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a b s t r a c t 

Knowledge extraction and incorporation is currently considered to be beneficial for efficient Big Data an- 

alytics. Knowledge can take part in workflow design, constraint definition, parameter selection and con- 

figuration, human interactive and decision-making strategies. This paper proposes BIGOWL, an ontology 

to support knowledge management in Big Data analytics. BIGOWL is designed to cover a wide vocab- 

ulary of terms concerning Big Data analytics workflows, including their components and how they are 

connected, from data sources to the analytics visualization. It also takes into consideration aspects such 

as parameters, restrictions and formats. This ontology defines not only the taxonomic relationships be- 

tween the different concepts, but also instances representing specific individuals to guide the users in 

the design of Big Data analytics workflows. For testing purposes, two case studies are developed, which 

consists in: first, real-world streaming processing with Spark of traffic Open Data, for route optimization 

in urban environment of New York city; and second, data mining classification of an academic dataset on 

local/cloud platforms. The analytics workflows resulting from the BIGOWL semantic model are validated 

and successfully evaluated. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In accordance with the recent Gartner’s report, 1 an emerging

hallenge in Big Data is to construct data-driven intelligent appli-

ations that capture and inject domain knowledge in the analyt-

cal processes, including context and using a standardized format.

ontext refers to all the relevant (meta)-information to support the

nalysis and to help interpreting its results. This will facilitate the

ntegration (in a standardized way) with third parties’ data, algo-

ithms, business intelligence (BI) and visualization services. 

The use of semantics as contextual information will enhance

he analytical power of the algorithms, as well as the reuse of

ingle components in data analytics workflows ( Ristoski & Paul-
� This work has been partially funded by Grants TIN2014-58304, TIN2017-86049- 

 (Spanish Ministry of Education and Science) and P12-TIC-1519 (Plan Andaluz de 

nvestigación, Desarrollo e Innovación). Cristóbal Barba-González is supported by 

rant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). José

arcía-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento 

ara la Investigación” Plan Propio at Universidad de Málaga. 
∗ Corresponding author. 
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1 https://www.gartner.com/doc/3656517/adopt-datadriven-approach- 

onsolidating-infrastructure . 
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eim, 2016 ). Therefore, the development of ways to make the do-

ain knowledge explicit and usable is needed to improve the

ata processing and analysis tasks. The Semantic Web technolo-

ies can be used to annotate not only the knowledge domain

f the data, but also the analytics’ meta-data ( Keet, Ławrynow-

cz, d’Amato, Kalousis, Nguyen, Palma, Stevens, & Hilario, 2015 ),

ncluding: algorithms’ parameters, input variables, tuning experi-

nces, expected behaviors and taxonomies. This will facilitate the

euse and composition of Big Data analytics in a proper manner, as

ell as to enhance the quality of consumed and produced data. 

In this regard, ontologies describe concepts, relationships,

lasses, individuals, formal logic axioms and objects of a particu-

ar domain ( Gruber, 1995 ). The objects refer to entities and events

concepts) in the real world, and their relations represent the se-

antic links between these entities. A series of studies have been

ppearing in the last few years, in which ontological approaches

re suggested to enhance Big Data analytics ( Konys, 2016; Kuiler,

014 ). However, they are presented as conceptual frameworks, still

n an early stage of development, and mostly oriented to the spe-

ific domain of health system applications. 

This motivates us to propose an ontology-driven approach to

upport knowledge management in Big Data analytics workflows.

he proposed ontology is called BIGOWL (BIG data analytics OWL 2 
2 OWL refers to the Web Ontology Language described in Section 2.1 . 

https://doi.org/10.1016/j.eswa.2018.08.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.08.026&domain=pdf
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Table 1 

Basic OWL-DL semantic syntax used to formally define the proposed 

ontology. 

Descriptions Abstract syntax DL syntax 

Operators intersection ( C 1 , C 2 , ���, C n ) C 1 �C 2 �����C n 
union ( C 1 , C 2 , ���, C n ) C 1 �C 2 �����C n 

Restrictions for at least 1 value V from C ∃ V.C 

for all values V from C ∀ V.C 

R is Symmetric R ≡ R −

Class Axioms A partial ( C 1 , C 2 , ���, C n ) A � C 1 �C 2 �����C n 
A complete ( C 1 , C 2 , ���, C n ) A ≡ C 1 �C 2 �����C n 
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ontology), which acts as a formal schema for the representation

and consolidation of knowledge in Big Data analytics. Knowledge

incorporation is in turn beneficial for an efficient algorithmic per-

formance, by taking part in operator’s design, parameter selection,

human interactive and decision-making strategies. 

Our scientific hypothesis is as follows: “The semantic annotation

of Big Data sources, components and algorithms can acts as a link to

capture and incorporate the domain knowledge to guide and enhance

the analytical processes ”. In addition, the semantic annotation can

provide the background for reasoning methods based on axiomatic

and rule logic recommendations. 

To test this hypothesis, a semantic model has been gener-

ated, which comprises an RDF 3 (Resource Description Framework)

repository that follows the BIGOWL scheme. This repository can be

queried by high level algorithms using SPARQL. The goal is to prop-

erly feed artificial intelligence procedures capable of guiding the

design of Big Data analytics workflows. 

As a proof-of-concept, we show how BIGOWL can be used to

guide the design of real-world and academic analytic workflows.

A first case study consists in optimizing vehicular routes based on

New York real-time Open Data about urban traffic (average speeds

of vehicles, traffic densities, etc.). 4 The data source is managed by

streaming processing tasks (Kafka and Spark), after which they are

optimized (jMetalSP 5 ) and visualized. The second case study is a

classification workflow modeled by using the popular Weka 6 li-

brary for data mining, as well as the BigML in-cloud service. 7 

The main contributions of this study are: 

• The proposed ontology, BIGOWL, has been designed and imple-

mented for the representation and consolidation of knowledge

in Big Data analytics. It considers a large and complemented set

of concepts, attributes and relationships that have been taken

from Big Data ecosystem. 
• A semantic approach has been implemented to annotate (i.e.

to “semantize”) all the involved meta-data from multiple data

sources, processing components and analytic algorithms. The

meta-data are integrated following the BIGOWL structure and

stored in a common RDF repository. 
• The semantic model is evaluated in the context of two realis-

tic use cases: real-time routing calculation in urban traffic and

classical classification with decision trees. The proof-of-concept

lead us to test our initial hypothesis. 

The remaining of this paper is structured as follows. In

Section 2 , background concepts and literature overview are pre-

sented. Section 3 presents current practices in Big Data analyt-

ics. Section 4 describes the semantic model, comprising the on-

tology, RDF repository, mappings and workflow composition assis-

tant. Section 5 presents the use case for testing and validation. In

Section 6 , a series of discussions are included. Conclusions and fu-

ture work are drawn in Section 7 . 

2. Background and related work 

To make this paper self-contained, this section describes back-

ground concepts in the Semantic Web field. A review of the state

of the art is also provided to point out the main differences of the

related works with the proposed approach. 
3 RDF in W3C https://www.w3.org/RDF/ . 
4 https://www.data.cityofnewyork.us/Transportation/Real- Time- Traffic- Speed- Data/ 

xsat-x5sa . 
5 http://www.jmetal.sourceforge.net/ . 
6 https://www.cs.waikato.ac.nz/ml/weka/ . 
7 https://www.bigml.com/ . 

