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8 ABSTRACT | Every day a large number of Earth observation

9 (EO) spaceborne and airborne sensors from many different

10 countries provide a massive amount of remotely sensed data.

11 Those data are used for different applications, such as natural

12 hazard monitoring, global climate change, urban planning,

13 etc. The applications are data driven and mostly interdisci-

14 plinary. Based on this it can truly be stated that we are now

15 living in the age of big remote sensing data. Furthermore,

16 these data are becoming an economic asset and a new impor-

17 tant resource in many applications. In this paper, we specifi-

18 cally analyze the challenges and opportunities that big data

19 bring in the context of remote sensing applications. Our focus

20 is to analyze what exactly does big data mean in remote sens-

21 ing applications and how can big data provide added value in

22 this context. Furthermore, this paper describes the most chal-

23 lenging issues in managing, processing, and efficient exploita-

24 tion of big data for remote sensing problems. In order to

25 illustrate the aforementioned aspects, two case studies dis-

26 cussing the use of big data in remote sensing are demon-

27 strated. In the first test case, big data are used to

28 automatically detect marine oil spills using a large archive of

29 remote sensing data. In the second test case, content-based

30information retrieval is performed using high-performance

31computing (HPC) to extract information from a large database

32of remote sensing images, collected after the terrorist attack

33to the World Trade Center in New York City. Both cases are

34used to illustrate the significant challenges and opportunities

35brought by the use of big data in remote sensing

36applications.

37KEYWORDS | Big data; big data challenges; big data life cycle;

38big data opportunities; high-performance computing (HPC);

39remote sensing

40I . INTRODUCTION

41As moving data generators, human beings create data ev-

42eryday. We are all connected by sharing data from social

43networks, intelligent devices, etc. Remote sensing de-

44vices have been widely used to observe our planet from

45various perspectives and to make our lives easier. It is

46not exaggerated to say that the whole Earth has now

47been made digital. Therefore, the digitized Earth plus

48the moving data generators are the main actors for big
49data in remote sensing, which can be used to make

50governments more efficient (e.g., improving services

51like police, healthcare and transportation) and also for

52business, i.e., to improve decision making, manufactur-

53ing, product innovation, consumer experience and ser-

54vice, etc.

55As reported by IBM, 2.5 quintillion bytes of data are

56now generated every day. In other words, “90% of the
57data in the world today has been created in the last two

58years alone.”1 We are truly living in the big data age, and

59now government leaders, enterprises, and nonprofit orga-

60nizations are quickly realizing that it is very important to

1“What is big data?” in http://www-01.ibm.com/software/data/
bigdata/.
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61 collect big data in different contexts. However, there still
62 exists a common problem related to how we can gain in-

63 sights into big data. This problem is a conundrum: On

64 one hand, a wealth of big data can bring us big opportu-

65 nities. On the other hand, we still do not know how to

66 harness such big amount of data with tremendous com-

67 plexity, diversity, and heterogeneity, yet with high poten-

68 tial values. This makes the data very difficult to process

69 and analyze in a reasonable time.2

70 Big data can be mainly characterized by three fea-

71 tures: volume, variety, and velocity, defined as three “V”

72 dimensions by Meta Group (now Gartner) in 2001 [1]. It

73 is worth noting that “value” is an important quality of

74 big data, but it is not a defining characteristic. Big re-

75 mote sensing data can be described by its own dimen-

76 sions (referred hereinafter as 3Vs).

77 1) The archived data are characterized by their in-
78 creasing volume, from terabytes (TB ¼ 1024 GB)

79 to petabytes (PB ¼ 1024 TB), and even to exa-

80 bytes (EB ¼ 1024 PB). For instance, a huge

81 amount of remote sensing data are now freely

82 available from the NASA Open Government

83 Initiative.3 Only one of NASA archives, the

84 Earth Science Data and Information System

85 (ESDIS), holds 7.5 PB of data with nearly
86 7000 unique data sets and 1.5 million users in

87 2013 [2]. This volume only contains in-domain

88 remote sensing data.

89 2) In terms of variety, we can see now that big re-

90 mote sensing data consist of multisource (laser,

91 radar, optical, etc.), multitemporal (collected on

92 different dates), and multiresolution (different

93 spatial resolution) remote sensing data, as well
94 as data from different disciplines depending on

95 several application domains [3].

96 3) The velocity of big data in remote sensing in-

97 volves not only generation of data at a rapid

98 growing rate, but also efficiency of data process-

99 ing and analysis. In other words, the data should

100 be analyzed in a (nearly) real or a reasonable

101 time to achieve a given task, e.g., seconds can
102 save hundreds of thousands of lives in an

103 earthquake.

104 Although the 3Vs can describe big data, we consider

105 that it is not necessary for big data in remote sensing to

106 satisfy all the three V dimensions. For instance, any one

107 of volume and velocity, volume and variety, or variety

108 and velocity can already define a big data problem. Ex-

109 cept for the common challenges of big data characterized
110 by the 3Vs, there are other challenges for the remote

111 sensing applications, such as extensibility to integrating

112 multiple disparate management systems for different sat-

113 ellites for a remote sensing data center [4]. Of particular

114importance is the value of the data, an important quality
115hidden in the big data. Data processing methods can be

116utilized to discover such value, and then the value of big

117data can be realized in a real remote sensing application.

