a barrier for a direct contact between nanooxide
and fibroblasts, inhibiting potential toxic effects [Auffan
et al., 2006]. The mutagenic potential of ION was eval-
uated by means of the Ames test in two independent stud-
ies with negative results as well. First, Weissleder et al.
[1989] tested the mutagenicity of AMI-25 ION on five
different strains of S. typhimurium, with or without meta-
bolic activation, and observed no effects at any concentra-
tion evaluated. Later, Bourrinet et al. [2006] found that
treatment with ferumoxtran-10, an ultrasmall ION, did
not induce any significant increase in the number of
revertants, neither in the presence nor in the absence of
S9 mix-metabolic activation system.

Short term in vitro genotoxicity tests may be prone to
overestimating the in vivo genotoxicity of ION. Although
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in vivo genotoxicity studies are time-consuming, expen-
sive and involve ethical issues and complex procedures
(e.g. toxicokinetic processes), they have an obvious
advantage over in vitro tests. Although there are insuffi-
cient in vivo studies in literature on genotoxic effects of
ION, the available ones provide important insight into
potential in vivo genotoxicity. In particular, Ma et al.
[2012] exposed Kunming mice to Fe;O, nanoparticles
daily for 1 week via intraperitoneal injection in order to
determine the potential safe dose range for medical use.
Biomarkers of DNA-protein crosslinks and oxidative
DNA damage (8-hydroxy-deoxyguanosine) were detected
in hepatic and renal tissues, although the latter were more
sensitive. Another investigation evaluated genotoxicologi-
cal effects of a single dose of Fe,O; (primarily maghe-
mite) particles orally administered to Wistar rats [Singh
et al., 2013]. The results indicated that ION are easily
able to pass across the intestinal barrier and although they
mainly accumulated in the liver, spleen, kidney, heart and
bone marrow, the exposure did not induce genotoxicity in
leucocytes (evaluated by the comet assay), chromosomal
aberrations in bone marrow cells, or MN in either of
these cell types. Contradictory results were also observed
among studies evaluating MN frequency in bone marrow
cells of mice exposed in vivo to ION. On one hand, posi-
tive results were obtained after intraperitoneal exposure to
magnetite nanoparticles [Freitas et al., 2002] and intrave-
nous administration of polyaspartic acid-coated magnetite
nanoparticles [Sadeghiani et al., 2005]. On the other
hand, no increase in MN formation was observed after
intraperitoneal injection of ION (Fe;0,) loaded with dau-
norubicin [Wu et al.,, 2010] or ION (y-Fe,0O3) encapsu-
lated within albumin-based nanospheres [Estevanato
et al., 2011], and after intravenous administration of
ferumoxtran-10 [Bourrinet et al., 2006]. Nevertheless, a
single genotoxicity assay is not sufficient to draw firm
conclusions on the genotoxic potential of nanomaterials,
since no single test can cover all of the potential forms of
DNA damage that might arise [Singh et al., 2009; Zhao
and Castranova, 2011]. Thus, negative results obtained in
one test do not guarantee that the ION assayed is not gen-
otoxic. Moreover, additional validation of these standard
genotoxicity tests when applied to nanoparticles is
required before use, in order to be sure that the nanopar-
ticles themselves do not interfere with the test results
[Magdolenova et al., 2012].

In view of these studies, it seems that the genotoxic
potential of ION is mainly due to their ability to induce
DNA breaks and oxidative DNA damage. This ability
may be greatly influenced by ION characteristics such
as size or surface coating nature. However, given the
lack of consistence in the available results, further
investigations are required to determine the specific
mechanisms underlying DNA damage induced by these
nanoparticles.

Developmental Toxicity

Despite the importance of testing the effects of new
commercial materials on embryo and fetal development,
the number of studies assessing embryotoxic effects of
ION is limited (Table II). The effects of different metal
oxide nanoparticles, including Fe,Os;, on Xenopus laevis
embryos were recently examined by employing the
FETAX (Frog Embryo Teratogenesis Assay Xenopus)
approach, a powerful and flexible bioassay for develop-
mental toxicants [Nations et al., 2011]. The results
obtained from these analyses showed that Fe,O3; nanopar-
ticles caused no mortality or significant malformation
after 48 hr of exposure; effects noted were limited to
snout vent length and total body length at the highest
concentration tested (1,000 mg/l). On the basis of their
results, the authors proposed that ION have relatively lit-
tle developmental or teratogenic effects on X. laevis dur-
ing the first 96 hr of embryo life.