 

.1. Background concepts 

• Ontology. In accordance with Noy, McGuinness et al. (2001) , an

ontology provides a formal representation of the real world.

It defines an explicit description of concepts in a domain of

discourse (classes or concepts), properties of each concept de-

scribing various features and attributes of the concept (proper-

ties) and restrictions on properties. Ontologies are part of the

W3C standard stack of the Semantic Web. 8 An ontology to-

gether with a set of individual instances of classes constitutes a

knowledge base and offer services to facilitate interoperability

across multiple heterogeneous systems and databases. 
• RDF. Resource Description Framework ( McBride, 2004 ) is a

W3C recommendation that defines a language for describ-

ing resources on the web. RDF describes resources in terms

of triples, consisting of a subject, predicate and object. RDF

Schema (RDFS) ( Staab & Studer, 2013 ) describes vocabularies

used in RDF descriptions. 
• OWL. The Ontology Web Language is used to define ontolo-

gies on the Web, which extends RDF and RDFS, but adding a

vocabulary. From a formal description, OWL is equivalent to a

very expressive description logic DL, where an ontology cor-

responds to a Tbox ( Gruber et al., 1993 ). In this sense, OWL-

DL is syntactic description that gives maximum expressive-

ness while retaining computational completeness and decid-

ability ( McGuinness, Van Harmelen et al., 2004 ). In this work,

we use OWL-DL syntax summarized in Table 1 to formalize the

proposed ontology. 
• SPARQL is a query language for easy access to RDF

stores. It is the query language recommended by

W3C ( Harris, Seaborne, & Prud’hommeaux, 2013 ) to work

with RDF graphs ( Prud, Seaborne et al., 2006 ), then supporting

queries and web data sources identified by URIs. 
• SWRL. The Semantic Web Rule Language provides the

OWL-based ontologies with procedural knowledge, which

compensates for some of the limitations of ontology in-

ference, particularly in identifying semantic relationships

between individuals ( Horrocks, Patel-Schneider, Bechhofer,

& Tsarkov, 2005 ). SWRL uses the typical logic expres-

sion “Antecedent ⇒ Consequent ” to represent semantic rules.

Both antecedent (rule body) and consequent (rule head)

can be conjunctions of one or more atoms written as

“atom 1 ∧ atom 2 ∧ ���∧ atom n ”. Each atom is attached to one or

more parameters represented by a question mark and a vari-

able (e.g., ? x ). The most common uses of SWRL include trans-

ferring characteristics and inferring the existence of new indi-
9 
viduals ( Grosof & Poon, 2004 ). 

8 https://www.w3.org/standards/semanticweb/ . 
9 https://www.w3.org/Submission/SWRL/ . 

https://www.w3.org/RDF/
https://www.data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa
http://www.jmetal.sourceforge.net/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.bigml.com/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/Submission/SWRL/
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.2. Related work 

In the last decade, there have been appearing a series of stud-

es in which ontological approaches are defined to express the

nowledge domain in data mining and optimization algorithms. A

epresentative set of these works are compiled in a recent sur-

ey ( Dou, Wang, & Liu, 2015 ), in which they are organized by

ategories of algorithms and applications: association rule discov-

ry ( Marinica & Guillet, 2010 ), classification ( Allahyari, Kochut, &

anik, 2014 ) and clustering ( Jing, Ng, & Huang, 2010 ). In these ap-

lications, semantics is used with different objectives, such as: to

educe the search space by specifying restrictions, to filter results

n the post-processing stage, and to annotate the results of data

ining processes. 

Following with this research line, some recent works include

ntologies to guide the processes in machine learning tasks. For

xample, in Pinto, Scioscia, Loseto, and Ruta (2015) and Roldán-

arcía, García-Nieto, and Aldana-Montes (2017) , two different on-

ologies are used in the classification process to infer incon-

istencies between concepts by means of semantic reasoning.

n Phan, Dou, Wang, Kil, and Piniewski (2015) , an ontology-driven

eep learning model is proposed to predict human behavior. 

In the field of optimization, an interesting approach has been

ecently proposed in Yaman, Hallawa, Coler, and Iacca (2017) ,

here the ECO ontology is defined to formally represent knowl-

dge in evolutionary computation algorithms. This ontology can

e used for suggesting strategies for solving optimization prob-

ems. At the same time, an OWL ontology has been pro-

osed in Li, Yevseyeva, Basto-Fernandes, Trautmann, Jing, and

mmerich (2017) to model and systematize the knowledge of

reference-based multi-objective evolutionary algorithms. These 

ntologies are validated in use cases focused on algorithmic and

arameter selection in academic problems. 

From a different point of view, a parallel line of research focuses

n defining ontologies for the semantic annotation of data analytic

orkflows. The main objective is to model the input and output

f algorithms involved in data mining and knowledge base discov-

ry (KDD) workflows to generate valid compositions. To this end,

everal OWL ontologies such as: KDDONTO ( Diamantini, Potena, &

torti ), DMWF ( Kietz, Serban, Bernstein, & Fischer, 2010 ) and KD

 Záková, Kremen, Zelezny, & Lavrac, 2011 ), were proposed. How-

ver, they did not describe the problem domain, or those basic

oncepts (algorithm, type of analysis, task, dataset, attribute, etc.)

hat can be combined to define entities or constraints. In fact,

hese ontologies were not designed with the objective of opti-

izing the performance of the data mining algorithms, since they

o not offer detail enough to provide support to what is known

s meta-learning. In Nguyen, Hilario, and Kalousis (2014) , meta-

earning is defined as the KDD procedure to improve performance

n data mining processes, using information collected during the

xperimentation phase of these algorithms. In this regard, the use

f semantics is considered not only for the algorithmic composi-

ion, but also for the improvement of data mining processes, taking

dvantage of acquired knowledge from past experience. 

In this context, the EU-FP7 European initiative e-LICO 

10 pro-

osed the DMOP ontology ( Keet et al., 2015 ), which is de-

ned to support the analytic workflow composition by follow-

ng the standard CRISP-DM ( Shearer, 20 0 0 ). DMOP is used to de-

ne analytical workflows, as well as to describe algorithms, pa-

ameters, inputs/outputs and a large amount of meta-data in-

luded in typical data mining processes. A step further was taken

y Kumara, Paik, Zhang, Siriweera, and Koswatte (2015) that use
10 http://www.e-lico.eu/ . 

c  

p

 

 

utomatic Service Composition to automate the analytic workflow

eneration. 

As a summary, Table 2 outlines the main features of the related

ork with regards to the semantic approach proposed here. These

eatures consist of specifying whether the existing approaches: fo-

us on data mining or optimization, are oriented to Big Data, pro-

ide proof-of-concepts, align with other ontologies, use OWL/RDF

n the semantic model and/or describe workflow composition

asks. Then, it is possible to identify the actual contributions of the

roposed semantic model beyond the state of the art, as follows: 

• BIGOWL is conceived to semantically model data analytics in

Big Data environments. Similarly to other ontologies in the

literature, it is oriented to general KDD procedures, although

considering those Big Data ecosystem elements with class in-

stances, e.g., ontology individuals. 
• It is aligned with the DMOP ontology, which is in turn aligned

with CRISP-DM. They have been validated to construct data

mining workflows. 
• Besides data mining, BIGOWL is also focused on optimization

algorithms, although with special interest on covering multi-

objective metaheuristics in Big Data environments. 
• The proposed approach is validated on two real-world use-

cases consisting of classical data mining and streaming data

processing for multi-objective optimization. 