118Therefore, to better understand big data, three per-

119spectives should be unified, i.e., owning data, data appli-

120cations, and data methods. In the paper, a trinity

121framework is proposed to better understand big data in

122the context of remote sensing applications. All the facets
123of such trinity share common challenges and different

124perspectives have individual challenges of its own.

125In this work, these common and individual challenges

126are discussed in the context of remote sensing applica-

127tions. In spite of such big challenges, the potentials of big

128remote sensing data are presented in detail. These poten-

129tials have been applied to deal with different real-world

130problems, such as archaeology [5], crop assessment and
131yield forecasting [6], [7], food security [8], human health

132[9], [10], land development and use [11], urban planning,

133management, and sustainability [12]–[15], forest monitor-

134ing [16], war and conflict studies [17], and several others.

135To illustrate the effectiveness of big remote sensing

136data, two case studies discussing the use of big data in

137remote sensing are demonstrated in this paper. In the

138first test case, social media data together with remote
139sensing images are identified to consist of big remote

140sensing data for automatical marine oil spill detection

141and then a new data methodology is adopted to deal

142with labeling challenges. In the second test case, con-

143tent-based information retrieval is performed using

144high-performance computing (HPC) to extract informa-

145tion from a large database of remote sensing images,

146collected after the terrorist attack on the World Trade
147Center in New York City on September 11, 2001.

148The remainder of the paper is organized as follows.

149The next section discusses our understanding on big data

150in remote sensing from three different perspectives. Ac-

151cording to our view on big data, Section III divides big

152data challenges into common challenges for all remote

153sensing applications and individual challenges in individ-

154ual facets of the so-called trinity of big data. Then, the
155potentials of big remote sensing data are presented in

156Section IV. Section V presents the aforementioned case

157studies of big data in remote sensing. Finally, Section VI

158draws some conclusions of the work and discusses future

159developments.

160II . UNDERSTANDING BIG DATA IN
161REMOTE SENSING

162From a general perspective, we can understand big data

163as having different connotations regarding those who

164own the big data, those who can process and analyze the

165big data, and those who utilize the big data. Accordingly,

166different data methods may be exploited to tackle big

167data challenges in order to efficiently derive the value of

2The 462nd Session of the Xiangshan Science Conference, Beijing,
China, May 29–31, 2013.

3http://www.nasa.gov/open/
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168 those data. In the following, a trinity (three in one) is
169 discussed for the understanding of big data (with particu-

170 lar focus on remote sensing applications). Here, we iden-

171 tify three facets for understanding big data, i.e., owning

172 data, data methods, and data applications, which contrib-

173 ute together to a single big data life cycle. The trinity

174 concept of big data is illustrated in Fig. 1. There are com-

175 mon and different challenges in the individual facets of

176 understanding big data, which are detailed next.

177 A. First Facet: Owning Data
178 This is an important aspect of big data based on

179 which we can identify applications and utilize or design

180 proper data methods to address a real problem (e.g., a

181 remote sensing problem). The corresponding opportuni-

182 ties are based on the fact that more diverse data can be

183 acquired by intelligent devices where most of human be-
184 ings have access to the internet now to become both in-

185 dividual and moving data generators. Accordingly, data

186 values can be derived from those complex, diverse, het-

187 erogeneous, and high-dimensional remote sensing data

188 and other data from cyberspace. However, big challenges

189 arise at each step when obtaining and organizing big

190 remote sensing data. For instance, remote sensing data

191 are acquired from satellites, airplanes, or other sensing
192 devices while the other forms of data are retrieved

193 from cyberspace. Remote sensing data are preprocessed

194 by geometric and radiometric correction, georeferen-

195 cing, noise removal, etc. [18], and the data from cyber-

196 space should be cleaned to reduce errors and noise, in

197 which data quality can be improved. Remote sensing

198 data should be delivered from satellites to ground sta-

199 tions, and from ground stations to customers. Other re-
200 lated issues are data compression, data archiving, data

201 retrieval, data rights and protection, etc. We emphasize

202 that data are of no value until they are utilized for ap-

203 plications. The key difference between traditional data

204 and big data is how to identify the right data sets and

205 how to combine them to solve a challenging or novel

206 problem.

207B. Second Facet: Big Data Methodologies
208A big data methodology should be designed to sys-

209tematically address big data problems from different re-

210mote sensing domains. Such methodology is used to

211design new data methods for big remote sensing data

212preparation, data deployment, information extraction,

213data modeling, data fusion, data visualization, and data

214interpretation. These aspects are particularly crucial in

215remote sensing applications, in which preprocessing
216steps are as equally important as information extraction

217steps. However, data processing and analysis represent a

218multistep pipeline and data-driven methods could be sig-

219nificantly different from the viewpoint of specific appli-

220cations and domains.

221Due to the aforementioned heterogeneity and high

222dimensionality of big data in remote sensing, we also

223face important computational and statistical challenges
224related to processing scalability, noise accumulation, spu-

225rious correlation, incidental endogeneity, and measure-

226ment errors [19], [20]. These challenges require new

227computational and statistical techniques in order to

228tackle big data analysis and processing. The analysis and

229processing techniques are data driven and can benefit

230from theories and methods from the fields of statistics,

231machine learning, pattern recognition, artificial intelli-
232gence, data mining, etc. Domain knowledge is another

233crucial aspect that should be tightly linked to data

234analysis.

