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Big data is among the most promising research trends of the decade, drawing attention from every 
segment of the market and society. This paper provides the scientific community with a comprehensive 
overview of the applications of a data processing platform designed to harness the potential of big 
data in the field of road transport policies in Europe. This platform relies on datasets of driving and 
mobility patterns collected by means of navigation systems. Two datasets from conventional fuel vehicles 
collected with on-board GPS systems have been used to perform an initial pilot study and develop its 
core algorithms. They consist of 4.5 million trips and parking events recorded by monitoring 28,000 
vehicles over one month. The presented analyses address: (1) large-scale mobility statistics, (2) potential 
of electric vehicles in replacing conventional fuel vehicles and related modal shift, (3) energy demand 
coming from electric vehicles, (4) smart design of the recharge infrastructure and Vehicle-to-Grid, and 
(5) real-world driving and evaporative emissions assessment and mapping. The developed methodology 
and the presented outcomes demonstrate the potential of big data for policy assessment and better 
governance, focusing on the challenges and on the huge opportunities offered for future developments. 
This paper ultimately aims to show how big data can inspire smart policies together with public and 
private investments to enable the large scale deployment of the next generation of green vehicles, 
offering an unprecedented opportunity to shape policies for future mobility and smart cities.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. The European road transport policy framework and the use of big 
data for supporting low-carbon road transport policies in EU

In order to enable transport emissions reduction in Europe and 
to meet the Kyoto protocol objectives, the EC White Paper 2011 
sets the de-carbonisation of transport as a priority, defining ten 
goals to be achieved over the next twenty to forty years, [1]. As far 
as road transport is concerned, these include:

• Halve the use of conventional fuel cars in urban areas by 2030, 
phasing them out in the cities by 2050;

• Establishing an European framework for multi-modal informa-
tion management systems;
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• Move towards full application of “user-pays” and “polluter-
pays” principles and private sector engagement to eliminate 
distortions in the taxation, including harmful subsidies.

Moreover, in February 2015, the European Commission has un-
veiled a Strategy and Action Plan for creating an Energy Union [2], 
endorsed by the European Council on 19 March 2015, that includes 
several actions and initiatives in three key areas which can directly 
or indirectly reduce greenhouse gas emissions from the transport 
sector: (1) switching towards carbon free or less carbon intensive 
fuels, (2) improving vehicle efficiency and (3) managing transport 
demand. All these goals call for the widespread of low-carbon ve-
hicle technologies (i.e. Hybrid and Battery Electric Vehicles, HEVs 
and BEVs), together with smart systems capable to harness the 
potential of digital mobile technologies in storing and processing 
data, in order to provide the user with smart transportation solu-
tions in real-time as well as enable the implementation of a smart 
taxation system.

Transportation is a complex world. It is a mix of technologies, 
social behaviours, choices of single users and stochastic events, 
nested within a geographical, environmental and economic sce-
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Nomenclature

Acronyms

AC Alternating Current
BEV Battery Electric Vehicle
CATI Computer-Assisted Telephone Interviews
CO2 Carbon dioxide
CS2-JU Clean Sky 2 Joint Undertaking
DC Direct Current
EEA European Economic Area
EU European Union
EU-ETS EU Emission Trading Scheme
HEV Hybrid Electric Vehicle

GHG Greenhouse Gas
GIS Geographic Information Systems
GPS Global Positioning System
ICT Information and Communication Technology
LDV Light Duty Vehicle
POI Point of Interest
SUV Sport Utility Vehicle
TEMA Transport tEchnology and Mobility Assessment plat-

form
USA United States of America
VOC Volatile Organic Compound
V2G Vehicle to Grid
nario. For this reason the design of the transportation network 
and its regional regulatory framework involves know-how from en-
gineering, geography, environmental sciences, economy and social 
sciences. This process must be supported by harmonised datasets 
from different sources together with data processing methodolo-
gies developed across different scientific fields in order to handle 
real world complexity. Recent studies prove the potential of big 
data in this respect, being used to measure commuting efficiency 
in megalopolis [3], to explore public transport users’ behaviours 
[4], to simulate individual mobility choices in carpooling [5] and 
to classify activity patterns [6,7], with applications in the fields 
of mobility networks design and infrastructures [8–10] and multi-
modal transportation systems [11]. On one hand these studies 
constitute interesting advances of big data in transport, but, on 
the other hand, they are limited to single case studies and appli-
cations, mostly grounded on data averaging and data aggregation 
approaches.

More in general, the potential of ICTs in support of mobility 
needs is a well-known research topic, funded by a number of Eu-
ropean projects under the FP7-ICT call for projects 2011. Among 
the most relevant projects, we must cite the REDUCTION [12], the 
PEACOX [13] and the eCOMPASS [14] projects, which addressed 
novel ICT solutions for optimising driving behaviour, routing and 
multi-modality for passenger and freight transport fleet in cities, 
together with the ICT-EMISSIONS project [15], that addressed CO2
emission estimation at a regional scale via monitoring of vehicle 
fleets. All these parent applications explore interesting uses of data 
in transport, and might be interesting data source for future big 
data studies.

Nowadays big data is applied to a number of different disci-
plines and in 2013 Forbes.com indicates big data among the “Top 
10 Strategic Technology Trends of the Year” and “Top 10 Critical 
Tech Trends For The Next Five Years”, [16] and [17]. The term “data 
science” dates back to the 1960s, when the newly born information 
technologies posed the problem of how to store, manage, process 
and retrieve growing amount of data, in a way which was never 
experienced before. In 1962, John W. Tukey wrote “The Future of 
Data Analysis” [18], where he presented a visionary perspective of 
how mathematics, statistics, data analysis and informatics can be 
merged in a novel discipline with unprecedented potential. After 
nearly 50 years, at the beginning of the 21st century, data is be-
come “big”. Of course this is related to the “size”, but it would 
be quite reductive to condense the meaning of “big data” solely 
to its bytes count. The big data means “bits and pieces of the 
real world puzzle”, which, if adequately processed, is capable to 
offer unprecedented insights on a number of real world phenom-
ena. This is potentially capable to impact social dynamics, choices 
and behaviours, public response to events, market trends, services 
and goods’ demand, enabling to open the doors to a number of ap-
plications, re-inventing and re-structuring existing companies and 
evolving novel concepts in almost every business segment. This 
work aims to present how big data can be used for supporting 
low-carbon transport policies in Europe.