. Current practices in Big Data analytics 

In current Big Data technology ecosystems, when facing a spe-

ific data analytic task, it is usual to support on already existing

ools. Some of those consist in commercial services often provided

hrough cloud computing Software-as-a-Service (SaaS), which can

e used by no skilled people by means of workflow compositions

e.g., Azure ML, Amazon ML, BigML, Data Mining Cloud Frame-

ork, and Kognitio); other tools are open-source frameworks re-

uiring skilled users who prefer to program their application using

ore technical approaches. Additional factors (such as: data for-

at, data source, volume and velocity required to analyse data) are

lso determinant when choosing the proper technology ( Zomaya &

akr, 2017 ). Hadoop ecosystem represents the most used frame-

ork for developing distributed Big Data analytic applications.

owever, it is conceived for high skilled users, so even the stan-

ard workflow composition service of Hadoop (Oozie) requires cer-

ain programming ability to be properly used. 

Besides technological or commercial aspects, current Big Data

latforms still follow the common procedure when facing data an-

lytics tasks ( ACM-SIGKDD, 2014 ), which comprises typical steps

f classical KDD: data collection, data transformation, data mining,

attern evaluation, and knowledge presentation. 

Keeping this in mind, the proposed semantic approach is ori-

nted to general KDD procedures, then leading the underlying

ig Data technological platform to be semantically annotated with

lass instances, e.g., individuals in the ontology. 

. Semantic model 

One of the main goals in this study is to capture all the needed

emantics to guide the smart design of Big Data analytics work-

ows and to enhance their performance. For this reason, we opted

o design an OWL 2 ontology to describe analytic algorithms,

atasets, problems, and workflows in the Big Data context. 

To this end, the standard Ontology 101 development pro-

ess ( Noy & McGuinness, 2001 ) has been followed, which com-

rises seven steps: 

1. Determine the domain and scope of the ontology . The main scope

of BIGOWL is data processing and data analytics in Big Data en-

http://www.e-lico.eu/
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Table 2 

Summary ontologies’ features. 

Feature/Ontology CRISP-DM KDDONTO PMOEA ECO (Pinto’2015) (Phan’2015) DMWF KD DMOP BIGOWL 

Data Mining � � � � � � � � 

Optimization � � � 

Big Data environments � 

Proof of concepts � � � � � � � � 

Aligned to other ontology � � 

OWL/RDF � � � � � � � � 

Workflow composition � � � � 

Fig. 1. Overview of the BIGOWL ontology. Continuous arrows refer to subclasses, whereas dotted ones refer to properties. 
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u  
vironments. This considers not only classical data analytic pro-

cedures, but also specific data processing and underlying soft-

ware platform features oriented to Big Data. 

2. Consider reusing existing ontologies . As commented before, the

proposed ontology is aligned with DMOP, which has been

successfully validated to construct data mining workflows.

DMOP is in turn aligned with the foundational ontology

DOLCE ( Masolo, Borgo, Gangemi, Guarino, & Oltramari, 2003 )

and follows the standard CRISP-DM in the definition of data

mining processes. 

3. Enumerate important terms in the ontology . Important terms

were selected from the literature related to Big Data and op-

timization. In addition, terms from the ontologies aligned ( Keet

et al., 2015; Yaman et al., 2017 ) were also incorporated. Exam-

ples of such terms are: Component, Workflow, Task, Data, Dat-

aProcessing and Software . 

4. Define the classes and the class hierarchy . We have followed a

top-down approach in developing the class hierarchy. This fact

facilitates among others, the alignment with DMOP and DOLCE,

the design of annotation mappings and the use of a seman-

tic reasoner. Fig. 1 shows the ontology core classes and hier-

archy. For instance, the class Component has several subclasses,

including DataAnalysing and DataCollection . Classes modeling al-

gorithms, components and workflows are aligned with the class

dmop:DataType . BIGOWL has been developed using Protégé11 
and OWL 2. 

11 https://protege.stanford.edu/ . 

w  
5. Define the properties of classes and slots . With the purpose of

relating classes and defining attributes, we have included ob-

ject and data properties. A representative set of properties are

shown in Table 3 , where the class Component is related to class

Algorithm by means of the object property hasAlgorithm . Data

properties of class Component are path, author, numberOfInputs

and numberOfOutputs . 

6. Define the facets of the slots . This step includes the definition of

cardinality constraints and value restrictions for the ontology’s

properties. For example, the range of the property order is re-

stricted to integer (to specify in which step this task is carried

out), when the class Task is its domain. 

7. Create instances . Instances or individuals in BIGOWL are

specific of the Big Data analytics domain. For exam-

ple, GeneratorDataTraffic is an instance of the class Kafka ,

which is a subclass of DataIngestion . The class Kafka has a

property topicKafka (with range “string”) to indicate streams of

records of Apache Kafka 12 services. 

.1. The BIGOWL ontology 

BIGOWL has been developed following the steps described

bove, producing 184 classes, 16 object properties (binary re-

ationships between individuals), 20 data properties (individ-

al attributes), 488 axioms, 66 individuals and growing. It is

orth mentioning that classes DM-DataClass ≡ DMDataClass and IO-
12 Data Streaming Processing https://www.kafka.apache.org/ . 

https://protege.stanford.edu/
https://www.kafka.apache.org/
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Table 3 

Component: object and data properties. 

Object properties Description logic 

hasAlgorithm ∃ hasAlgorithm.Thing � Component 

hasParameter ∃ hasParameter.Thing � Workflow � Algorithm � Component 

isConnected ∃ isConnected.Thing � Algorithm � Component � Task 

isCorrect ∃ isCorrect.Thing � Algorithm � Component 

specifiesInputClass ∃ specifiesInputClass.Thing � Algorithm � Component � Task 

specifiesOutputClass ∃ specifiesOutputClass.Thing � Algorithm � Component � Task 

Data Properties Description Logic 

author ∃ author.Datatype Literal � Workflow � Algorithm � Component � Problem � Software 

hasDataValue ∃ hasDataValue.Datatype Literal � DataType � IO-Class � Parameter � Workflow 

� Algorithm � Component � Problem 

numberOfInputs ∃ numberOfInputs.Datatype Literal � Algorithm � Component 

numberOfOutputs ∃ numberOfOutputs.Datatype Literal � Algorithm � Component 

path ∃ path.Datatype Literal � IO-Class � Algorithm � Component 

Table 4 

Task: object and data properties. 

Object properties Description logic 

compatibleWith ∃ compatibleWith.Thing � Task 	 � ∀ compatibleWith.Task 

hasComponent 	 � ∀ hasComponent.Component 

isConnected ∃ isConnected.Thing � Algorithm � Component � Task 

specifiesInputClass ∃ specifiesInputClass.Thing � Algorithm � Component � Task 

specifiesOutputClass ∃ specifiesOutputClass.Thing � Algorithm � Component � Task 

Data Properties Description Logic 

order ∃ order.Datatype Literal � Task 	 � ∀ order.Datatype 
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lass ≡ Data are declared as equivalent (with relation ≡ ) to align

ith those classes from other ontologies (DMOP) that describe

imilar concepts. We use OWL-DL syntax (see Table 1 ) to formal-

ze the proposed ontology. The complete ontology is developed in

bigowl.owl ” file and available in the GitHub repository. 13 

A representative set of the main classes are described here, to-

ether with their object and data properties. These classes are:

omponent, Task, Algorithm, Data , and Workflow . Each class has de-

ned a set of properties or conditions in order to be conceptual-

zed. That is, an individual that satisfies those properties is consid-

red to be a member of that class. 