235C. Third Facet: Big Data Applications
236A main goal in big data applications is to identify the

237right data to solve the problems at hand, which are diffi-

238cult to be addressed or mostly cannot be manipulated by
239traditional remote sensing data. Then, the next problem

240is how to collect, organize, and utilize these big data to

241deal with real remote sensing problems.

242To identify the right data, we should be closely linked

243to the first facet of understanding big data. In other

244words, to harness big data firstly one should obtain data

245from the related data agents (or, in general, data industry

246or organization). In order to access the data, collabora-
247tion across domains or organization should be taken into

248account in an efficient manner. This is one of crucial

249challenges in remote sensing applications.

250After obtaining the right data, such as remote sensing

251data, textual data and pictures from social networks, in-

252novative data methodologies should be developed to dis-

253cover, realize, and demonstrate the value of big data for

254remote sensing applications.

255III . BIG DATA, BIG CHALLENGES

256The challenges of big data in remote sensing involves not

257only dealing with high volumes of data [21]. In particu-

258lar, challenges on data acquisition, storage, management,

259and analysis are also related to remote sensing problems

Fig. 1. Trinity for understanding big data, i.e., three facets of big

data from different perspectives related to who owns big data,

who has innovative big data methods and methodologies, and

who needs big data applications.
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260 involving big data. In this section, we particularly ana-

261 lyze the challenges of big data in remote sensing which

262 involve the different facets of understanding big data in

263 the previous section.

264 From different perspectives of understanding big

265 data, we are facing big challenges in leveraging the value

266 that data have to offer. In the three facets, the same

267 challenges are shared, such as data computing, data col-
268 laboration, and data methodologies for different applica-

269 tions; in the meantime, we are facing different

270 challenges in the individual facets of understanding big

271 data. Fig. 2 summarizes the common and different chal-

272 lenges, which are described in detail in subsequent

273 sections.

274 A. Common Challenges
275 In the following, three common challenges, i.e., big

276 data computing, big data collaboration, and big data

277 methodologies, are listed according to the trinity of un-

278 derstanding big data in remote sensing.

279 1) Big Data Computing: A challenge in the design of

280 high-performance systems for big data computing is to

281 develop more heterogeneous systems able to integrate re-
282 sources in different locations [22]. Although cloud com-

283 puting systems have been shown to realize a high level

284 of aggregate performance in remote sensing applications,

285 there are still challenges remaining regarding the pro-

286 gressive incorporation of the concept of cloud computing

287 to remote sensing studies [23]. The ultimate goal should

288 be making distributed collections of data easy to access

289 from different users. However, a remaining challenge is
290 the energy consumption, which is still difficult to lever-

291 age in massively parallel platforms or even in onboard

292 processing scenarios. Addressing these challenges will be

293 important for the full incorporation of big data comput-

294 ing techniques to remote sensing applications. Literature

295 for big data in remote sensing mainly focuses on the vo-

296 luminous issue of big data computing and considers it as

297a data-intensive computing problem [24]. Usually, an
298HPC paradigm is exploited for (nearly) real-time big data

299processing [20], [23], [25].

3002) Big Data Collaboration: The ownership of data in re-

301mote sensing problems is generally fragmented across

302data agents or industries [26]. Accordingly, data access

303and connectivity can be an obstacle. Legitimate concerns

304can be raised to achieve cross-sector collaboration which
305motivates data sharing, such as social text or social me-

306dia. However, individuals often resist to sharing personal

307data due to security and privacy. This is contradictory to

308the idea of data personalization. In addition, numerous

309data firms regard big data as proprietary and thus do not

310obtain an incentive to share data. Concurrently, it is an

311important challenge for government institutions to share

312data unless all participants can achieve material benefits
313and incentives in data sharing that outweigh the risks

314[27]. For instance, even if NASA is now sharing a sig-

315nificant amount of remote sensing data under the open

316government initiative,4 most high-quality, high-spatial-

317resolution images are still unavailable to the public.

318Therefore, it is necessary to find new ways of collabo-

319ration for improved big data access in remote sensing

320problems.

3213) Big Data Methodologies: The problem of analyzing

322big data in remote sensing can be simply formalized as

323follows. Let X be an input data set and let fðXÞ be a

324mapping function between an input x 2 X and the out-

325put y. Then, a common data analysis task can be formu-

326lated as

y ¼ fðXÞ

327where the corresponding processing can be carried out

328in the memory of a computer containing the data input.

329However, big data analysis should generally adopt a

330mechanism to partition the data input into a distributed

331and/or parallel architecture, i.e., X ¼ fX1;X2; . . . ;XNg,
332which means splitting the bigger set X to N smaller data

333sets. The adopted data methods or algorithms, i.e., fð�Þ,
334should be modified to satisfy the new computing envi-
335ronments. Although this is, in general, a simplification

336(as the smaller data sets may not be easy to process inde-

337pendently and involve some synchronization and/or com-

338munication in the associated processing task), an

339important challenge for this processing scheme is that

340not all exiting algorithms can be distributed or efficiently

341implemented in parallel form. Even if data processing

342methods can do so, it is challenging to collect the distrib-
343uted data and to deliver those data to the right comput-

344ing node. As a result, big data processing in general (and

Fig. 2. A summary of the challenges introduced by big data.