1.2. Transport emissions in Europe

In the European Union (EU), transport contributes to nearly 
one-third of the carbon dioxide (CO2) emissions and is the only 
major sector where emissions increased over the last decade de-
spite the economic downturn [19]. The EU needs to reduce the 
Greenhouse Gases (GHGs) emissions by 20% below 1990 levels by 
2020, and by 80-to-95% by 2050, under the Kyoto Protocol, [20,
21]. Transport, i.e. road, rail waterborne and air transport modes 
together, will contribute to this goal by reducing its GHGs emis-
sions below 1990 levels by 60% by 2050, [1]. EU accounts of 35.3 
billion tonnes CO2-equivalent emissions in 2013 [22], with approx-
imately 11 billion (i.e. one-third) tonnes coming from transport. 
Road transport accounts for approximately 72%, rail and water-
borne transport account together for 15% while air transport ac-
counts for the remaining 13% of the total transport GHGs emission 
in EU, as per [23]. Nearly two-thirds of road transport emissions 
originate from light duty vehicles (LDV), while the remaining one-
third originates from heavy duty vehicles (HDV) [24], representing 
respectively 83.3% of total inland surface passenger transport (LDV) 
and 9.2% of total inland surface passenger transport (HDV, i.e. 
buses) plus 74.9% of total inland surface freight transport (HDV). 
Rail transport only accounts for 7.5% of total inland surface pas-
senger transport and 18.2% of total inland surface freight transport, 
while waterborne accounts for the remaining 6.9% of the inland 
surface freight transport, with a passenger share which is negligi-
ble, as per [25,26]. By considering carbon-intensity per mode (i.e. 
CO2 grams per kilogram of payload per kilometre), rail and wa-
terborne are definitively greener solutions, accounting for nearly 
one-third of the specific emissions compared to road or air trans-
port [27]. However, despite their high carbon-reduction potential, 
rail and waterborne are still under-exploited solutions and this is 
mainly related to the poor inter modality of the networks between 
the Member States and to their low cost-efficiency compared to 
road transport, [1]. On top of this, automotive and oil industry still 
have a very important economic weight in most of the countries 
and this make a change even more difficult. Recent statistics esti-
mates that the number of worldwide circulating vehicles is approx-
imately one billion units (2013), exhibiting an annual growth rate 
of 4% till 2020, [28]. Such growth is mainly due to the increasing 
wealth in emerging countries (i.e. 76% of the 2020 market is fore-
casted not to be in EU or US, [29]), with a long term growth up to 
2.4 billion circulating vehicles in 2050 (i.e. +140% with respect to 
the 2013 figure, traded off by a worldwide population increase of 
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only 30%, [30]). Regarding air transport mode, this is typically not 
included in road, waterborne and rail transport compared statis-
tics, being it natively cross-borders and not “inland surface”. As 
per road mode, air transport is also a carbon-intensive solution 
(i.e. their specific emissions are comparable) and fast-growing. In 
fact air passengers in, from and to the EU went from 810 million in 
2009 to 920 million in 2013 (+13.5% over 5 years, i.e. 86% of air-
carried payload), while air cargo went from 11.8 million tonnes in 
2009 to 15.0 million tonnes in 2013 (+27.1% over 5 years, i.e. 14% 
of air-carried payload), as per [31]. The air cargo share on freight 
transport is negligible when compared to the inland surface value, 
while, for passenger transport, the air carriers account for a sig-
nificant share of kilometres travelled per person, and therefore for 
a considerable overall carbon footprint. However, despite the car-
bon intensity drawback of air transport, its peculiar short travel 
time allows this mode to play a role which can be hardly replaced 
by road and rail transport, bridging European countries and people 
and playing a key societal role for the cultural exchange and the 
integration of the European citizens.

Apart from the impact of GHG emissions on climate change, 
transport is also a significant source of noxious air pollutants 
which are proven to have serious implications on human health. 
The World Health Organisation highlights that tens of thousands of 
deaths per year can be attributed to road transport-related air pol-
lution, similar to the death toll from traffic accidents [32]. More-
over recent epidemiology and toxicology literature reviews have 
shown that there is a causal relationship between human exposure 
to traffic-related gaseous emissions and exacerbation of respiratory 
and cardiovascular diseases for people living within 500 meters 
from major roads [33]. These findings are confirmed by a large 
number of similar studies, from different regions of the world, 
such as [34,35] and [36], even at levels far below those causing 
the severe public health issues which have been arising in far-east 
megalopolis [37]. Similarly to road transport, pollutants from civil 
aviation are proven to have significant health impact and turbo-
fan engines are considered primary sources of PM2.5 and gaseous 
aerosol precursors, causing health damages that may be distributed 
over regional-to-continental scales. A recent estimation attributes 
nearly 210 deaths per year in US which can be directly related to 
pollutants from aviation [38], and similar figures are presumably 
likely to be valid in EU too. Based on this motivation, the emis-
sions from aviation, including landing, take-off and ground activi-
ties, are receiving increasing attention from the regulatory bodies. 
In 2012 the emissions from all flights from, to and within the Euro-
pean Economic Area (EEA), have been included in the EU Emission 
Trading Scheme (EU-ETS) according to the entry into force of the 
Directive 2008/101/EC, [39], while US EPA announced to move the 
first step towards regulating GHGs emissions and NOx emissions 
from aircraft in response to section 231 of the Clean Air Act, [40]. 
Additionally the EU Clean Sky 2 Joint Undertaking (CS2-JU) Pro-
gramme [41], addresses the reduction by 50% of CO2 emissions 
through reduction of fuel consumption and the reduction of 80% 
of the NOx emissions as main priorities for the European aviation 
industry. There is hence the necessity to investigate the potential 
of innovative vehicle technologies in road, rail and aerial transport 
under real world constraints, in order to minimize transport envi-
ronmental impact and maximize the overall system efficiency and 
services, to meet the climate change mitigation and the sustain-
ability challenges of the upcoming decades.

1.3. The TEMA platform

The objective of this paper is to provide the scientific commu-
nity with an overview of a data processing platform TEMA (Trans-
port tEchnology and Mobility Assessment platform) developed by 
the authors over nearly three years, designed for harnessing the 
potential of big data in the field of transportation policies in Eu-
rope. The platform is conceived as a flexible and modular platform 
and is explicitly designed for multi-purpose applications. The top-
ics addressed so far are:

• quantifying the real world potential of deploying electrified 
vehicles within urban areas accounting for different electric 
vehicles penetration shares under different technological and 
infrastructural constraints;

• quantifying and geo-referencing the shift from oil to electric 
energy and the impact on the electricity distribution grid of 
the deployment of EVs;

• evaluating driving and evaporative real world emission from 
the current fleet of conventional vehicles, and the gaseous 
emissions reduction potential from the introduction of new 
vehicle technologies;

• estimate future market competition and new business oppor-
tunities offered by the diverse considered scenarios.

Together with the developed applications and challenges to 
overcome, such as handling and analysis large datasets, this pa-
per aims to present the challenges and the opportunities of-
fered by this approach and, more in general, by big data for 
transport policies. The innovativeness of this work consists in 
its multi-disciplinary characteristic and applicability to different 
fields, showing how the approach and the algorithms developed 
for TEMA are capable to support the development of effective 
transport regulation in the areas of real world driving and gaseous 
evaporative emissions, new vehicle technologies deployment and 
alternative fuel infrastructures design, in term of environmental 
impact, energy efficiency, climate change and sustainability. Sec-
tion 2 of this article presents the methodological steps undertaken 
to develop TEMA, providing the reader with a quick overview of 
the adopted and implemented models applied to two datasets as 
pilot, while section 3 provides the key results of the several appli-
cations developed so far, summarising the contents of a number of 
scientific papers from the authors, i.e. [42–48] and [49].

The aim of the present work is to present in a homogeneous 
format the structure of the developed platform, and the results 
obtained considering two pilot datasets. This allows to focus the 
attention on the challenges and the nearly unlimited opportunities 
offered by big data for transport applications, potentially inspiring 
smart policies and public and private investments, paving the way 
towards low-carbon mobility and ultimately towards low-carbon 
society.

2. Methodology

2.1. Step 1: pre-processing the data

Every big data application relies on a set of data, and the cor-
rect pre-processing of the data is a key for harnessing the data 
potential and application. In order to develop an effective pre-
processing methodology two large datasets of driving and mobility 
patterns collected by means of GPS have been analysed as pilot 
study. The driving pattern databases refer to the Italian provinces 
of Modena and Firenze and are representative of a large sample 
of the LDVs fleet registered in these provinces. The databases have 
been acquired from a private company (i.e. Octo Telematics [50]) 
which equipped a large number of vehicles with GPS black boxes 
on behalf of a major insurance company. The fleet sample contains 
a mix of light duty vehicles registered either to the name of pri-
vate citizens or to commercial activities (more details reported in 
[42]). These vehicles belong to different segments, and they have 
been selected in order to match the owners’ distribution with the 
Italian average data, with the objective of guaranteeing the highest 
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Table 1
Overview of the analysed data for the provinces of Modena and Firenze.