- Component . This class represents each processing step in the

nalytic workflow. It is used to encapsulate one concrete function-

lity, its parameters and the corresponding inputs and outputs it

onsiders. The class Component has four subclasses that are ori-

nted to define specific functionalities in typical data analytics pro-

essing chains: DataCollection , to connect to data sources; DataPro-

essing , to clean, curate, fuse and consolidate data; DataAnalysis , to

erform the algorithmic function; and DataSink , to represent final

teps in the data flow, e.g., store and visualization. Table 3 con-

ains the object and data properties defined for Component . In ac-

ordance with these, a component can specify Input classes and

utput classes, to define the type of data it is accepting and gener-

ting, respectively. Therefore, a component can connect with other

ne if their linking inputs and outputs are compatible among them.

- Task . A task represents an instance of a component that is

sed in a workflow and can be run. As shown in Table 4 , the class

ask has similar properties to those of Component , but including

he object property compatibleWith , to specify compatibility among

onnected tasks, and the data property order , which indicates the

pecific step of execution in which this task is scheduled, in the

cope of the workflow. A Component is then a template for one or

ore tasks, which will be used to carry out its specific functional-

ty in a workflow. 
13 URL link https://www.github.com/KhaosResearch/BIGOWL . 
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- Algorithm . This class is devoted to cover all possible kinds It

as two main subclasses: DataMiningAlgorithm and OptimizationAl-

orithm ; which are used to distinguish between these two fami-

ies of algorithms. The former one is included in form of equiv-

lence with the class DM-Algorithm , which is linked from DMOP.

his way, all subclasses deriving from this class in DMOP are also

sed in BIGOWL. For the later, i.e., OptimizationAlgorithm , a new hi-

rarchical classification of classes has been elaborated in this study

or the annotation of this family, which comprises: Exact, Heuristic ,

nd Metaheuristic algorithms as main subclasses. 

Table 5 includes the object and data properties of Algorithm .

mong its main object properties it is worth mentioning: imple-

ents , which is referred to a learning model or search strategy;

anages , to annotate the type of data it works; and resolves , which

s related to the Problem it is oriented to solve. This is a use-

ul mechanism to relate classes Algorithm and Problem , which also

hare the data property dealWith that indicates the specific fea-

ures an algorithm should fulfill to deal with a problem. 

In this regard, the class Problem defines a series of data proper-

ies like: numberOfConstraints, numberOfObjectives, encodedBy , and

umberOfVariables , that will lead a future reasoner to recommend

he correct algorithm to solve it. These two classes have to be

eclared as DisjointWith , in order to avoid future inconsistencies

hen querying the annotated data in a workflow. 

- Data . The class Data is devoted to annotate all the data flow-

ng throughout the analytic workflow. It is declared as EquivalentTo

O-Class of DMOP. This aligning enables datatypes defined by third

arties’ ontologies to be contextualized in the analysis. Table 6

ontains the main data properties defined for this class, namely:

ath , to annotate the origin of data; and hasDataType , which de-

nes the relation with class DataType . This last is used to define

he type of data, i.e. PrimitiveType (Double, Integer, Boolean, etc.)

r StructuredType (Graph, Tree, Matrix, Vector, Tuple, etc.). 

- Workflow . It is used to guide the correct orchestration of

hose tasks involved in a data analysis job. Its main object prop-

rties are hasTask and hasParameter , which are formally described

n Table 7 . These properties are used by the workflow to obtain the

xecution order, as well as the input/output specifications of each

https://www.github.com/KhaosResearch/BIGOWL


548 C. Barba-González et al. / Expert Systems With Applications 115 (2019) 543–556 

Table 5 

Algorithm: object and data properties. 

Object properties Description logic 

hasComponent 	 � ∀ hasComponent.Component 

hasParameter ∃ hasParameter.Thing � Workflow � Algorithm � Component 

specifiesInputClass ∃ specifiesInputClass.Thing � Algorithm � Component � Task 

specifiesOutputClass ∃ specifiesOutputClass.Thing � Algorithm � Component � Task 

implements Transitive Property implements ∃ implements.Thing � Algorithm 	 � ∀ implements.Strategy 

manages ∃ manages.Thing � Algorithm 	 � ∀ manages.DataType 

resolves ∃ resolves.Thing � Algorithm 	 � ∀ resolves.Problem 

Data Properties Description Logic 

author ∃ author.Datatype Literal � Workflow � Algorithm � Component � Problem � Software 

hasDataValue ∃ hasDataValue.Datatype Literal � DataType � IO-Class � Parameter � Workflow 

� Algorithm � Component � Problem 

numberOfInputs ∃ numberOfInputs.Datatype Literal � Algorithm � Component 

numberOfOutputs ∃ numberOfOutputs.Datatype Literal � Algorithm � Component 

dealWith ∃ dealWith.Datatype Literal � Algorithm 	 � ∀ dealWith.Datatype 

Table 6 

Data: object and data properties. 

Object properties Description logic 

hasDataType ∃ hasDataType.Thing � Parameter � Data 	 � ∀ hasDataType.DataType 

path ∃ path.Datatype Literal � IO-Class � Algorithm � Component 

Table 7 

Workflow: object and data properties. 

Object properties Description logic 

hasTask ∃ hasTask.Thing � Workflow 	 � ∀ hasTask.Task 

hasParameter ∃ hasParameter Thing � Workflow � Algorithm � Component 

Data Properties Description Logic 

author ∃ author.Datatype Literal � Workflow � Algorithm � Component � Problem � Software 

hasDataValue ∃ hasDataValue.Datatype Literal � DataType � IO-Class � Parameter � Workflow 

� Algorithm � Component � Problem 

isCorrectWorkflow ∃ isCorrectWorkflow.Datatype Literal � Workflow 	 � ∀ isCorrectWorkflow.Datatype 

numTasks ∃ numTask.Datatype � Workflow 	 � ∀ numTask.Datatype 
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task. This information, together with the data properties numTasks

and isCorrectWorkflow , is then used in reasoning time to check

whether the workflow is correctly composed or not, i.e., to address

semantic validation of the analytic workflow. 

4.2. Overall approach 

An overview of the proposed semantic model is illustrated in

Fig. 2 , which is arranged together with the underlying operational

model, hence enabling actual composition of analytic workflows. 

In this approach, BIGOWL is the ontological scheme driving the

whole process. It is the terminological box (TBox) that defines the

vocabulary with concepts and properties in the domain of Big Data

analysis. As explained before, BIGOWL is developed in OWL 2 ac-

cording to which, concepts are represented by classes and relations

are represented by data properties or object properties. As repre-

sented in Fig. 2 , BIGOWL is conceived as an abstract top-level on-

tology that enables not only subontology replication e.g., to focus

on specific use cases or algorithmic families, but also linkage with

external domain knowledge ontologies, which are oriented to the

specific problem domain (Smart Cities, Biology, etc.). 