4https://www.opengov.com
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345 in remote sensing in particular) needs new computa-

346 tional and statistical paradigms with regards to standard

347 data processing strategies.

348 B. Individual Challenges
349 In this section, a few crucial challenges are discussed

350 in the context of designing a big remote sensing data life

351 cycle (see Fig. 3). After understanding the business need

352 (e.g., a remote sensing application involving big data),

353 some important steps are to identify the right type of

354 data across different disciplines, to deploy the big data,
355 to utilize or design innovative data methods, and finally

356 to visualize and interpret the obtained results. Here, data

357 methods include data analysis, data modeling, data pro-

358 cessing, etc.

359 1) Proper Data Identification: Big remote sensing data

360 usually include in-domain data and out-domain data. In

361 the past, those different formats of data have been sel-
362 dom combined to fulfil remote sensing applications/

363 tasks. Therefore, the data are of no value unless har-

364 nessed to accomplish a specific task. Accordingly, the

365 key difference between traditional remote sensing data

366 and big remote sensing data lies in how to select and

367 combine different formats of data to address real-world

368 problems previously deemed intractable. This is a key

369 challenge of big data, i.e., how to identify and exploit the
370 proper data to solve the problem at hand.

371 In remote sensing, we have many different kinds of

372 data [28], including optical (e.g., multispectral and hy-

373 perspectral), radar [e.g., synthetic aperture radar (SAR)],

374 or laser [e.g., light detection and ranging (LiDAR)] pro-

375 vided by airplane or satellite or ground sensors. Other

376 kinds of data sources can also be integrated in remote

377 sensing problems, i.e., internet textual data (e.g., news,
378 web logs, etc.) can be used to help labeling data patterns

379 provided by remote sensors [3], such as through active

380 learning [29] or crowdsourcing techniques [30], which

381 involve low or no cost. Also, image data taken by individ-

382 uals from social networks can be taken into account for

383 assisting in remote sensing data interpretation tasks.

384 Other data formats such as census data, meteorological

385data, intelligent transportation data, high-fidelity geo-
386graphical data, healthcare data, and so on, can be of sig-

387nificant help to solve a specific real-world problem, e.g.,

388monitoring food security [31].

3892) Challenges in Data Possession: After the data have

390been transmitted to the ground station, those data should

391be stored in a system. A data storage system usually con-

392sists of hardware and software components. In the for-
393mer, the hardware infrastructure should be flexibly

394adapted to different application environments. In terms

395of software, the data storage system is usually equipped

396with various interfaces, data archives, and queries from

397web services for users’ interactions. With the rapid

398growth of remote sensing data, traditional structured re-

399lated database management systems (RDBMSs) cannot

400meet the requirements of managing big data in remote
401sensing. Accordingly, it is urgent to adopt or to design a

402novel data storage system which can meet the rapid

403growth of big remote sensing data in PB scale or larger.

404This general discussion on big data storage can be re-

405ferred to [32].

406Data delivery provides access to remote sensing data

407and metadata to users, both at main ground stations or

408networks of receiving ground station. Usually, this con-
409sists of graphical web portals that provide access to data

410and searching of metadata to users. Traditionally, users

411download data of interest from a central archive to their

412local computers for analysis. This cannot work in big

413data applications as the sharp growth of data sizes cannot

414allow the current system to deliver the data to users for

415local computing. In particular, if an emergency such as

416an earthquake occurred, a large amount of data should
417be received for data analysis in a very short time, as few

418seconds can save many lives by timely warnings. This is

419another big challenge for those owning big data, as ex-

420tremely diverse and high-dimensional data should be de-

421livered and analyzed in a short time interval due to the

422volume and velocity properties of big data. Therefore, a

423real-time big data analysis platform should be developed

424to deal with online remote sensing data together with
425offline data in local data center or from distributed data

426centers for a real-time application, such as weather fore-

427cast, hazard warning, etc.

4283) Data Deployment: As discussed in Section III-B1, a

429critical challenge is to identify the proper data source to

430achieve a specific goal which is difficult to fulfill without

431big data. Another challenge of big data is how to deploy
432the data for real applications. In the phase of big data ap-

433plication, big data deployment encompasses data prepara-

434tion, data management technologies, data methods and

435techniques, and so on. That is, how to obtain the data,

436how to store the data in the computing environment,

437and how to build models to get insight of big data should

438be carefully designed in the big data deployment step.

Fig. 3. Life cycle to address big data tasks in remote sensing

applications.
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439 Due to the volume and velocity properties of big data,
440 traditional methods cannot be used for deployment pur-

441 poses. Accordingly, new technologies should be taken

442 into account, such as distributed data management tech-

443 nologies, schema-less data models, active visualization

444 techniques and so on, to gain meaningful insights on the

445 big data.