Surveyed vehicles 
(% of the total)

Analysed sample 
(% of the surveyed)

Number of records 
[·106]

Analysed km 
[·106]

Analysed trips 
[·106]

Province of Modena 52,834 (12.0%) 16,263 (30.7%) 16.920 14.98 2.642
Province of Firenze 40,459 (5.9%) 12,478 (30.8%) 33.361 20.66 1.870
representativeness of the data sample. They allow reconstructing 
the complete activity pattern (i.e. the sequence of trips and park-
ing events) which characterises each vehicle over an analysis pe-
riod of one month (i.e. May 2011). The data acquisition campaign 
has originally involved 52,834 conventional fuel vehicles registered 
in the province of Modena and 40,459 vehicles registered in the 
province of Firenze (i.e. respectively 12.0% and 5.9% of the fleet 
in these provinces). The on-board data-logging devices recorded 
time, GPS position coordinates, engine status, instantaneous speed 
and cumulative distance. The data is collected to be continuous 
in time, and the acquisition frequency autonomously adapts to 
trade-off the size of data and accuracy of the information. A dou-
ble filtering was preliminary applied to the raw data in order to 
delete the vehicles driven for more than 50% of the trips out-
side the province borders (in order to focus only on those vehicles 
which show a predominantly local usage, i.e. urban vehicles) and 
all the trips with a length less than 30 meters and/or duration less 
than 30 seconds (not representative of a real mobility demand). A 
trip is defined as an event which starts with the switch-on of the 
internal combustion engine and stops with the switch-off of the 
internal combustion engine from the user. Start-and-stop feature of 
modern vehicles is not considered in this analysis, being no repre-
sentative of real trips. As consequence of these filters the databases 
are reduced to 16,263 vehicles for Modena (30.7% of the original 
size, 3.6% of the province’s fleet) and to 12,478 vehicles for Firenze 
(30.8% of the original size, 1.7% of the province’s fleet). All the 
analyses are carried out on these sub-sets only, thus targeting the 
urban mobility in the developed applications. For both provinces 
about the 91% of the analysed vehicles were registered to the name 
of physical persons (later labelled as “private”) while the remaining 
part were vehicles registered to the name of a commercial activ-
ity (later labelled as “commercial”) and the age distribution of the 
owners of the private vehicles resembles the distribution of the ve-
hicles’ owner of the fleet in the province. These samples account 
for 2.642 and 1.870 million trips, representing approximately 15.0 
and 20.7 million driven kilometres and exhibiting a mean value 
of 162 trips and 921 kilometres per vehicle per month in Mod-
ena, and 150 trips and 1,656 kilometres per vehicle per month in 
Firenze. A summary of the datasets is given in Table 1.

Data time-continuity and the ability to fully track each vehi-
cle during the analysed period are key aspects for ensuring the 
representativeness of the analyses presented in this work. TEMA 
platform has been designed for handling similar datasets, allowing 
adapting the developed methodologies to different fleet sample, 
geographical areas and infrastructural constraints.

2.2. Step 2: exploiting the data potential via a customised data 
processing platform

The data processing platform is the key tool to exploit the data 
potential, and its effective customisation is a key conceptual step 
to extract value from the data. This process entails several techni-
cal challenges related to the definition of the data input format, the 
implementation and customisation of a data processing algorithms, 
the generalisation and profiling of these algorithms and their in-
terface with visualisation and post-processing toolsets. Aside the 
complexity of the algorithms themselves, the main challenges to 
overcome in implementing TEMA have been:
• the structuring of the input data and the definition of the data 
exchange format among the different modules of the platform;

• the profiling of the data processing algorithms, making them 
capable to manage and process millions of data lines (i.e. 
trip/parking events in this specific case) with an acceptable 
computational burden;

• the post-processing of the results, and, more specifically, the 
techniques to adopt to render the results of the analyses in a 
format that does not lose the complexity of the information 
contained in the data and that is, at the same time, easy to 
understand;

• providing the link between the data and the potential policy 
assessment.

This section aims to provide the reader with a simplified 
overview of the developed modules of TEMA: the pre-processors 
(i.e. later referred as “Module 0”) and five data processing mod-
ules (i.e. respectively labelled from “Module 1” to “Module 5”). 
A schematic overview of the platform is provided in Fig. 1, where 
the modules are embedded within the dashed boxes. The main 
conceptual steps are reported, highlighting how each module con-
tributes to deliver one or more results relevant to address specific 
aspects, applications and policy support.

Module 0 (Pre-processor): in order to prepare the input to be 
processed by the data processing modules, the raw data must be 
cleansed, checked and organised in a lean and usable format. For 
this reason the raw data has been submitted to a cleansing and 
consistency check procedure, targeted to identify and restore trips 
which eventually show non-consistent data series and generic er-
rors of acquisition (e.g. trips not starting with an “engine switch-
on” status and/or not ending with an “engine switch-off” status). 
After this step, the cleansed data is submitted to a data aggregation 
procedure, divided in three sub-aggregation steps: sub-aggregation 
by day, sub-aggregation by week and sub-aggregation by month. 
This procedure allows deriving three sub-datasets from the orig-
inal cleansed data, merging the information at different level of 
detail, and deriving leaner and smaller databases to be used for 
the different applications. Table 2 reports the sequence of these 
aggregations steps, starting from the number of records of the 
raw data on the left up to the final aggregation level on the 
right. As far as the province of Modena is concerned the data 
accounts for 16.920 million records, equivalent to 2.642 million 
trips. This reduces to approximately 397,000 records aggregated 
by day, 87,000 records aggregated by week and 16,263 records 
aggregated by month (i.e. total no. of vehicles in the database), 
decreasing by approximately 80% per each aggregation steps (com-
pression rate, i.e. the data amount reduction between the step i-th 
and the step (i − 1)-th). A similar consideration can be made for 
the database of the province of Firenze, which reduces from 33.361 
million records and 1.870 million trips to approximately 292,000 
records aggregated by day, 65,700 records aggregated by week and 
12,478 records aggregated by month, exhibiting a similar compres-
sion rate. The output of this module consists of three cleansed and 
aggregated datasets that are saved and stored in order to be used 
by Modules 1-to-5.

Module 1 (Statistical mobility): this module is built to load the 
aggregated datasets and perform a large number of statistical anal-
yses to investigate diverse aspects of the mobility patterns of the 
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Fig. 1. Overall architecture of the TEMA platform.

Table 2
Aggregation steps and compression rates.

No. of records 
[·106]

No. of trips [·106] Aggregation by day no. of 
records [·106] (Compression 
rate [%])

Aggregation by week no. of 
records [·106] (Compression 
rate [%])

Aggregation by month no. 
of records [·106] 
(Compression rate [%])

Province of Modena 16.920 2.642 0.397–(−85.0%) 0.0870–(−78.1%) 0.0163–(−81.3%)
Province of Firenze 33.361 1.870 0.292–(−84.4%) 0.0657–(−77.5%) 0.0125–(−81.0%)
monitored fleet sample. The output of Module 1 consists in ap-
proximately 250 different statistical analyses and results, including 
the minima, maxima, mean and median values plus cumulative 
and probability distribution functions of a number of variables 
such as trip distance, trip duration, trip speed, parking duration, 
fleet shares in motion and parked in time, averaged per day and 
per week. A comprehensive overview of the statistical outputs of 
this module is provided in [42], showing how large statistics are 
needed to derive and characterise the activity patterns of the ve-
hicles. The results of this module can contribute to generate addi-
tional statistics, complementary to the official statistics based on 
surveys. Big data is, in fact, a potential source of additional statis-
tics, as indicated by the several working groups which are focusing 
on this aspect [51,52].

The output of this module can feed the other modules (2 to 5), 
when specific analysis based on aggregated data is performed, as 
per [45].