At bottom-level, the Assertional Box (ABox) defines all the in-

stances in the knowledge domain (in OWL 2 an instance is rep-

resented by an individual) involving the analytic workflows’ meta-

data. These instances are stored in RDF triple format in a Stardog 14 

repository, which is a commercial version of the Pellet OWL 2 rea-

soner ( Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007 ), but enhanced

with persistence capabilities. Once the ontology (Tbox) has been
14 http://www.stardog.com/ . 

 

 

oaded together with SWRL rules, a series of reasoning tasks are

aunched by using the Stardog OWL 2 reasoner to derive new infor-

ation that is not explicitly expressed in the knowledge base. The

ew information will indicate, when applicable and among others,

hether an analytic workflow is correctly composed, or not. 

In this model, the Annotation Module is used to populate the

DF repository with new instances that involve the required meta-

ata (annotated) to be used in workflows, for example: algorithms,

perators, parameters, input/output (paths), data sources, database

onnections, data sinks, software, execution order, etc. 

The Operational Model will make use of these annotated meta-

ata for driving the workflow composition. In this process, each

tep a new component is to be selected and used, a SPARQL query

s launched to obtain the required meta-data and to suggest the

ext possible component/s to be included. 

A very simple (hypothetical) case of use would comprise the

ollowing steps: 

(i) A user desires to extract patterns from a dataset and visual-

ize the results; 

(ii) Then, the user selects one algorithm from a list of data

mining algorithms (in form of analysis component) queried

throughout the semantic model; 

(iii) The selected algorithm requires specific input parameters

and data to train, so the semantic model will supply them; 

(iv) The initial dataset should be then formatted in form of data

collection task; 

(v) In case collected data need transformation, an intermediate

data processing component is included between collection

and analysis; 

http://www.stardog.com/
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Fig. 2. General overview of the semantic model that follows the ontology’s scheme of BIGOWL. The analytic operational model address the workflow composition driven by 

the semantic model 
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15 https://www.github.com/jMetal/jMetalSP . 
16 https://www.data.cityofnewyork.us/Transportation/Real- Time- Traffic- Speed- Data/ 

xsat-x5sa . 
(vi) The semantic model will suggest suitable output component

(visualization) to be linked after the analytic algorithm. 

It is worth mentioning that each step in the workflow is instan-

iated by a task, which entails an execution order. Then, the entire

orkflow is arranged according to all the ordering values in tasks. 

In summary, the semantic model acts as a mediator between

ata provider components and data consumers. It also acts as a

ata source and meta-data registry with functions to make “agree-

ents” on the provision and traceability of the whole data value

hain. 

. Validation 

For validation purposes, two different cases of study have been

eveloped to show how the proposed semantic approach is used

or driving the composition of data analytic workflows. The first

ne is focused on Big Data streaming processing and optimiza-

ion of real-world traffic routes in the domain of Smart Cities. The

econd case study is centered on classic data mining analysis on

cademic problem instances, although considering local and cloud

omputing environments. In this way, we aim at covering, as much

s possible, different aspects in Big Data applications: algorithmic

nalyses (optimization and data mining), velocity and volume is-

ues (streaming processing), real-world and academic data prob-

ems, and Big Data ecosystems (Apache Spark local and on-premise

luster, BigML cloud SaaS API). 

In these two cases, a similar semantic annotation and query-

ng procedure has been followed, which consists in the man-

al annotation (guided by domain experts) of: algorithms, tech-

ological/platform features, and attributes of problem domain of

nowledge; and automatic querying by means of SPARQL sen-

ences. To distinguish individuals belonging to each case study,

wo different namespaces has been defined, i.e. traffic: http://

ww.khaos.uma.es/perception/traffic/khaosteam# and weka: http: 

/www.khaos.uma.es/perception/weka/khaosteam# , respectively. 
.1. Case study 1: streaming processing of New York City traffic 

pen-data 

The first case study consists in a dynamic version of the

i-objective Traveling Salesman Problem (TSP), to minimize the

travel time” and the “distance” to cover certain routing points

n a urban area. The algorithm for solving it is a dynamic variant

f the well-known multi-objective metaheuristic NSGA-II provided

n jMetalSP ( Barba-González, García-Nieto, Nebro, Cordero, Durillo,

avas-Delgado, & Aldana-Montes, 2017 ), 15 which allows parallel

rocessing of evaluation functions in Apache Spark environment. 

In the case of the dynamic bi-objective TSP, which is formu-

ated in terms of a distance matrix and a time travel matrix, the

eriodic changes can affect any of them. Our particular dynamic

SP problem instance is based on real-world data. Specifically, it

s feed from the Open Data API provided by the New York City

epartment of Transportation, 16 which updates traffic information

everal times per minute. The information is provided as a text file

here each line includes the average speed to traverse the two end

oints defining a link in the most recent interval. The goal is then,

iven a list of nodes in New York city and the distances between

ach pair of nodes, calculate the shortest possible route that visits

ach node. 

New York’s traffic data is read periodically by an external appli-

ation that writes a file in HDFS whenever new data are acquired,

o we have implemented a streaming data component for that pur-

ose. This component reads periodically the new data appeared

n the specific directory (this is done automatically by Spark) and

akes a simple processing: if a change in a link is detected (time

r distance), then the corresponding problem matrices are up-

ated. 

The analysis of the streaming data sources can be carried out

n parallel by using Spark. In fact, we used a Hadoop cluster com-

http://www.khaos.uma.es/perception/traffic/khaosteam#
http://www.khaos.uma.es/perception/weka/khaosteam#
https://www.github.com/jMetal/jMetalSP
https://www.data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa
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Fig. 3. Workflow for dynamic bi-objective optimization of TSP problem instance with Open Data New York 
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s  
posed of 100 cores in the previous study where the Big Data op-

timization model was presented ( Barba-González et al., 2017 ). In

addition, two other streaming data sources where used as sepa-

rate components, which based on Twitter and Kafka. In the first

one, tweets are read from Twitter API with the topic “New York

traffic” and a processing of each tweet is simulated, so the prob-

lem is updated in accordance with it (for testing purposes we set

random changes in traffic scenario). This way, we combine a differ-

ent streaming source with the possibility of adjusting the process-

ing time, which will serve for performance evaluation purposes. In

the second source, the idea is to enrich the case study with an-

other data source that will produce artificial data. Then we created

a Kafka message producer that generates, following uniform and

normal distributions, a series of random messages with data to up-

date the problem. Every 5 s at least 10 0 0 messages are produced,

but on average about 10,0 0 0 messages are created. Both the Twit-

ter and Kafka streaming source classes have the same behavior as

the HDFS based one: they iteratively collect and analyze the data

to somehow update the problem. 

After data processing, the analytic task is then carried out,

which entails dynamic optimization computed by NSGAII algo-

rithm of the jMetalSP library. The results of the analysis are used

to feed data sinks. In this case study, we consider two of them:

one that stores the produced Pareto fronts in HDFS, and other one

that visualizes information about the Pareto front approximation

(as the number of solutions and the number of generated fronts)

using R-plot library. 