Other studies have suggested that ION exposure can
lead to developmental effects. Injection of ION (Fe;Oq4
coated with dimercaptosuccinic acid) at different doses
(40-300 mg/kg) had no adverse effects on weight changes
of adult mice even after three months [Noori et al.,
2011]. At these doses, ION did not affect gestation and
fetal growth, but led to a significant decrease in the off-
spring growth and maturation after birth, and caused
about 70% death before reaching puberty. In the same
study a reduction in the number of spermatogonia, sper-
matocytes, spermatids and mature sperms was observed
in male offspring indicating that the presence of ION in
the placenta and fetus might disrupt embryo and fetal
development. More recently, Zhu et al. [2012a] used early
life stages of the zebrafish (Danio rerio) to examine the
effects of uncoated a-Fe,O; on embryonic development.
Exposure to doses higher than 10 mg/l initiated develop-
mental toxicity, causing mortality, hatching delay, and
malformation in these embryos. Furthermore, in a study
employing Syrian hamster embryo cells, ION (Fe,Os, pri-
marily maghemite) treatment for 72 hr caused cytotoxic-
ity and intracellular ROS, but not genotoxicity [Guichard
et al., 2012].

In another study, potential impacts of ION (ferumox-
tran-10) on fertility, reproductive performance, embryo-
toxicity, fetotoxicity, and teratogenicity were evaluated in
rats and rabbits [Bourrinet et al., 2006]. In general, no
effects on fertility or early embryonic development were
observed either for rats or for rabbits. However, mild
maternal toxicity and major fetal skeletal malformations
were found in both species.

In summary, because of the adverse effects observed in
some studies and our scarce knowledge at the moment of
ION developmental toxicity, additional research must be
conducted to determine the consequences of ION expo-
sure on embryo and fetal development.
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Neurotoxicity

ION, with diameters in the range of a few tens of
nanometers, are able to cross the blood-brain barrier
[Wang et al., 2010b]. This ability makes them very suita-
ble for use in a number of medical applications on the
nervous system, especially for imaging diagnostics and
drug delivery. Indeed, they are envisioned as promising
diagnostic and therapeutic tools in neuro-medicine. For
example, the conjugation of the drug daunorubicin with
ION (oleic acid-capped Fe;04) nanocomposites for deliv-
ery can reduce the neurotoxicity caused by this anticancer
drug on rat brains in vivo, suggesting a possible applica-
tion of these nanoparticles to lessen the side effects of
cancer therapies [Xu et al., 2012]. For these reasons, the
potential neurotoxic effects of ION should be carefully
assessed. Table III summarizes the studies on ION neuro-
toxicity published to date.

As previously described, ROS production is one of the
main mechanisms leading to ION-induced toxicity. The
brain is particularly vulnerable to ROS damage due to its
high content of easily peroxidizable unsaturated fatty
acids, high oxygen consumption rate, and relative paucity
of antioxidant enzymes compared with other organs
[Skaper et al., 1999]. Indeed, oxidative stress is involved
in the pathogenesis of neurodegenerative diseases such as
Parkinson’s, Alzheimer’s, and Huntington’s [Kim et al.,
2012], and oxidative stress is considered a risk factor for
ageing [reviewed in Rahman, 2007].

A number of studies have evaluated the effects of dif-
ferent ION on cultured neuronal cells. Pisanic et al.
[2007] showed that exposure to increasing concentrations
of dimercaptosuccinic acid-coated maghemite nanopar-
ticles caused a dose-dependent reduction of viability and
capacity of PC12 cells to extend neurites in response to
nerve growth factor. Similarly, treatment of these cells
with ION (Fe;0,) at different concentrations also resulted
in dose-dependent cytotoxicity [Wu and Sun, 2011]. In
this last case, cell cycle arrest in G,/M phase and overex-
pression of the p53 gene without affecting p21 and
gadd45, the downstream targets of p53, were also
observed after exposure to ION. Moreover, Soenen et al.
[2011] tested four different ION types (coated with dex-
tran, carboxydextran, lipid and citrate) on c17.2 neural
progenitor cells and observed different cytotoxic poten-
tials; the citrate-coated ION were the most toxic nanopar-
ticles and the lipid-coated ones were the least toxic,
under the experimental conditions used. In the same
study, a reduction in the length and number of neurites of
PC12 cells was also reported for all of the ION tested.
More recently, Wu et al. [2013b] concluded that Fe;O4
nanoparticles decrease neuron viability (PC12 cells), trig-
ger oxidative stress, and activate JNK- and p53-mediated
pathways to regulate the cell cycle and apoptosis. How-
ever, in contrast with these reports, Kim et al. [2011]

demonstrated that exposure to both PEG-coated ION and
nerve growth factor synergistically increased the effi-
ciency of neurite outgrowth in a dose-dependent manner
in PC12 cells.