Module 2 (Modal shift and vehicle usability): this module is 
built to simulate the energy efficiency and environmental perfor-
mances of different conventional fuel vehicles, HEVs, and BEVs 
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in relation to the activity patterns derived from the data. The 
recorded sequence of trips and parking events during the analysed 
period is applied to each of these vehicle technologies to under-
stand to which extend they can replicate the recorded mobility 
behaviour. The vehicle is characterised by a number of perfor-
mance parameters (i.e. vehicle mass, averaged real world driving 
energy consumption and battery size for the BEVs, emission fac-
tors for HEVs and conventional fuel vehicles) derived either from 
literature or from experimental studies from the authors, as per 
[53–55] and [56]. In case of HEVs/BEVs the vehicle’s model as-
sumes to initiate the activity pattern with a fully charged battery, 
associating each trip to an energy consumption event and each 
parking to a recharge opportunity, which happens if the recharg-
ing constraints are met. In this case, the parking is labelled as a 
recharge event, with an associated energy demand in a specific 
time window and in a specific space location. If a trip or part of 
it cannot be made in electric mode by a HEVs because the en-
ergy demand is higher than the energy stored in the battery, the 
trip is switched to the internal combustion engine mode of the 
HEVs, thus accounting for driving gaseous emissions according to 
given emission factors. If this occurs in the case of BEVs the trip 
is deleted from the sequence of the electric trips for the BEVs, 
and the vehicle is labelled to fail that specific trip. In the case of 
conventional fuel vehicles, each trip is associated to a fuel con-
sumption event and the driven segments are associated to driving 
gaseous emissions according to emission factors related to differ-
ent emission categories and weighted on the route length. Several 
BEVs/HEVs vehicles models are considered, ranging from a small 
hatchback to a large Sport Utility Vehicle (SUV). In particular, the 
models implemented account for:

• 10 BEVs ranging from a mass of 450 [kg] (i.e. small quadri-
cycle) to 2,100 [kg] (large SUV), with a battery size from 
13.0 to 85.0 [kWh] and an energy consumption from 70 to 
265 [Wh/km];

• 5 HEVs in plug-in configuration, ranging from a mass of 1,540 
to 1,770 [kg], with a battery size from 4.4 to 16.0 [kWh];

• 1 generic HEV/BEV model, for parametric analyses with differ-
ent battery energy and fuel consumption inputs.

All the considered models are built to simulate the real world per-
formances and energy consumption of HEVs and BEVs technologies 
already available on the market, including the average consump-
tion of auxiliary systems, the energy losses during the recharges 
and the battery self-discharge which occurs when the vehicle is 
parked for long time, thus allowing as realistic predictions as pos-
sible. As far as the recharging constraints concern, 15 different 
recharging strategies are defined according to different individual 
behaviours of the drivers combined with the power of the differ-
ent recharging infrastructures which might be available (e.g. non-
aggressive/aggressive recharge, on-peak/off-peak recharge, indirect 
price-based/direct smart-grid recharge, with the mono/tri-phases 
AC/DC recharge stations at a rated power from 3.3 to 50 [kW]).

This module allows hence to:

• Evaluate the share of trips and kilometres of the databases 
which might be driven electric, given a HEVs/BEVs model, 
thus calculating the usability of different vehicle technologies 
and electrified drivetrain architectures under real world driv-
ing conditions;

• Evaluate the fleet share affected by trip failure events and their 
rate of occurrence, thus calculating the technology-shift and 
the modal-shift induced by adopting different HEVs/BEVs tech-
nologies in urban driving;

• Evaluate the real world road transport emissions of a large-
scale fleet of conventional fuel vehicles and HEVs, by con-
sidering different fleet shares and fleet mix, as explained in 
Module 5 section.

Further details on the vehicles and developed recharge models are 
provided in [42] and [43].

Module 3 (Energy demand): this model is built to process and 
aggregate in space and time the distributed electric energy de-
mand derived from the Module 2 during the recharges when some 
specific HEVs/BEVs models are adopted. In practice, by assuming a 
specific vehicle model, or, eventually, a specific fleet mix charac-
terised by different shares of the considered models, and assuming 
one or more recharging strategies among the 15 available, it is 
possible to calculate the sequence of recharging events and the 
associated energy demand which occurs by replicating the activity 
patterns of the fleet. These results can be integrated in time and 
space to visualise the maps of the electric energy demand over the 
analysed area and the electric power curve over the analysed time 
period. Further details on this module are provided in [44], while 
the implementation of its GIS interface, that is a key element to 
exploit the potential of this module, is described in section 2.3.

Module 4 (Infrastructural design and V2G applications): this 
model is built to design a recharging infrastructure based on the 
driving and parking patterns recorded by the data, the electric en-
ergy demand calculated by Module 3 and networks of potential 
locations for installing recharging spots, such as Points of Inter-
ests (POIs). This approach allows deriving a detailed map of the 
recharging infrastructure, or, more in general, of the alternative 
fuel infrastructure needed to serve the calculated mobility de-
mand. The association of the energy demand events to specific 
locations is based on a minimum distance criterion, by assuming 
that the offer-demand match is mainly driven by geographical con-
straints and that the mobility demand is not influenced by shifting 
from conventional fuel vehicles to HEVs/BEVs. The model derives a 
set of performance parameters for each point of recharge and the 
time-dependent energy demand per POI, thus optimising the in-
frastructure needed in each location to meet the maximum, mean 
or median value of the electricity demand, and predicting if, and 
to which extent, the specific location might be a candidate for in-
stalling recharging stations, accounting for profitability of the site 
and eventual market competitors. Additionally, by matching the 
offer-demand curve, the module can simulate the implementation 
of Vehicle-to-Grid (V2G) applications, investigating, for example, 
how the effect of the recharge/discharge of the batteries of the 
parked HEVs/BEVs can be controlled to ensure delivering the re-
quested energy to the fleet with the minimum load on the electric 
energy distribution grid.

This module is also natively interfaced with the GIS, opening 
up to a number of different applications, such as market analy-
sis for electric energy distribution, optimisation of the alternative 
fuel infrastructure, simulation of the smart control algorithms for 
smart-grid and smart-cities under real world constraints. Addition-
ally a simple econometric model is natively embedded within the 
infrastructure design algorithm to address recharge location prof-
itability and future competition scenarios. At least four of the six 
pillars of the smart city concept (i.e. smart mobility, smart environ-
ment, smart economy and smart governance [57,58]) are addressed 
with this approach, linking big data and data mining technique to 
transport, energy and air quality policies. Further details on the 
module are provided in [46].

Module 5 (Gaseous emissions): this module is built to estimate 
the driving gaseous emissions (i.e. carbon mono and di-oxides, ni-
trogen oxides and hydrocarbons) related to the usage patterns of 
the conventional fuel vehicles or to the trips shares driven with 
the internal combustion engine of the HEVs fleet. As a matter of 
example the driving CO2 emission can be calculated with a simpli-
fied procedure based on the fuel consumption, as reported by the 
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EMEP/CORINAIR Emission Inventory Guidebook – 2007, chapter 7 
(road transport) of the European Environment Agency [59,60]. This 
procedure allows estimating the CO2 emission of the fleet on the 
basis of the overall fuel consumption, assuming that the carbon 
content of the fuel is fully oxidized into CO2 [61,62], the emis-
sion factors and the number of vehicles and kilometres driven per 
each vehicle category and class. Some corrective coefficients need 
to be applied to the baseline emission factors because of the dif-
ferent vehicle age, improved fuels and technologies, road gradient 
and vehicle load, thus accounting for real world driving emissions 
[63]. The result of this methodology consists in deriving an average 
fleet-weighted value of emission in [g/km], and calculating time 
and space distribution of CO2 sources from road transport over a 
given geographical area based on real world activity data.

This module implements two additional emission models: the 
evaporative emission model and a cold-start emissions model. The 
first model is related to emissions from parked vehicles and is 
based on the implementation of the hot-soak, permeation and 
breathing emissions mechanisms for the production and release 
into the atmosphere of evaporative Volatile Organic Compounds 
(VOCs), combined with an activated carbon canister semi-empirical 
model as per [47]. The second model is based on the fact that 
uncontrolled hydrocarbons emission happens when the catalyst is 
operated at low temperature, i.e. cold-start of the internal com-
bustion engine, that is, when the vehicle is started after a parking 
event whose duration sets above a threshold, e.g. above six hours.