446 4) Data Representation: Various sources of remote
447 sensing data have different spectral and spatial resolu-

448 tions and usually are acquired on different dates [33].

449 For instance, in optical data the spectral signature of ev-

450 ery material is unique in a laboratory measure. However,

451 spectral signatures of field data are changeable due to

452 variation of materials, environmental effects, surface

453 contaminants, adjacency effects by nearby objects, sea-

454 sonal changes, and so on [34]. This can lead to the phe-
455 nomenon that similar signatures could denote different

456 objects, while different signatures might denote the same

457 object. This phenomenon is similar to the “semantic gap”

458 observed in computer vision, i.e., the divergence be-

459 tween the information coming from data and the knowl-

460 edge interpreted by users [35]. In recent years, deep

461 neural networks (DNNs) [36] have successfully ad-

462 dressed the classification problem in computer vision to
463 fill the semantic gap via automatic feature extraction in a

464 deep manner [37]. Although DNNs have been adopted

465 for feature selection and classification tasks when analyz-

466 ing remote sensing images, in most of the works con-

467 ducted so far only spectral features or the transformed

468 spectral features (e.g., principal components) are used as

469 inputs to the DNNs to generate a “better” representation

470 of remote sensing images [38]–[40]. In the published
471 work, usually components from the original feature vec-

472 tors correspond to the spectral reflectance of land-cover

473 targets, which means that the feature components have

474 clear physical meaning. In this regard, remote sensing

475 images can be interpreted as structured data. Although

476 classification accuracy and robustness can be slightly im-

477 proved by incorporating unlabeled samples for feature

478 learning, it is not clear how much the classification per-
479 formance can benefit from a “better” feature representa-

480 tion due to lack of large amounts of training data and

481 the limited number of layers that can be used in practice

482 when implementing neural networks. For instance, the

483 classification accuracy cannot be significantly improved

484 with more than five layers as described in number of

485 layers adopted in [40].

486 Besides, although various types of remote sensing
487 data (acquired by different sensors, from different loca-

488 tions in different dates) are acquired and exploited to

489 deal with a challenging application problem together

490 with out-of-remote-sensing data, existing data methods

491 cannot manipulate those data to retrieve the value of

492 those data. Meanwhile, remote sensing data comprise

493 different dimensions and spatial resolutions, such as

494spaceborne multispectral moderate resolution imaging
495spectroradiometer (MODIS) in 36 spectral bands with

496ground spatial 250 m (bands 1–2), 500 m (bands 3–7),

497and 1000 m (bands 8–36)5 and airborne hyperspectral

498reflective optics system imaging spectrometer (ROSIS)

499with ground resolution less than 1 m in 115 bands)6 Fur-

500thermore, the representations of the out-of-remote-

501sensing data could be unstructured (e.g., individual

502pictures), which are significantly different from those of
503optical or microwave remote sensing data. Therefore, dif-

504ferent data representation becomes a big obstacle for the

505exploitation of big remote sensing data.

5065) Data Fusion: Due to the data representation chal-

507lenge discussed in Section III-B4, a follow-up challenge is

508how to integrate the data from various sources, where

509data features are significantly different (e.g., spectral sig-
510natures in optical remote sensing data, electromagnetic

511radiation in microwave data, structural features of texts,

512unstructured features of images by a digital camera, etc.).

513Traditionally, data fusion can be carried out in terms

514of pixel-level fusion, feature-level fusion, and decision-

515level fusion [41]. However, big data in remote sensing

516usually comprise different scales and/or formats. As a re-

517sult, traditional approaches cannot be utilized to inte-
518grate the information for data fusion. Therefore, new

519methods should be developed to tackle the fusion of big

520data in remote sensing. For instance, in urban applica-

521tions, each pixel can be annotated by photos taken by in-

522dividuals from a social network in the same location [3]

523by means of a crowdsourcing technique [30]. Measuring

524correlation between different sources of data also be-

525comes an additional challenge by the aid of artificial in-
526telligence, data mining, machine learning, or statistics.

5276) Data Visualization and Interpretation: Visualization

528not only enables users/decision-makers to gain better in-

529sights into big data, but is also important to understand

530and analyze big data in remote sensing to bring out data

531details relevant for the current aims or objectives. Ac-

532cordingly, visualization should be considered early, along
533with other upstream tasks shown in Fig. 3, such as data

534acquisition and preprocessing. This requires a novel visu-

535alization technique with prior interdisciplinary domain

536knowledge through closely collaborating with domain ex-

537perts who have posed the task to address real problems.

538In order to effectively use visualization, remote sens-

539ing big data should be aggregated from diverse sources in

540a huge volume, and imported to a model which allows
541decision making in minutes rather than weeks or

542months. This is a big challenge for PB level or larger vol-

543ume of data inputs, for instance, in applications related

5http://modis.gsfc.nasa.gov/about/specifications.php
6http://messtec.dlr.de/en/technology/dlr-remote-sensing-technol-

ogy-institute/hyperspectral-systems-airborne-rosis-hyspex/?sid=
3b724ae1718878a22607b4d4b92da16754914a4adcdc3
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544 with hazard monitoring. Therefore, visualization of big
545 remote sensing data should deal with challenges of large

546 data visualization as well as interactive exploration of

547 data for an improved understanding. Note that data visu-

548 alization continues throughout the life cycle of big data,

549 but has individual challenges in different phases.