The workflow implementing this case study is represented in

Fig. 3 , 17 where all the components are arranged according to data

flow. In this workflow, the numeric indexes (1)–(7) correspond to

those steps as indicated in Table 8 , which contain the required

SPARQL queries the semantic model apply to recommend forth-

coming component/s to use, in design time. For this case study,

the main set of individuals annotated in the semantic model and

their relationships, are shown in Fig. 4 . Then it is possible to follow

the complete process step-by-step: 

• Step (1) . The workflow designer fetch all the optimization prob-

lems from BIGOWL to select the implementation that better

fits the required model for TSP instances. Interestingly, they are

all subclasses of OptimizationProblem , which is integrated from

DMOP. As a result, (s)he selects TSP. 
• Step (2) . Given a problem to solve, TSP in this case, the seman-

tic model recommends a series of optimization algorithms that

could deal with it, i.e., those annotated algorithms that better
17 Ontology instances available at https://www.github.com/KhaosResearch/ 

BIGOWL/blob/master/traffic.owl . 

m  

c  

S  

a  
adapt to the problem in terms of properties, such as: solution

encoding, manages, dealWith , etc. After this, the designer selects

NSGAII. 
• Step (3) . This is an intermediate step followed by the semantic

model to recommend specific annotated component and task

instancing the underlying software that implements TSP and

NSGAII. 
• Step (4) . Now, the objective of this query is to obtain the spe-

cific data model to properly host data in problem and algorithm

tasks. This step is thought to use specific domain knowledge

information (traffic routes in this case) coming from external

ontologies. The resulting annotated instance here is MatrixNY ,

which refers to a data model comprising a matrix of points and

distances in the scenario of New York city. 
• Step (5) . Once the workflow designer has a clear idea about

the data model, (s)he can set data sources and connect them

to feed the analysis. The semantic model is then queried to

show all possible data collectors, i.e., those previously anno-

tated. Among all the resulting possibilities, ReadWebNYDataTraf-

fic, DataCollectionDataTrafficKafka and DataCollectionTwitter are

selected for this case study. 
• Step (6) . Before connecting data sources to analytic component,

a previous task is required for data processing and consolida-

tion. In this case study, the corresponding component is im-

plemented as a Spark processing task to join Kafka messages,

Tweets and traffic data streams. 
• Step (7) . Last steps usually correspond to data sink tasks to al-

locate results from analyses. For this case study, Visualization-

Task and HDFSStoreTask are selected, which implement R-plot

visualization and storage in HDFS, respectively. 
• Step (8) . Finally, the semantic model is queried to obtain

the corresponding task instances that are mutually compati-

ble among them. The analytic workflow is now ready to be

launched on the underlying running platform. 

Moreover, once the whole process is completed, a further rea-

oning procedure can now be started to check whether the gen-

rated workflow is semantically consistent, or not. This reasoning

ask will be explained in Section 5.3 . 

.2. Case study 2: classification with Iris flower dataset 

As commented before, the second case study consists in the

cademic problem of Irish flower classification by means of deci-

ion tree J48, a classical algorithm for data mining analytics. For

aterialization, two different approaches have been used in this

ase: the well-known library for data mining Weka and the BigML

aaS API for analysis on-cloud. The aim is to illustrate how similar

nnotation and querying procedures with BIGOWL can be used to

https://www.github.com/KhaosResearch/BIGOWL/blob/master/traffic.owl
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Table 8 

SPARQL queries for case study of streaming processing of New York city traffic open-data. 

Step SPARQL Result

(1)

SELECT DISTINCT ?problem WHERE {

?problem rdf:type ?type .

?type rdfs:subClassOf* dmop:OptimizationProblem .}
TSP, ZDT1, ZDT2, ZDT3, ZDT4,

ZDT5, ZDT6, Kursawe..

(2)

SELECT DISTINCT ?algorithm

(count(DISTINCT ?propertiesAlgorithm) AS numProperties)

WHERE {

traffic:TSP bigowl:encodedBy ?solution.

?algorithm rdf:type ?type.

?type rdfs:subClassOf* bigowl:OptimizationAlgorithm.

?entity bigowl:manages ?solution .

?algorithm bigowl:dealWith ?propertiesAlgorithm .

traffic:TSP bigowl:hasFeature ?propertiesTSP .

FILTER ( ?propertiesTSP in (?propertiesAlgorithm)).

} GROUP BY ?algorithm ORDER BY DESC(?numProperties)

NSGAII, MOCell,
SMSEMOA,SPEA2, IBEA, PAES,

PESA2, WASFGA

(3)

SELECT distinct ?comp ?task WHERE {

?comp bigowl:hasProblem traffic:TSP .

?comp bigowl:hasAlgorithm traffic:NSGAII .

?comp rdf:type bigowl:Optimization .

?task rdf:type bigowl:Task . ?task bigowl:hasComponent ?comp. }

OptmimizationComponent,
OptimizationTask

(4)

SELECT distinct ?data WHERE {

?comp bigowl:hasProblem traffic:TSP .

?comp bigowl:hasAlgorithm traffic:NSGAII .

?comp rdf:type bigowl:Optimization .

?task rdf:type bigowl:Task . ?task bigowl:hasComponent ?comp.

?task bigowl:specifiesInputClass ?data . }

MatrixNY

(5)

SELECT distinct ?dataCollection WHERE {

?dataCollection rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataCollection.}

ReadWebNYDataTraffic,
DataCollectionHDFS,

DataCollectionDataTrafficKafka,
DataCollectionTwitter,
DataCollectionDB, ...

(6)

SELECT distinct ?taskProcessing ?compProcessing WHERE {

?taskCollection bigowl:hasComponent bigowl:ReadNYDataTraffic.

?taskCollection bigowl:specifiesOutputClass ?out.

?dataProcessing rdf:type ?typeProcessing .

?typeProcessing rdfs:subClassOf* bigowl:DataProcessing.

?taskProcessing bigowl:hasComponent ?dataProcessing .

?taskProcessing bigowl:specifiesInputClass ?out.

?taskProcessing bigowl:specifiesOutputClass traffic:MatrixNY. }

SparkTask, ComponentSpark

(7)

SELECT distinct ?dataSink WHERE {

?dataSink rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataSink.}

VisualizationPlot,
DataSinkHDFSStore,

DataSinkOracleStore, ...

(8)

SELECT distinct ?task1 ?task2 WHERE {

?task1 rdf:type bigowl:Task . ?task2 rdf:type bigowl:Task .

?task1 bigowl:specifiesOutputClass ?output .

?task2 bigowl:specifiesInputClass ?output . }

GeneratorDataTrafficTask,
SparkTask, TwitterCollectorTask,

KafkaMGTask,
ReadNYDataTrafficTask,

OptimizationTask, VisualizationTask
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ompose workflows on different platforms when solving the same

roblem. 

Fig. 5 shows the individuals (and their relationships) anno-

ated in the ontology, and Fig. 6 18 represents graphically the an-

lytic workflow for this case study. The numeric labels (1)–(5) are
18 Ontology instances available at https://www.github.com/KhaosResearch/ 

IGOWL/blob/master/weka.owl . 

a  

D  

W  

b  
ligned with their corresponding steps in Table 9 that contain the

PARQL queries used and their results. 