2.3. Step 3: the interface with GIS and external systems

In order to enhance the potential of TEMA, the setup of an in-
terface with GIS is of fundamental importance. This allows exploit-
ing the full potential of the implemented models for a more com-
prehensive interpretation of the calculated geographical distribu-
tions and rendering the space dependency of the results. More in 
detail the GIS interface directly applies to the Modules 3, 4 and 5, 
being those related to space-dependent results (i.e. space distri-
bution of the energy demand, geo-localisation of the alternative 
fuel infrastructure and space distribution of driving, evaporative 
and cold-start emissions, as per Fig. 1). This interface is natively 
built in the data processing platform, and based on a dynamic link 
of the results mapping routine with digital mapping systems re-
trieved from the web [64]. In order to handle the geo-referenced 
results, each analysed area is embedded in an analysis window, de-
fined by the minima and maxima values of latitude and longitude, 
appropriately set to include the targeted area. For example the 
province of Modena is embedded by an analysis window extend-
ing from 44.10 to 45.00 [deg] of latitude north and from 10.40 to 
11.40 [deg] of longitude east resulting in an area of approximately 
7,391 [km2], whereas the province of Firenze is embedded by an 
analysis window extending from 43.40 to 44.30 [deg] of latitude 
north and from 10.60 to 11.80 [deg] of longitude east resulting in 
an area of approximately 9,631 [km2]. These windows can be di-
vided in squared terrain tiles of variable size, concentrating the 
calculated variables in the centroid of each tile for rendering pur-
poses. The smaller the size of the tile, the higher the resolution 
of the depicted results; however to trade-off the computational 
burden of the GIS interface with the accuracy of the results’ ren-
dering, a terrain tile size of 0.25 [km2], i.e. 500 [m] per edge, has 
been considered, resulting in approximately 29,500 tiles for the 
province of Modena and 38,500 tiles for the province of Firenze. 
Additionally, the modules can be interfaced with external systems 
and datasets for additional specific analyses and applications. An 
example is provided for Module 4: in this case the energy demand 
calculated from different scenarios of fleet penetration of BEVs has 
been linked to the networks of POIs in order to derive the recharge 
infrastructure layout. For this specific application a POI database 
for commercial GPS applications has been downloaded from the 
web [65], and the POIs have been organized in classes according 
to five categories of infrastructures. In total 551 airports and air 
fields, 28,144 petrol stations, 1,507 shopping malls, 4,688 car park-
ing lots and 700 bus parking lots have been included, accounting 
in total for 35,590 POIs distributed all over Italy. The databases has 
been then filtered to derive POIs sub-sets related to the analysed 
provinces, resulting in 423 POIs in the province of Modena and 632 
POIs in the province of Firenze, to be then interfaced with the en-
ergy demand results and with GIS for rendering purposes. The POIs 
datasets is only an example of how other systems and datasets can 
be embedded within the developed platform, to enhance its com-
putational capabilities and applications.

3. Results

To illustrate the capability of TEMA, the results obtained ap-
plying its various modules to the two datasets referring to the 
province of Modena and Firenze are here below reported.

3.1. Urban mobility: key-results from large-scale statistics

The urban mobility is investigated through large scale statis-
tics via the Module 1 described in section 2.2. The results for the 
two provinces show that the share of the fleet that is in motion at 
the same time (averaged over the four weeks of the analysed pe-
riod, i.e. May 2011) never exceeds 11.72% in Modena and 10.36% 
in Firenze, with a mean value of 4.29% in Modena and 4.47% in 
Firenze. By looking at the weekly averaged time dependant val-
ues, the share of the driving fleet exhibits three peaks during the 
working days, i.e. from Monday to Friday, approximately at 7.30, at 
12.00 and at 18.30, and two peaks during the weekend, i.e. Satur-
day and Sunday, approximately at 12.00 and at 19.00. By averaging 
this data on a daily-basis rather than on a weekly-basis, the aver-
aged parked fleet share is most of the time above 90%, reaching 
a value above 99% from 1.00 and 5.00 in the morning, when al-
most all the vehicles are parked. These results suggests that, by 
shifting the conventional fuel vehicles to HEVs/BEVs, there is a 
large possibility to recharge, being the vehicles parked for most 
of the time, supporting the assumption of a single charging event 
per day, probably overnight when the maximum number of ve-
hicles are parked. By distinguishing between private vehicles and 
commercial vehicles substantial differences in the driving patterns 
arise. In particular the commercial fleet share in motion increases 
up to 15.23% in Modena and 16.57% in Firenze, suggesting a more 
intense activity of commercial vehicles compared to that of the 
private vehicles during the working days. On the other hand the 
activity of the commercial vehicles is slightly below that of the 
private vehicles during the weekend.

General statistics on the urban fleet show that the time-
averaged trip has a length between 5 and 20 [km], a trip duration 
between 10 and 20 minutes, a trip speed between 25 and 40 
[km/h] and parking duration between 2 and 12 hours, daily and 
nightly values respectively. These results highlight how the urban 
mobility demand is more fragmented during the day than during 
the night. Additionally urban driving speed reduces of approxi-
mately 60% during the day with respect to the night value due 
to the increase of the road congestion. By looking at the cumula-
tive and probability distribution results approximately 50% of the 
trips have a driving length below 3.5 [km], a duration below 8 
minutes and an average speed below 25 [km/h], while 90% of the 
trips are below 20 [km], lasting less than 30 minutes, with an 
average speed below 50 [km/h], with very similar results for both 
provinces. As far as parking duration is concerned, 50% of the park-
ing events lasts less than 50 minutes (i.e. eventually suitable for 
quick recharges), and 90% of the events take less than 700 minutes 
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(∼11.5 hours). Additionally half of the vehicles in the sample make 
less than 6 trips and 20 [km/day] and 30 trips and 200 [km/week], 
being parked for more than 90% of the time. Approximately 78% 
of the vehicles in the sample travel up to 50 [km/day] and ap-
proximately 9% of the vehicles in the sample exceed 100 [km/day], 
reducing to 3% exceeding 150 [km/day]. The practical implication 
of these results is that approximately 7 out of 10 among the ur-
ban vehicles exhibiting a predominant urban usage pattern never 
show a trip length above 100 [km], a value compatible with the 
driving range of most of the BEVs already available on the mar-
ket, implying that they can be targeted for early adoption of BEVs. 
These results provide a detailed picture of the urban mobility in 
the analysed areas, giving back a scenario characterised by short 
and frequent trips alternated to numerous parking events lasting 
for 2–4 hours in the day and for 8–12 hours in the night. This 
suggests the possibility to have a large widespread of the current 
HEVs/BEVs technologies as well as possible synergies between fast 
recharge during the day and slow recharge during the night. A de-
tailed description of the statistical results of the urban mobility, 
with all the relevant graphs and tables, can be found in [42]. As 
mentioned already above, this approach represents a new insight 
towards official statistic from big data analysis.

3.2. Potential of electric vehicles in replacing conventional fuel vehicles 
and modal-shift

The results of this analysis has the objective to derive the 
performances of different conventional fuel vehicles, HEVs, and 
BEVs following the activity patterns calculated from the data, 
to quantify the potential of new low-carbon vehicle technolo-
gies in reducing overall driving emissions and replacing conven-
tional fuel vehicles in urban areas. The results of this analysis 
strongly depends on the assumptions made, in terms of vehi-
cle model adopted, i.e. energy consumption and battery capacity 
coupled with recharging constraints and user’s behaviour, i.e. non-
aggressive/aggressive recharge, on-peak/off-peak recharge, indirect 
price-based/direct smart-grid recharge. By considering a small-to-
medium sized BEVs (battery size between 16.0 and 24.0 [kWh] 
and energy consumption between 180 and 210 [Wh/km]), regard-
less of the recharging strategy, the vast majority of the trips of the 
two databases, i.e. more than 80%, can be driven electric. This is 
a result derived at a fleet level, that is by considering the trips 
of the fleet as events not correlated one to each other, whereas 
by looking at the results at a vehicle level, approximately 10% to 
25% of the fleet is capable to drive only electric, depending on the 
recharge strategy, meaning that the trip sequence of the vehicle is 
never interrupted by trips failure events. These results lead to two 
conclusions:

• most of the real world urban mobility demand can be served 
by BEVs, thus enabling a shift from conventional fuel vehicles 
to BEVs of about four-fifths of the urban mobility;

• a non-negligible share of the fleet, i.e. approximately one-fifth, 
would not suffer any range limitation as consequence of this 
shift.