550 IV. BIG OPPORTUNITIES

551 Despite the aforementioned big challenges, the potential

552 value of big remote sensing data is impressive. Actually,
553 remote sensing techniques have been successfully used

554 for different applications, such as agriculture applications

555 (e.g., food security monitoring, pasture monitoring), oce-

556 anic applications (e.g., ship detection, oil spill detection),

557 urban planning, urban monitoring, human settlements

558 (both urban and rural), food security monitoring, water

559 quality monitoring, energy assessment, population of dis-

560 ease, ecosystem assessment, global warming, global
561 change, global forest resources assessment, ancient site

562 discovery (archaeology), and so on.

563 Combined with human activities and data from social

564 science, remote sensing techniques listed above have be-

565 come much more powerful tools to significantly improve

566 the effectiveness of production and operation for human

567 welfare. In this way, big remote sensing data provides

568 the capacity to accomplish targets which were hard or
569 impossible to achieve in traditional ways. For instance, a

570 hidden relic site can be found by high-resolution remote

571 sensing data in a dense forest without modern infrastruc-

572 ture, which is an incredible barrier for field archaeolo-

573 gists to penetrate. A successful application is on Maya

574 research in the Petén region of northern Guatemala [5].

575 In urban planning applications, ground measurements

576 as well as spaceborne and airborne remote sensing im-
577 ages are integrated to result in better and timely urban

578 planning, management, and sustainability [12], [14], [15].

579 In this context, remote sensing data can be acquired over

580 a large area in a sequence in a very high resolution (i.e.,

581 less than 1 m/pixel) using advanced remote sensing tech-

582 niques. Related projects include the 100 cities project for

583 urban environmental characterization, monitoring, and

584 government decision making,7 and global urban footprint
585 using very high spatial resolution of a total of 180000

586 TerraSAR-X and TanDEM-X scenes for the worldwide

587 mapping of settlements.8 Combined with population cen-

588 sus data, remote sensing data were integrated to under-

589 stand land development, land use, and urban sprawl in

590 Puerto Rico [11]. Together with socioeconomic variables,

591 high-resolution satellite images have been used to ana-

592 lyze urban population growth which is closely related to
593 economic growth [13].

594Since the early 1990s, remote sensing data have been
595used for agricultural applications with regional phenologi-

596cal change and associated meteorological factors [6]. In

597precision agriculture, the role of remote sensing data be-

598comes more and more important in terms of sustainable

599agriculture, including food security [8], or assessing crop

600condition and yield forecasting [7]. In addition, average

601yield gaps are large among nations for major cereal crops,

602maize, wheat and rice, etc. Usually, agricultural intensifi-
603cation could greatly reduce these yield gaps [42]. In this

604case, remote sensing has proved to be of great help for

605monitoring crops in a large area, such as mapping the

606bioenergy potential of maize crops [43] by incorporating

607the effects of climate and soils on yields [44].

608In particular, food security is a key factor of intelli-

609gent agricultural systems and only remote sensing from

610Earth Observing satellites (e.g., Landsat, Resourcesat,
611MODIS) can provide consistent, repeated, and high-

612quality data for characterizing and mapping key cropland

613parameters for global cropland estimation and food secu-

614rity analysis in combination with national statistics, field-

615plot data, and secondary data [long (50–100 year) records

616of precipitation and temperature, soil types, and adminis-

617trative boundaries] [31], [45]. Together with demographi-

618cal and health survey data, many applications can benefit
619from the analysis of remote sensing data [9], [10], and

620further the relationship between human health and

621environmental changes can be accurately modeled [10].

622In addition, remote sensing data analysis can be used to

623global insurance markets, such as crop damage and flood

624and fire risk assessment [46].

625In summary, remote sensing data as well as other do-

626main data provide great opportunities for applications in
627natural sciences, such as mapping tree density at a global

628scale [16], but also on social science, such as urban stud-

629ies, demography, archeology, war and conflict studies,

630and so on [17].

631V. CASE STUDIES

632In this section, two case studies demonstrating the effec-
633tiveness of big data in remote sensing applications are

634described. In both cases, using a new data processing

635methodology and powerful computing architectures are

636essential. The problems addressed are automatic oil spill

637detection and content-based information retrieval from a

638large repository of multispectral and hyperspectral re-

639mote sensing data and related data from other domains,

640respectively.

641A. Big Data for Oil Spill Detection
642In traditional remote sensing classification applica-

643tions, labeled samples are obtained according to ground

644surveys, image photointerpretation, or a combination of

645the aforementioned strategies [47]. In situ ground sur-

646veys can lead to a high accuracy of labeling but these

7http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-
9628/16557_read-40454/

8http://cesa.asu.edu/urban-systems/100-cities-project/
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647 techniques are costly and time consuming. Image photo-

648 interpretation is fast and cheap, but cannot guarantee a

649 high labeling quality. Although hybrid solutions can take

650 advantage of ground surveys and image photointerpreta-
651 tion in most remote sensing problems, it is still difficult

652 to label marine oil spills using the hybrid solution in

653 terms of remote sensing data provided by air/spaceborne

654 instruments due to oil drift and diffusion. Therefore,

655 the labeling of marine oil spills brings a great challenge

656 to the oil spill detection task. In this case study, we first

657 identify proper data consisting of big remote sensing

658 data and then tackle the labeling challenge by a novel data
659 methodology, i.e., by the integration of social media

660 data with aid of crowdsourcing [3] and active learning

661 techniques [48], [49].