Similar inconsistent effects of ION, resulting primarily
from differences in surface coatings, were observed in pri-
mary cortical neurons. In a recent study, Rivet et al.
[2012] investigated the response of these cells to magne-
tite nanoparticles coated with aminosilane, dextran, and
polydimethylamine, coatings that are frequently used in
biomedical applications. They observed different effects
depending on nanoparticle dose and coating. Aminosilane-
coated ION affected metabolic activity only at high con-
centrations while leaving the cell membrane intact;
dextran-coated ION partially altered viability at high con-
centrations; and polydimethylamine-coated nanoparticles
induced cell death at all of the concentrations tested by
swift and complete removal of the plasma membrane. In
another study, aminosilane-coated magnetite nanoparticles
were found to decrease the viability of primary cortical
cultured neurons but in a diverse grade depending on
whether ION were positively or negatively charged [Sun
et al., 2013].

Glial cells are a group of non-neuronal cells, including
astrocytes, microglial cells and oligodendrocytes in the
central nervous system, which provide support and pro-
tection to neurons. The effects of several ION on astro-
cytes, the most abundant cells in human brain, and on
microglial cells, the resident macrophage-like cells in the
central nervous system, have been evaluated in different
studies. Au et al. [2007] reported that treatment of imma-
ture rat astrocytes with ION (Fe;O,4 or y-Fe,O3) caused
inhibition of cell attachment and impeded subsequent
growth; the same treatments in mature astrocytes induced
mitochondrial uncoupling without altering cell membrane
integrity. In addition, incubation of cultured rat astrocytes
with citrate- or dimercaptosuccinate-coated ION (y-
Fe,03) caused a time- and concentration-dependent accu-
mulation of cellular iron, but did not lead to any cell tox-
icity [Geppert et al., 2011, 2012]. The results of these
two studies demonstrate that at least some iron can be
released from the ION accumulated in astrocytes, and
stored as ferritin protein; thus, even the prolonged pres-
ence of large amounts of accumulated ION does not harm
these cells. In this regard, a recent review on ION uptake
and metabolism in brain astrocytes suggests that the effi-
cient uptake of extracellular iron (liberated slowly from
ION) by astrocytes, as well as their strong up-regulation
of the synthesis of the iron storage protein ferritin, are
likely to contribute to their high resistance to iron toxic-
ity. Thus, these cells deal well with an excess of iron and
protect the brain against iron-mediated toxicity [Hohnholt
and Dringen, 2013]. Apart from these results with rodent
cells, to the best of our knowledge only two studies in
human astrocytes, with differing results, have been
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published so far. Chen et al. [2012] reported a
concentration-dependent cytotoxicity in human glioma
(astrocytoma) U251 cells exposed to ION, both Fe;O4
and y-Fe,O; whereas Xiang et al. [2003] did not observe
any effect on viability of the same cells after treatment
with poly-L-lysine-modified ION.

Microglia plays a pivotal role in the innate immune
responses of the nervous system. Thus, understanding the
reactions of microglia cells to nanoparticle exposure is
important in the exploration of the neurobiology of nano-
particles. Exposure of cultured rat microglial cells to ION
caused a time-, concentration- and temperature-dependent
uptake of the particles, predominantly mediated by mac-
ropinocytosis and clathrin-mediated endocytosis [Luther
et al.,, 2013], although no cytotoxic effects are usually
found after exposure of murine microglial cells to differ-
ent ION [Na et al.,, 2012; Rosenberg et al., 2012; Wu
et al., 2013a]. In a recent study employing mouse micro-
glial Bv2 cells, treatment with ION (a- and y-Fe,03) led
to cell proliferation, phagocytosis and generation of ROS
and nitric oxide, but did not cause significant release of
inflammatory factors, suggesting that microglial activation
induced by nanoparticles may act as an alarm and defense
system in brain [Wang et al., 2011].

Very few studies have evaluated the potential effects of
ION on oligodendrocytes. There are only two studies
from Hohnholt’s group [Hohnholt et al., 2010, 2011],
which reported that viable oligodendroglial OLN-93 cells
can efficiently incorporate ION and use iron liberated
from accumulated nanoparticles for their own metabo-
lism. Moreover, neither substantial ROS production nor
any alteration in the cellular thiol reduction potential was
observed after ION exposure.

Exposure of other types of cultured brain cells to ION
may induce ROS formation, as found in human brain-
derived endothelial cells (used as models of the blood-
brain tumor barrier) treated with oleic acid- and
polyvinylamine-coated ION (Fe;04) [Kenzaoui et al.,
2012], or have no effects on cell toxicity as reported for
cultured mouse brain microvessel endothelial cells
exposed to aminosilane-coated magnetite nanoparticles
[Sun et al., 2013]. In addition, Fe;O, nanoparticles were
not cytotoxic to mouse bEnd.3 brain endothelial-derived
cells when they were entrapped with cross-linked nanoas-
semblies, but reduced viability of these cells was
observed when the ION were coated with citrate [Dan
et al., 2013].