The remaining four-fifths of the fleet are instead subject to the 
modal-shift to cover a mobility demand which is not compatible 
with BEVs, although this modal-shift results to be rather limited. 
In fact it is estimated to be below one trip per week by increasing 
the BEVs fleet share from 25% to 50%, between one and two trips 
per week by increasing the BEVs fleet share to approximately 65% 
and between two and five trips per week by increasing the BEVs 
fleet share to approximately 80%. These results clearly highlight 
how, given the real world mobility demand, the target value of the 
EC White Paper for electric urban mobility, i.e. 50% of urban mobil-
ity shifted to HEVs/BEVs by 2030, can be already reached with the 
current generation of BEVs with a minimum modal-shift, thus im-
plementing better synergies between urban on-road transport and 
other modes of transport, e.g. public transport. In other words this 
implies that ambitious goals for electric vehicles in urban areas 
can be realistically achieved only by better exploiting the potential 
of the current BEVs technologies, and that the shift of urban mo-
bility towards low-carbon systems mostly depend on overcoming 
cost-scalability barriers and customers’ acceptance of BEVs. All the 
details of this analysis are extensively presented in [42] and [43].

3.3. Energy demand from electric vehicles in urban areas

Based on the results presented in the paragraph above, the elec-
tric energy demand in time and space from different shares of 
BEVs in the real world mobility can be derived. As per the re-
sults described in section 3.2, also these results strongly depend on 
the assumptions made on the vehicle model and on the recharge 
strategy. However, by assuming the small-to-medium sized BEVs 
as above, shifting a fleet share going from 10-to-25% from con-
ventional fuel vehicles to BEVs implies an electric energy demand 
increase on the province from 0.4% to 5.1% (value scaled up to 
the province fleet size and referred to the total electric energy 
consumption of the province, as per recorded data [66]). By con-
sidering that the domestic sector accounts for approximately 18% 
of the total electric energy demand in the province of Modena and 
26% of the total electric energy demand of the province of Firenze, 
the increase of the domestic demand, thus considering the BEVs as 
additional domestic devices, ranges from 2.2% to 19.6%. Time de-
pendent energy demand is strongly depend on the recharge strat-
egy adopted, and therefore, on the time constraints imposed by the 
strategy itself. The strategies that allow the recharge all over the 24 
hours, imposing constraints only on the parking duration, provide 
time dependent energy demand curves that practically resemble 
the driving and parking patterns of the fleet, reproducing the three 
activity peaks in the working days and the two peaks in the week-
end, as highlighted in section 3.1. On the other hand, the strategies 
that impose specific time constraints, i.e. overnight recharge or 
smart recharge controlled by a time window synchronised with the 
minimum energy demand of the province, provide time-bounded 
energy demand capable to fill the valley of the electric energy 
demand profile, and suggesting potential for synergies between do-
mestic/industrial energy demand and BEVs fleet. The power level 
also varies, depending on the recharging strategies and on the 
recharge power set by the infrastructure (assumed to be 3.3 [kW] 
of mono-phase AC infrastructure, 10 [kW] for the tri-phases AC 
infrastructure and 50 [kW] for the DC infrastructure, and scaled 
down to 2, 9 and 40 [kW] to account for the effect of the recharge 
profile), ranging from 0.4 [MW] to more than 4 [MW] for the dif-
ferent analysed cases [43]. By analysing the spatial distributions 
of the recharging events, it can be derived that, being the fleet 
sample characterised by vehicles with a predominant local driv-
ing patterns, the recharge demand is clustered around urbanised 
areas within the provinces, with one-fourth of the events taking 
place in a circle of 5 [km] of radius around the main city (i.e. 
Modena and Firenze, respectively), to increase to approximately 
two-thirds by considering a circle of 15 [km] of radius. Some dif-
ferences between the provinces can be observed, depending on 
the diversities of their urban planning, as well as on a clustering 
of the events around minor urbanised areas, involving Carpi, Mi-
randola, Sassuolo and Vignola for the province of Modena, Empoli 
and Prato for the province of Firenze. By considering the space de-
pendant results, the spatial energy demand can be either depicted 
with geo-referenced contours plots, thus deriving values ranging 
from approximately 200 [kWh/km2/day] to 1,000 [kWh/km2/day], 
or based on the demand per terrain tile representation, given the 
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Fig. 2. Extract from the geo-referenced energy demand results, province of Modena (a) and province of Firenze (b), whole province area (left, blue line indicates the province 
border) and zoom on the city area (right). These results refer to a medium-sized BEVs (i.e. battery size of 24.0 [kWh] and averaged energy consumption of 210 [Wh/km]) 
coupled with a smart recharge strategy (i.e. recharge allowed only in a time window of 4 hours, i.e. ±2 hours, around the minimum of the electric energy demand, at the 
power of 2 [kW]), referring to a conventional fuel o BEV fleet shift of nearly 20%. The results are reported in integral form in [44]. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
geographic representation described in section 2.3. Knowing the 
energy demand per load categories, it is possible to identifying de-
mand hot-spots to enable the infrastructure design presented in 
section 3.4. By assuming three ranges of energy demand, i.e. aver-
aged energy demand between 20 and 100 [kWh] per day, between 
100 and 250 [kWh] and above 250 [kWh], and associating to these 
ranges small-sized black squares, medium-sized blue squares and 
big-sized red squares, it is possible to derive a visual energy de-
mand map as reported in Fig. 2, where an extract of the results 
of the geo-referenced energy demand per tile for the provinces of 
Modena and Firenze is reported, for a medium-sized vehicle and 
a smart recharge strategy (conventional fuel to BEV fleet shift of 
nearly 20%). Note that this result is extracted among the several 
scenarios considered and reported in integral form in [44]. This 
representation provides a quick overview of where the demand 
spots are located, quantifying averaged daily values of energy re-
quested by the BEVs fleet as well as defining time dependency 
per different locations. It also enables to draft a detailed picture 
of the potential energy supply market which might develop as re-
sult of shifting from conventional fuel vehicles to BEVs, as well as 
estimating the potential for business opportunities, profitability of 
public and private investments and shift from oil to energy market, 
with consequent reduction of driving emissions and GHGs.

3.4. Recharge infrastructure design and V2G results

Based on the energy demand maps presented in section 3.3, the 
following step is to derive a customer-driven recharge infrastruc-
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Fig. 3. Extract from the geo-referenced customer driven infrastructure results, province of Modena (a) and province of Firenze (b), zoom on the city area. The results are 
derived under the same assumptions of Fig. 2, in order to enable a visual comparison of the electric energy demand-offer match. The results are reported in integral form 

in [46].
ture which relies on optimal energy demand-offer match, calculat-
ing how many recharging spots are needed and where they must 
be installed in order to serve the BEVs with the requested energy 
delivery service. As already mentioned in the description of the 
Module 4, the recharge infrastructure design relies on networks of 
potential locations where to install recharging spots, i.e. POIs net-
works built for commercial GPS applications. Different classes of 
POIs have been considered, and the electric energy demand-offer 
match algorithm is driven by geographical constraints, assuming 
that the energy demand calculated by the recharging model can 
be served by all neighbourhood locations within a specified area, 
within a distance of 1 [km] from the parking place. The poten-
tial demand can be either not met by any POI, thus constituting a 
match failure, or transferred to two or more POIs, if the demand 
event is happening in an area dense of potential suppliers, suggest-
ing market competition between different suppliers. As result of 
such algorithm, the model predicts a Geographic Key Performance 
Indicator (GeoKPI), representative of the capability of a specific POI 
to be as close as possible to the demand, and a Repetitiveness in-
dex (R), representative of the rate of occurrence of the recharges of 
the same vehicle at the same POIs, characterising the potential cus-
tomers as recurring or occasional customers. The set of parameters 
calculated by the model is finally complemented by the daily av-
eraged energy demand profile per POI, and, therefore by the sizing 
of the infrastructure based on the average number of recharging 
spots required. The results show that the GeoKPI assumes mid val-
ues in the densely populated areas, increasing to higher values in 
some isolated spots in rural areas outside the main districts, rep-
resenting the fact that more recharging locations might serve the 
same demand in the city areas, hence offering more choices to 
the customers than in isolated areas. Similarly the R index as-
sumes mid values in the city areas, whereas it tends to increase 
to higher values around isolated spots, resembling the fact that a 
large customers pool might be served in densely populated areas 
rather than in rural areas. An example of the recharge infrastruc-
ture layout is reported in Fig. 3, based on the same assumptions of 
medium-sized vehicle and a smart recharge strategy as per Fig. 2. 
By comparing these pictures it is possible to figure out how the 
demand-offer matching algorithm works, and how it allows de-
riving the geo-referenced layout of the customer driven recharge 
infrastructure. Note that also this result has been extracted among 
the several scenarios considered and reported in detail in [46]. 
In terms of global number of installed recharging spots, the re-
sults depends on the assumptions made; however it is noticed 
that for all the considered cases approximately 95% of the POIs in 
both provinces are suitable locations for installing recharging spots, 
with a number of plugs which is typically two-to-four times higher 
the circulating BEVs and an energy offer which is four-to-eight 
times higher than the demand. It is important to highlight that 
the model predicts the layout of the infrastructure under the hy-
pothesis of large-scale deployment of BEVs, therefore the number 
of recharging spots results to be compatible with a fully devel-
oped infrastructure, constituting a long-term scenario. However, 
the insights offered by this approach, as well as the possibility 
to isolate locations which might work as energy demand hubs to 
drive the early deployment of the infrastructure itself allow to use 
the present results also for short-to-mid-term scenarios.