In a nutshell, steps (1)–(3) are used to guide the workflow de-

igner on the selection of data model, algorithm, and analysis com-

onents and tasks, respectively. Step (4) is used to query suit-

ble data collector components, in this case the designer selects

ataCollectionBigML for BigML API instance and DataCollectorFS for

eka instance dataset. Step (5) queries are devoted to select possi-

le data sink components, and specifically DataSinkFSStore and Vi-

https://www.github.com/KhaosResearch/BIGOWL/blob/master/weka.owl
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Fig. 4. BIGOWL’s individuals annotated in the workflow for dynamic bi-objective optimization of TSP problem 

Fig. 5. BIGOWL’s individuals in workflow for Irish flower classification with J48 decision tree instanced from Weka 

Fig. 6. Workflow for Irish flower classification with J48 decision tree instanced from 

Weka and BigML. 
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ualizationPlot , which implement orders to save results in file sys-

em and API method for plotting in BigML, respectively. Finally,

tep (6) obtains the corresponding task instances that are mutu-

lly compatible among them throughout the complete workflow. 

.3. Reasoning with BIGOWL 

Reasoning procedure is built in BIGOWL with formulation of se-

antic rules on top of the OWL ontology, to deduce new informa-

ion from the existing knowledge. These rules are formulated in

WRL and used to perform semantic reasoning jobs mainly de-

oted to check correctness of workflows, e.i., to discover those

omponents and tasks with (non-)compatible connectivity of in-

uts/outputs, execution orders, data domains, data formats, data
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Table 9 

SPARQL queries for case study Irish flower classification on Weka, as well as on BigML. 

Step SPARQL Result

(1)

SELECT DISTINCT ?individual

WHERE {

?individual rdf:type ?type .

?type rdfs:subClassOf* bigowl:DMDataClass .

}

Iris, Contact-lens, CPU, Diabetes,
Glass, Ionosphre, Labor,
ReutersCorn, Segment,..

(2)

SELECT ?algorithm

WHERE {

weka:Iris rdf:type ?typeD .

?typeD rdfs:subClassOf* ?classSomePropertyAlgorithm.

?algorithm rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataMiningAlgorithm.

bigowl:DataMiningAlgorithm rdfs:subClassOf* [

a owl:Restriction ;

owl:onProperty bigowl:manages ;

owl:someValuesFrom ?classSomePropertyAlgorithm ] .

}

J48, LogisticRegression, NaiveBayes,
RepTree, IBk, LinearNNSearch,

SMO, ...

(3)

SELECT distinct ?comp ?task

WHERE {

?comp bigowl:hasAlgorithm weka:J48 .

?task rdf:type bigowl:Task .

?task bigowl:hasComponent ?comp. }

ClassificationJ48Component,
ClassificationJ48Task

(4)

SELECT distinct ?dataCollection WHERE {

?dataCollection rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataCollection.}

DataCollectionOpenData,
DataCollectionBigML,
DataCollectionHDFS,
DataCollectorFS, ...

(5)

SELECT distinct ?dataSink WHERE {

?dataSink rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataSink.}

VisualizationPlot,
DataSinkHDFSStore,
DataSinkOracleStore,
DataSinkFSStore, ...

(6)

SELECT distinct ?task1 ?task2 WHERE {

?task1 rdf:type bigowl:Task . ?task2 rdf:type bigowl:Task .

?task1 bigowl:specifiesOutputClass ?output .

?task2 bigowl:specifiesInputClass ?output . }

ClassAsignerIrisTask,
ClassificationJ48Task,

ClassifierPerformanceEvaluatorTask,
CrossValidaionFolderMarkerTask,

TextViewerTask
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ypes, etc. SWRL rules are then evaluated by the reasoner after

lassifying Big Data components in accordance with axioms, as de-

ned in Table 1 . In concrete, there are two types of axioms associ-

ted with OWL-DL classes for reasoning, namely: subClassOf , which

s used to define the necessary conditions for a class to be consid-

red a member of a given OWL class; and equivalentClass , for an-

otating when two classes can be considered as equivalent, if they

omply the conditions. 

BIGOWL imports subClassOf axioms from DMOP to specify tax-

nomy classification of Data Mining contexts and their data. In this

ense, subclasses are also the natural way of describing hierarchy

f algorithmic families and versions in optimization analyses. For

nstance, Genetic Algorithms are subclasses of Evolutionary Algo-

ithms and these in turn, are subclasses of Population Based Algo-

ithms. This structural information is then considered in reasoning

ime for algorithm recommendation. The main axioms for subclass

lassification are defined in Table 10 , which correspond to Data

ining and Optimization algorithmic families. 

Furthermore, a series of specific SWRL rules are described for

ssessing the compatibility of components. As commented before,

he main goal is to address the generation of well-formed Big Data

orkflows. A description of these rules is as follows: 

p  

d  
- Compatibility between task, component and Data Mining

lgorithm . This rule is used to check that input data model is com-

atible with the task that is indeed an instance (or implementa-

ion) of a component. In this specific case, the used component

efers to a Data Mining Algorithm to perform a specific analysis.

n short, this rule is used by the reasoner to validate compatibility

etween data mining component and data source. The result is a

redicate indicating that data “feeding” the component are com-

atible with the analytic algorithm, so a task can be launched to

un it on the underlying platform. 

bigowl:specifiesInputClass(?task, ?data) ˆ
bigowl:hasComponent(?task, ?comp) ˆ
bigowl:hasAlgorithm(?comp, ?alg) ˆ
bigowl:DataMiningAlgorithm(?alg) ˆ
bigowl:DMDataClass(?data)
-> bigowl:isCorrect(?alg, ?data)

Note that a similar rule is defined in the semantic model to

onsider optimization algorithms. 

- Compatibility between tasks of a workflow . This rule is ap-

lied to a complete workflow. It is used to check that input/output

ata connections of each pair of consecutive tasks are “semanti-
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Table 10 

OWL axioms for algorithmic subclass classification. 

Class Classification rule

Optimization Algorithm

OptimizationAlgorithm subClassOf

((implements some OptimizationStrategy) and

(resolves some OptimizationProblem)) or Algorithm

DataMining Algorithm
OptimizationAlgorithm subClassOf

(manages some DMDataClass) or Algorithm

Optimization Component
Optimization subClassOf (hasAlgorithm only

(OptimizationAlgorithm or MachineLearning))

DataMining Component
DataMining subClassOf (hasAlgorithm only

(DataMiningAlgorithm or MachineLearning))
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cally” similar. The outcome is a new predicate indicating whether

each two consecutive tasks are mutually compatible, or not. 

Workflow(?w) ˆ
bigowl:hasTask(?w, ?task1) ˆ
bigowl:order(?task1, ?ord1) ˆ
bigowl:hasTask(?w, ?task2) ˆ
bigowl:order(?task2, ?ord2) ˆ
swrlb:add(?ord2, ?ord1, 1) ˆ
bigowl:specifiesInputClass(?task2, ?data)ˆ
bigowl:specifiesOutputClass(?task1, ?data)
-> bigowl:compatibleWith(?task1, ?task2)

- Connectivity between tasks and data . Similarly to the pre-

vious one, this rule is used to indicate that two instances of tasks

are properly linked, that is to say, it checks that the input data of

task2 are covered with the output data of task1 , according to

the execution order established in the workflow. 

Workflow(?w) ˆ
bigowl:hasTask(?w, ?task1) ˆ
bigowl:order(?task1, ?ord1) ˆ
bigowl:hasTask(?w, ?task2) ˆ
bigowl:order(?task2, ?ord2) ˆ
swrlb:add(?ord2, ?ord1, 1) ˆ
bigowl:specifiesInputClass(?task2, ?data) ˆ
bigowl:specifiesOutputClass(?task1, ?data)
-> bigowl:isConnected(?task2, ?data)

- Workflow correctness . Finally, this rule validates that all the

components, instanced by corresponding tasks and data sources,

are correctly arranged and connected. The result is then a new

predicate indicating whether the complete workflow is correct, or

not. 