The number of in vivo studies on ION neurotoxicity,
however, is more restricted. Wistar rats treated daily
with Fe,O3 nanoparticles orally showed that these nano-
particles were distributed in various organs, including
brain, 28 days after initiating the treatments. Toxic signs
and symptoms, such as dullness, irritation, moribund
conditions, but no mortality, were observed in these ani-
mals at that time [Kumari et al., 2012]. When the same

animals were exposed intravenously to ferumoxtran-10
nanoparticles, no neurobehavioral, neurovegetative, or
psychotropic effects were detected; nevertheless, several
physiological responses, including signs of polypnea,
exophthalmos and mydriasis, were observed [Bourrinet
et al., 2006]. In most of cases, only 50 to 75% of ani-
mals were affected and these signs were distributed in a
heterogeneous manner over the 2-hr period of observa-
tion after dosing. Moreover, after intranasally instilling
Fe;04 nanoparticles for seven days, Wu et al. [2013a]
found a regional distribution of these ION in rat brains
that was particularly high in the striatum and hippocam-
pus areas; the exposure induced oxidative damage in the
striatum but not in the hippocampus. Similarly, intra-
nasal ION (Fe,O3) exposure in mice caused neuronal
fatty degeneration in the hippocampus, led to pathologi-
cal alterations in olfactory bulb, hippocampus and stria-
tum, as well as causing microglial proliferation,
activation and recruitment in these areas, especially in
the olfactory bulb [Wang et al., 2007, 2011]. In addition,
a significant dose-dependent inhibition of total, Na™-K™,
Mg2+ and Ca’"-ATPases in the brain, as well as of
brain and red blood cell acetylcholinesterase, were found
in exposed animals indicating that synaptic transmission
and nerve conduction might have been affected by ION.
Recently, Kim et al. [2013] exposed Sprague—Dawley
rats to four ION with different surface and core chemis-
tries, namely dimercaptosuccinic acid (DMSA)-coated
ION (both +v-Fe,O3 and Fe3;04), PEG-coated Fe;0y4
nanoparticles, and PEG-Au-coated Fe;O, nanoparticles.
Nerve levels of MAPK/ERK and caspase 3 were ana-
lyzed at 48 hr after intraneural injection as indicators of
inflammation and apoptosis, respectively, and both were
significantly increased in all ION-injected animals.
Moreover, macrophages were the main cells to internal-
ize DMSA-vy-Fe,O5; nanoparticles in nerve, although no
apoptosis was observed in these cells, whereas endothe-
lial and Schwann cells, neurons, and T cells were vul-
nerable to cell death.

Therefore, the results of all of these studies suggest the
possibility of an adverse impact of ION on the nervous
system, neuronal cells being the most sensitive ones to
their effects, but further investigations are needed to more
completely define and characterize this impact.

CONCLUSIONS

ION are very fascinating nanomaterials that can be
used in many current biomedical applications including
cell labeling, drug targeting, gene delivery, biosensors,
hyperthermia therapy and diagnostics by MRI. These
molecules have promising future uses in cancer and other
diseases therapy. However, despite the numerous ION
applications being explored, insufficient information is
available on their potential toxicity.



Medical applications of ION require sufficient intracel-
lular uptake for efficient diagnosis and treatment, leading
to a potential risk associated with exposure to these nano-
particles. As these applications are increasing in number
and in benefit, it is imperative to comprehensively investi-
gate and elucidate the biological consequences of expo-
sure to ION. In this review the toxicological effects of
ION published to date were reviewed, in order to both
compile the currently available information on ION toxic-
ity and to elucidate the main gaps of knowledge in this
field. The review showed a lack of consensus among the
different studies in the literature on ION toxicity, but
indicate that the surface coatings and particle size seem
to be crucial for ION-induced effects, as they are critical
determinants of cellular responses, intensity of effects and
potential mechanisms of toxicity. Indeed, it was very dif-
ficult to fully compare results across studies mainly
because of the different ION employed (surface modifica-
tion, concentration, size) and the lack of test standardiza-
tion. Due to the variety of mechanisms leading to
nanomaterial induced cell toxicity, a battery of harmon-
ized testing systems would be required to establish the
presumptive toxic potential of ION at different levels of
biological organization. Moreover, in order to make
results comparable across these investigations on ION
with different coatings and characteristics, the use of
standardized methods is highly desirable.

In conclusion, the significantly increasing use of ION
in biomedical applications in parallel with the limited
data concerning their effects on human health strongly
suggest that additional investigations in this area should
be performed, including further studies on the potential
long-term effects of exposure to these nanoparticles.
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