On top of this, a V2G model has been implemented, based on 
the assumption that each parking event which is not associated to 
a recharge, not constituting an energy demand, can be used as a 
potential energy offer event, during which the parked vehicle can 
release a small amount of the energy stored in its battery back to 
the grid, i.e. 2% of its nominal capacity, to serve the neighbour ve-
hicles which are charging. The aim of this study is to understand 
whether the parked BEVs fleet which is not recharging can be used 
as a distributed energy storage system, filling the demand of those 
vehicles that are charging and reduce the load on specific locations 
characterised by high demand. In spite of the simplicity of this al-
gorithm, the results show that the electric energy load offered by 
the parked vehicles is a substantial share of the demand, which 
basically depends on the different recharge strategies adopted. The 
results suggest that the energy offer ranges from 30% to 50% of 
the energy demand for AC recharges, decreasing from 10% to 30% 
for the DC recharges. Time dependant analysis show that the V2G 
can shave peak demands from 25% to 50% in specific hot-spots, 
suggesting a good potential of such application and opening-up 
to more refined and better controlled algorithm to further im-
prove the performances of future V2G applications. The details of 
these results, including an analysis for several scenarios, are also 
reported in full in [46].
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Fig. 4. Geo-referenced CO2 real-world driving emissions, province of Modena (a) and province of Firenze (b), whole province area (left, blue line indicates the province 
border) and zoom on the city area (right). The results are calculated from the fuel consumption records of the year 2008 [67] and emission factors from [59,60] estimating 
150.6 [g/km] for the passenger cars in the province of Modena and 162.8 [g/km] in the province of Firenze. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
3.5. Driving and evaporative emissions results

As described in section 2.2, Module 5 is built to estimate the 
geo-referenced gaseous emissions based on the real world patterns 
of vehicles, under different assumptions of the fleet composition. 
As explained above, three types of emission sources are consid-
ered: driving emissions, related to the operation of the internal 
combustion engine during driving phases, cold-start emissions, re-
lated to the release of hydrocarbons happening when the vehicle is 
operated with cold-catalyst, and evaporative emissions, related to 
the VOCs emitted when the vehicle is parked. As far as the latter 
emission source is concerned, this is made of three main compo-
nents: fuel vapours emitted by the fuel injection system imme-
diately after the combustion engine is switched off (i.e. hot-soak 
losses), fuel vapours permeating through the plastic material of 
the fuel tank system (i.e. permeation losses), and the fuel vapours 
generated in the tank which are not adsorbed by the activated 
carbon canister (i.e. breathing losses). All these emission sources, 
handled by a single simulation platform, contribute to an overview 
of the global atmospheric impact of on-road vehicles as derived 
from their real world driving and parking patterns, allowing con-
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Fig. 5. Extract from the geo-referenced evaporative VOCs emissions results, province of Modena (a) and province of Firenze (b), zoom on the city area. The results are derived 
by considering the worst emission scenario, i.e. month of July, tank headspace volume of 40 [l], activated carbon mass of 100 [g] and desorption flow rate of [100 l/h], i.e. 
scenario 28 according to results reported in [47].
sidering the global effect of different fleet scenarios and diverse 
shares of HEVs and BEVs in the urban fleet.

As far as driving emissions concerns, preliminary results on real 
world CO2 emissions are reported in Fig. 4 in the areas of Modena 
and Firenze. The average fleet share weighted value of CO2 grams 
per km have been calculated by considering the yearly fuel con-
sumption statistics in Italy for each fuel type [67], the emission 
factors as per [59], as explained in section 2.2, the number of ve-
hicles for each vehicle category and the related total km driven per 
year for each vehicle category as per [68,63]. The classification of 
vehicles according to their emission control technologies is made 
on the basis of the legislation they comply with [68]. The calcu-
lated average CO2 emissions in [g/km] for each vehicle type are 
then scaled up to the province fleet size considering the province 
fleet share [68]. A weighted fleet share value of CO2 [g/km] is 
hence derived to be geo-referenced for the given province area. 
The results reported in Fig. 4 refer only to the passenger cars 
(both gasoline and diesel), as per the vehicles in the databases. 
The simplified assessment foresees also light and heavy duty vehi-
cles, buses, mopeds and motorcycles, not considered in this exam-
ple. Applying this methodology for the year 2008, and assuming 
that the driving pattern was the same as that recorded for 2011, 
a weighted passenger cars fleet emission factor of CO2 equal to 
150.6, [g/km] for the province of Modena and 162.8, [g/km] for 
the province of Firenze is derived. These values are in line with 
values reported in literature [69]. These CO2 emission factors have 
been then distributed over the geo-referenced driving patterns, 
scaled up to the surveyed urban fleet of the province, represen-
tative of the 30.7% of the total fleet, integrated in time over the 
analysis period of one month and averaged per day. Fig. 4 shows 
how CO2 sources distribute over the major roads in the province, 
with a peak value beyond 600 [t/km2/day] in Modena and beyond 
1,200 [t/km2/day] in Firenze. The average values calculated on the 
roads result to be, in both cases, approximately one-third of the 
peak values. A similar estimation can be done per other pollutants 
too, such as carbon monoxide, nitrogen oxide, hydrocarbons and 
particulate matter.

As far as the evaporative emissions concerns, the work has 
been developed to support a more effective type approval proce-
dure, according to the article 4 of the regulation (EC) No. 715/2007 
[70] and the communication 2008/C 182/08 [71]. The results high-
light that the evaporative emissions control system currently fitted 
into most of the European passenger cars might not effectively 
work under real world usage condition, especially at low Euro-
pean latitudes (i.e. Mediterranean countries such as Spain, Italy 
and Greece), and during late spring and summer (i.e. from May to 
September). In fact the thermal cycle imposed by the average daily 
temperature at such latitudes, combined with the fragmentation of 
the trip and parking events, as highlighted by the urban mobility 
analysis, do not allow an effective desorption of the fuel vapours 
from the activated carbon canister during the driving phase, re-
sulting in a substantial loss of effectiveness of the emission control 
system and leading to uncontrolled VOCs emissions significantly 
above the limit imposed by the current type approval regulation 
(i.e. 2 [g/day]). The results show that only 2.5% of the of real world 
trips are driven in a condition which is comparable to the current 
European type-approval test procedure, and that more than 80% of 
the evaporative emissions events potentially exceed the emission 
limit. The emission peak value is estimated to be approximately 
4 [g/day] in May and 8 [g/day] in July while the time-dependent 
results show emission rates up to nearly 15 [g/s] in the province 
of Modena and 30 [g/s] in the province of Firenze for the gaso-
line urban fleet, with a cumulative value up to 0.4 and 0.8 tons 
of VOCs per day in July, respectively in the two provinces. The 
space-dependent results show a value of the emissions in July of 
approximately 4-to-8 [kg/km2/day]. Fig. 5 reports an extract of the 
geo-referenced evaporative VOCs emissions distribution reported 
in [47], in the city area of Modena and Firenze. These results refer 
to the condition characterised by the highest emissions among the 
36 scenarios considered, i.e. scenario no. 28, month of July, tank 
headspace volume of 40 [l], activated carbon mass of 100 [g] and 



M. De Gennaro et al. / Big Data Research 6 (2016) 11–25 23
desorption flow rate of [100 l/h]. Such results both confirm the 
need of revising the current normative designing a type approval 
test which is more representative of real world conditions as well 
as the possibility of reverse-engineering the emissions control sys-
tem to keep the VOCs emissions below the type approval limit, 
given the real world use conditions. The results also suggest that 
combining an activated carbon canister mass with an increased 
mass of activated carbon, i.e. 400 [g], with a canister desorption 
volume flow rate of 400 [l/h] might significantly reduce real world 
evaporative emissions. Note that the vehicles certified under the 
current type approval test for evaporative emissions are equipped 
with a carbon canister with a mass of activated carbon ranging 
from 150 to 250 [g] and a desorption flow rate of approximately 
200 [l/h]. More details on the topic and a comprehensive scenario 
analysis, with the details of the models implemented, are provided 
in [45] and [47].