662 Specifically, we selected the big oil spill event oc-

663 curred in the Gulf of Mexico (USA) on 2010 as our study

664 case as more social media data and other forms of data

665 can be obtained for big data analysis. The optical remote

666 sensing data used contain multitemporal and multisource
667 images, i.e., data from the medium resolution imaging

668 spectrometer (MERIS), operated by the European Space

669 Agency (ESA), and the moderate resolution imaging

670 spectrometer (MODIS), operated by NASA. Other forms

671 of data in this context include social media data, i.e.,

672 the pictures from social media and textual description.

673 For instance, pictures from Panoramio,9 a geolocation-

674 oriented photosharing site, can be easily obtained and
675 are often geotagged, in the form of precise coordinates

676 of the location from where these pictures have been

677 taken, as well as textual tagging [see Fig. 4(a)]. Also,

678 the airborne data in the polluted area can be used to label

679 remote sensing images, such as the oil spills detected by

680 airborne sensors from an official institute [see Fig. 4(b)].

681 Those different forms of big data can be used to improve

682 the oil spill detection accuracy in this specific context.
683 It should be noted that it is time consuming for the

684 labeling process to incorporate the idea of crowdsourcing

685 and the external data cannot cover all pixels in the re-

686 mote sensing images. Accordingly, it is important to in-

687 telligently select a reduced number of informative

688samples for labeling in order to guarantee the accuracy

689of the classification task. Here, the labeling process has

690been done through active learning in an iterative way

691[48], [49].

692After removing data that are heavily corrupted by
693clouds, multispectral remote sensing images from differ-

694ent dates (i.e., multitemporal images) and images from

695different sensors (i.e., multisource images) were

696exploited to detect oil spills using machine learning algo-

697rithms. Here, we used popular classifiers such as the sup-

698port vector machine (SVM) [50]–[52], backpropagation

699neural networks [53], [54], and the k-nearest neighbor

700classifier [28]. In our experiments, the SVM gave the
701best classification accuracies and was also most robust.

702The obtained classification map by SVM for the consid-

703ered oil spill problem in the Gulf of Mexico is given in

704Fig. 5, which shows oil spills spreading around the deep-

705water oil rig location.

706There are still many open problems for pattern label-

707ing when combining remote sensing images and social

708media data. For instance, an efficient strategy should be
709developed in order to obtain most relevant external data

710for a specific task. In the mean time, those external data

711such as photos and textual information should be auto-

712matically associated with the corresponding samples.

713B. Content-Based Image Retrieval From
714Hyperspectral Data Repositories
715In this second case study, we address a specific case
716study of content-based image retrieval (CBIR) applied to

717remotely sensed hyperspectral data, which are character-

718ized by its high dimensionality in the spectral domain

719[55]. The system, introduced in [56], is validated using a

720complex hyperspectral image database, and implemented

721on a Beowulf cluster at NASA’s Goddard Space Flight

722Center. In this context, the main challenge of this case9www.panoramio.com

Fig. 4. External data for oil spill labeling: (a) data provided by a

governmental institute; and (b) images by social media.

Fig. 5. Oil spill detection on multitemporal and multisource

spaceborne remote sensing images using big data in remote

sensing.
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723 study is to deal with the voluminous challenge of big re-

724 mote sensing data, which in our experiment comprises a

725 collection of 154 high-resolution hyperspectral data sets

726 (more than 20 TB of data) gathered by NASA over the

727 World Trade Center (WTC) area in New York City dur-

728 ing the last two weeks of September 2001, just several

729 days after the terrorist attacks that collapsed the two
730 main towers and other buildings in the WTC complex.

731 The spatial resolution of the data is 3.7 m/pixel, and the

732 spectral resolution is 224 narrow spectral bands between

733 0.4 and 2.5 �m. Fig. 6 shows a false color composite of

734 one of such images, with 614 � 512 pixels and 224

735 bands. The false color composition has been formed

736using the 1682-, 1107-, and 655-nm channels, displayed
737as red, green, and blue, respectively. Vegetated areas ap-

738pear green in Fig. 6, while burned areas appear dark

739gray. Smoke coming from the WTC area appears bright

740blue due to high spectral reflectance in the 655-nm

741channel. The area used as input query in our experiment

742is shown in a red rectangle, and is centered at the region

743where the towers collapsed.

744Using the search area in the rightmost part of Fig. 6
745as input query, the proposed parallel CBIR system suc-

746cessfully retrieved all image instances containing the

747WTC complex across the database, with no false positive

748detections. For illustrative purposes, Fig. 7 shows the

749seven full image flightlines in the considered AVIRIS da-

750tabase that contain the searched area centered at the

751WTC complex.