Workflow(?w) ˆ
bigowl:hasTask(?w, ?task) ˆ
bigowl:numberOfInput(?task, ?nIn) ˆ
bigowl:isConnected(?task, ?data).
sqwrl:makeSet(?set, ?data) ˆ
sqwrl:groupBy(?set, ?task).
sqwrl:size(?cont, ?set) ˆ
swrlb:equal(?cont, ?nIn)
-> sqwrl:select(?cont, ?nIn, ?task) ˆ
bigowl:isCorrectWorkflow(?w, true)
a

In summary, these case studies are used as a “proof of concept ”

o somehow highlight that the proposed semantic model is able to

upport in the design of Big Data analytics. In this regard, BIGOWL

nables automatic SPARQL querying for component recommenda-

ion, as well as reasoning procedures for workflow validation. 

. Discussions 

One of the main research findings we claim with the design

nd implementation of BIGOWL is the ability to represent and con-

olidate knowledge involving Big Data analytics. This semantic ap-

roach allows us to annotate (i.e. to “semantize”) all the meta-

ata flowing from multiple data sources, processing components

nd analytic algorithms. The meta-data are integrated following

he BIGOWL structure and stored in an RDF repository. 

On the one hand, the results obtained in the two case stud-

es indicate that, driven by the ontological model, it is possible

o progressively deliver component recommendations for the con-

truction of Big Data analytics workflows. The resulting workflows

re indeed enhanced with semantic knowledge that explicitly de-

cribes and registers the data lineage (data provenance in database

ystems), from sources to results. It also would enable to replay

pecific portions or inputs of the data flow for step-wise debug-

ing or regenerating lost outputs. In the BIGOWL semantic model,

ata linage is mapped with RDF triples referring to records of the

nputs, entities, systems, algorithms and processes that influence

ata of interest, hence providing a historical record of the data ob-

ained (as results) and its origins (as sources). 

Based on the analysis provided in the two cases studies, the

ser is able to identify the correct path the data follow and how

hey are modified to obtain added value, for a given domain of

nowledge. For example, in the first case study, a series of data

ources involving information about urban traffic in the city of

ew York (with geo-locations, travel times, densities, tweets, etc.)

re semantically related (or linked) to the results obtained, in form

f optimized routes in a problem characterization of the classical

SP. In this case study, the outputs are encoded in form of routes,

here the travel time and the routing distance are optimized. This

ay, the resulting routes are linked to the traffic densities and the

witter messages, so the data lineage is registered with semantic

nnotations. 

Similarly, in the second case study, it is possible to connect

rediction accuracies with classification algorithms, for the Irish

ower database. In addition, the running experiences acquired

hen using different execution frameworks, e.g., in-house/in-cloud,

re also annotated as results. 
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Another important finding lies in the possibility of using the

emantic knowledge-base, now consolidated in the RDF repository,

o perform reasoning tasks, hence to infer new knowledge. In this

tudy, a series of SWRL rules are used to train the reasoner. In this

tudy, a reasoner is used to evaluate a set of SWRL rules defined

or the specific task of workflow validation. In this regard, the val-

dation analysis performed by the reasoner required 644 ms for

ase study 1 and 673 ms for case study 2. Taking into account that

e used the Stardog OWL 2 reasoner, the time spent in reasoning

asks is acceptable for workflow validation. 

On the other hand, the main constraint of the proposed seman-

ic model is that it needs a domain ontology to cover the prob-

em knowledge domain. This domain ontology contains the spe-

ific concepts for a given case, so it can be reused in domains

here previous efforts provided such model. However, if such on-

ology is not available, then its design is required. As explained

n Section 4.1 , the class Data in BIGOWL is used, not only to an-

otate all the data flowing in the analytic workflow, but also to

llow alignment with third parties’ ontologies covering the spe-

ific problem domain of knowledge. Additionally, the general on-

ology could miss concepts that would be needed in some cases

nd are not described in the current model. This constraint can be

olved by proposing an extension, in form of new version release

f BIGOWL, though a collaborative portal. In this sense, BIGOWL is

ublicly available at WebProtégé, 19 where any registered user can

ntroduce changes. These changes will be reviewed in a regular ba-

is to approve or reject them. The last stable version of the ontol-

gy will be provided in the project GitHub repository. 20 

In addition, a secondary constraint arises when a new workflow

s generated or executed by a user, since a series of new annota-

ions are required to store all the meta-data involved in the data

nalytic process, in form of RDF triples. This makes the RDF repos-

tory to increase significantly, which would promote, not only fu-

ure reasoning procedures to infer new knowledge from these data,

ut also their connection with other Linked Data. In this sense,

he efficient management of large RDF repositories has become a

hallenging task attracting many scholars to research ( Zomaya &

akr, 2017 ), which means a clear implication for academia. 

In terms of practical implications, the proposed semantic model

epresents an initial demonstrator for the experimental piloting of

ig Data frameworks enhanced with semantics. The objective is to

btain “Smart Data” and promote the data value chain in industry

rocesses, which is a key challenge nowadays as reflected in the

trategic Research and Innovation Agenda of the Big Data Value As-

ociation (EU SRIA 4.0 BDVA). 21 Several industrial projects in this

ssociation, like BigDataEurope 22 and BigOceanData, 23 are focused

n exploiting semantics in Big Data analytics, so they could par-

ially take advantage of BIGOWL as reference ontological model. 

. Conclusions 

In this work, an ontological approach called BIGOWL is pro-

osed to provide a conceptual framework for the annotation of

ig Data analytics. The proposed semantic model is materialized

y means of an RDF repository, and programmatic querying and

easoning functions. 

To test the initial hypothesis, two case studies have been devel-

ped, which consist in: (1) real-world streaming traffic data pro-

essing for route optimization in urban environment, and (2) aca-

emic data mining classification on local/on-cloud platforms. The
19 WebProtégé https://www.goo.gl/F6fYUc . 
20 GitHub https://www.github.com/KhaosResearch/BIGOWL . 
21 http://www.bdva.eu/sites/default/files/BDVA _ SRIA _ v4 _ Ed1.1.pdf . 
22 https://www.big- data- europe.eu/ . 
23 http://www.bigoceandata.com/ . 

M  

N  

 

N  
xperience on these cases revealed that BIGOWL approach is useful

hen integrating knowledge domain concerning a specific analytic

roblem. Consequently, the integrated knowledge is used for guid-

ng the design of Big Data analytics workflows, by recommending

ext components to be linked, and supporting final validation. 

It is worthy to declare that the proposed semantic model is cur-

ently populated with those annotated elements required to set the

ase studies reported in this work, although it can be feed with

ew instances regarding other Big Data workflows. 

This motivates our future research agenda, which entails a

rst phase to provide automatic facilities for ontology population,

ence to enrich the semantic approach; second, to provide new

echanisms to promote the use of contextual domain of knowl-

dge in the generation of Big Data analytic solutions; and third, to

enerate new and heterogeneous use cases of analytics workflows

hat would led us to find and solve new possible deficiencies, as

ell as to enrich the knowledge base. 
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