3.6. Generalisation of the results

The results presented in the previous sections show the dif-
ferent capabilities of the TEMA platform, both in managing and 
analysing large sets of data as well as in supporting policy assess-
ment, design, and verification, identifying non-obvious relations 
among large datasets. The generalisation of these results is a key 
aspect in big data studies. The present work illustrates the results 
obtained considering data from two Italian provinces, and, given 
the representativeness of the sample discussed in section 2.1, re-
sults are certainly valid at a regional level in the analysed areas. 
Additional datasets will be analysed referring to other European 
countries both to extend the analysis as well as to highlight the 
differences in the mobility behaviour across Europe.

To assess the potential of the GPS data in contributing to mo-
bility studies, the results for the two analysed provinces have been 
compared with relevant statistics from other European countries 
and from USA, as per [42]. The comparison shows a homogene-
ity of the results in EU, and a substantial difference with USA, 
where people move in a different way, given the larger distances 
that characterise US urban areas. Another aspect that must be 
taken into account is the fact that the statistical data is in general 
acquired with different means (i.e. geo-coded Computer-Assisted 
Telephone Interviews (CATI), face to face or written survey), in re-
spect to the data of the present paper, acquired via GPS, resulting 
in more accurate information, not affected by personal interpreta-
tion as it can occur with survey interviews. The survey data can 
be easily biased by personal evaluations errors and short journeys, 
viewed as insignificant by interviewed persons, can be omitted. 
This is likely to decrease the number of trips per day as well as in-
crease average trip distances being long trips overrepresented and 
short trips underrepresented. The results presented in this work 
are representative of average medium-sized urban areas, and they 
can presumably be extended to most of the European cities. They 
cannot be extended to areas characterised by significantly larger 
population (e.g. large EU cities like Paris or London), as well as 
to US and Chinese megalopolis, where mobility demand and in-
frastructural networks are significantly different than those repre-
sented in this work.

4. Conclusions and future applications

This paper presents the results of the data processing platform 
TEMA designed for supporting EU transport policies assessment via 
big data. The platform is natively conceived for multi-purpose ap-
plications, and it is made of 6 modules: pre-processor, statistical 
mobility module, modal shift and vehicle usability module, energy 
demand module, infrastructure design module, V2G applications 
and gaseous emission module.
TEMA has the objective to investigate the activity patterns of 
large scale samples of conventional fuel vehicles or GPS data to un-
derstand the mobility in urbanised areas, evaluating the potential 
of deploying low-carbon vehicles, i.e. HEVs and BEVs, and deriving 
the modal-shift introduced by these technologies. Their impact in 
term of energy demand on the electric energy distribution grid is 
also addressed, together with the smart design of the infrastruc-
ture and V2G solutions. Additionally a gaseous emissions model is 
also implemented, to evaluate the driving, cold-start and evapo-
rative emissions of the current conventional fuel vehicles fleet, as 
well as the decrease of the emissions introduced by shifting shares 
of this fleet to HEVs and BEVs.

TEMA has been already used to support the revision of the type 
approval procedure for evaporative emissions test, subsequent to 
the article 4 of the regulation (EC) No. 715/2007 [70] and the com-
munication 2008/C 182/08 [71] and for supporting the directive on 
the deployment for alternative fuel infrastructure in EU [72] and 
technical guidelines for eco-innovation [73].

This work shows the effective development and implemanta-
tion of a methodology capable to handling large amount of data, 
identifying non-obvious relations among it and performing cus-
tomised analyses. The presented application consists in processing 
data from two large GPS databases from urban vehicles, to assess 
the impact of low-carbon road transport technologies and policies. 
The first level is the analysis of the urban mobility that results 
to be fragmented in a high number of short trips with an aver-
age trip distance of approximately 5 [km] and trip duration of 10 
minutes associated to a mean parking duration of approximately 
2 hours during the day, versus a trip distance of 20 [km], a trip 
duration 20 minutes and parking duration of 12 hours during the 
night. Half of the vehicles in the sample make less than 6 trips 
and 20 [km/day] and 30 trips and 200 [km/week], being parked 
for more than 90% of the time. Approximately 78% of the vehi-
cles in the sample travel up to 50 [km/day] and approximately 9% 
of the vehicles in the sample exceeds 100 [km/day], reducing to 
3% exceeding 150 [km/day], a value that is compatible with the 
driving range of most of the BEVs available on the market. These 
results suggest a large potential for deploying BEVs in cities with-
out significantly affecting the real world activity patterns, together 
with the possibility to establish synergies between fast recharge 
during the day and slow recharge during the night. In numbers, 
approximately from 10% to 25% of the urban fleet can be targeted 
for an early deployment of BEVs, being its activity fully compati-
ble with the BEVs constraints, increasing to approximately 50%, i.e. 
the 2030 EU target value as per [1], by accepting a rather limited 
modal shift up to one trip per week. The electric energy demand 
increase derived from this shift ranges from 0.4% to 5.1% of the to-
tal electric energy demand in the analysed provinces, i.e. from 2.2% 
to 19.6% of the domestic electric energy demand, with a power de-
mand ranging from 0.4 [MW] to more than 4 [MW] depending on 
the infrastructure, i.e. AC and/or DC, and on the assumptions of 
the model. This results show how a large set of GPS data can sup-
port mobility studies and the assessment of innovative transport 
technology deployment in urban areas. Additionally to this assess-
ment, a smart recharge infrastructure design algorithm has been 
implemented. It derives a number of recharging spots from two-
to-four times higher than the circulating BEVs with the possibility 
to implement V2G applications using BEVs fleet as a system of dis-
tributed energy storage devices for decreasing the energy demand 
in recharging hubs up to a value ranging from 30% to 50% for AC 
recharges, and from 10% to 30% for the DC recharges.

The results from the emissions model show how driving and 
evaporative emissions from conventional fuel vehicles can be quan-
tified and geo-referenced based on real world driving data, and 
therefore how such models can be used to understand how, and 
to which extent, the deployment of low-carbon vehicles can effec-
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tively decrease pollutant emission and GHGs in urban areas, under 
different scenarios and constraints.

Together with these results this paper aims to underline how 
challenging is the development of big data applications, but also 
the opportunities offered by this approach, providing unprece-
dented insights on urban mobility, simulating, with detail never 
reached before, the consequences of deploying low-carbon vehicle 
technologies on large scale based with real world activity patterns, 
geo-referencing the impact of the oil-to-electricity energy demand 
shift, suggesting the layout of a customised alternative fuel in-
frastructures and the development of V2G applications for future 
smart grids and smart cities.

TEMA is natively conceived to operate on a regional/national 
scale, and the authors foresee extending the analysis to several 
European regions, with the objective of addressing low-carbon mo-
bility policies on a continental scale. The results achieved and the 
potential offered by big data suggest how this discipline can sub-
stantially increase the effectiveness of future policies in the field 
of transport and energy, ultimately changing the policy making de-
velopment processes and promoting the active participation of the 
citizens to data collection campaigns for shaping the Europe of to-
morrow.
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