752To investigate the parallel properties of the proposed
753CBIR system, we have evaluated its performance when

754implemented on NASA’s Thunderhead Beowulf cluster, a

755system composed of 256 dual 2.4-GHz Intel Xeon nodes,

756each with 1 GB of memory and 80 GB of main memory,

757interconnected with 2-GHz optical fiber Myrinet. Using

758256 processors on Thunderhead, the system was able to

759search the most similar scenes across the full database of

760154 images (with precomputed metadata) in only 4 s, re-
761sulting in a total processing of approximately 10 s to cata-

762log and fully describe a new entry in the database. This

763represents a significant improvement over the implemen-

764tation of the same CBIR process on a single Thunderhead

765processor, which took over 1 h of computation for the

766same operation.

Fig. 6. AVIRIS hyperspectral image collected over the World

Trade Center (left) and detail of the area used as input query

(right).

Fig. 7. Full flightlines collected by the AVIRIS sensor over the World Trade Center area which contain the search area in Fig. 6.

Typically, each flightline contains five to seven hyperspectral images (each with 224 spectral bands).
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767 VI. CONCLUSION

768 In this paper, the connotations of big remote sensing

769 data have been discussed. Big data in remote sensing can
770 contain a variety of remotely sensed data from different

771 spectral reflectance, different ground spatial resolutions,

772 and different locations (such as optical, radar, micro-

773 wave, etc.), as well as the data from other domains, such

774 as archeology, demographics, economics (which refers to

775 the “variety” of the three V properties of big data). As a

776 result, the big remote sensing data have the same three

777 V characteristics as big data in general [1] with the in-
778 creasingly accumulated volume of remote sensing data

779 from TB to PB and even to EB scale. With the volumi-

780 nous data, on one hand, the tasks which are difficult to

781 be attacked can be achieved in a reasonable time (which

782 refers to the “velocity” of the three V and results in big

783 opportunities); on the other hand, the big remote sens-

784 ing data with any of 2Vs or 3Vs bring big challenges for

785 those owning big data, analyzing big data and utilizing
786 big data, respectively.

787 Then, a trinity framework for understanding big data

788 in remote sensing has been proposed for those who own

789 big data, those who can provide data methods, and those

790 who need to exploit big data to solve real-world prob-

791 lems. In terms of the framework, common and individual

792 challenges of big data have been discussed in the context

793 of remote sensing applications. As a key common chal-
794 lenge, big remote sensing data should first be identified

795 to cope with real remote sensing applications. Then, it is

796 necessary to have the capability for highly efficient com-

797 putations in order to deal with voluminous data. In addi-

798 tion, novel data methods or even completely new data

799 methodologies should be developed to attack the com-

800 plexities of big remote sensing data. Of course, there ex-

801 ist other common challenges when dealing with big
802 remote sensing data, such as how to manipulate data

803 quality from different perspectives by individual data

804 providers and data recipients.

805 Except for the common challenges of big data in re-

806 mote sensing, individual challenges should be taken into

807 account from the three perspectives of the trinity of big

808 data. For those who own big remote sensing data, three

809 critical factors should be carefully designed, i.e., data
810 transmission from air/satellite-borne sensing system to a

811 ground station, then data storage to a system, and data

812 delivery to users of interest. For those who exploit big

813 data to remote sensing applications, the key challenges

814 are the identification of the right data to achieve the

815given task, the deployment of the big data for later data
816processing and analysis, and the interpretation of the re-

817sults provided by data methods. For those who are capa-

818ble of developing novel data methods and/or data

819methodologies for remote sensing applications, data rep-

820resentation should first be managed due to the diversity

821of multisource and multitemporal remote sensing data

822and the data from other domains. Then, the data de-

823scribed in different attribute formats should be inte-
824grated to better analyze and process the big data. After

825that, the results provided by data analysis techniques

826need to be well visualized for improved data analysis and

827data interpretation.

828Although the potential of big remote sensing data has

829already been anticipated, it is important to note that the

830data often come from heterogeneous sources and require

831significant computational efforts in terms of interpreta-

832tion. Therefore, the big opportunity is to integrate re-

833mote sensing data together with other external data to

834transfer these potentials to reality. In this context, we

835can benefit from large-scale, consistent, repeated, and

836high-quality big remote sensing data in order to address

837applications related to monitoring food security, urbani-

838zation progress, population density, etc. This can be fur-

839ther used to address other relevant applications related

840with human health, environmental changes, or human

841activities in general.

842In order to benefit from remote sensing in big

843data, proper data from different sources should be first

844identified to solve a specific application. Except for

845multitemporal, multiresolution, multiradiometric re-
846mote sensing data, how to identify related complemen-

847tary out-of-domain data and how to obtain those data

848sets represent the biggest challenge for big remote

849sensing data application. Then, a novel data methodol-

850ogy should be carefully designed for data processing,

851data fusion, and so on. Although there are many appli-

852cations combining remote sensing data and data com-

853ing from other domains, most of the works available
854are based on a sampling technique for estimation, even

855for the recent work to globally estimate tree population

856estimation based on 429775 ground-sourced measure-

857ments of tree density from every continent on Earth

858[16]. How can we use all the data available deserves

859further study for big remote sensing data task. Last but

860not the least, how to evaluate the performance and

861how to guarantee data quality are other interesting re-
862search lines to be further explored. h
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