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Recent developments like the movements of open access and open data and the unprecedented growth
of data, which has come forward as Big Data, have shifted focus to methods to effectively handle such
data for use in agro-environmental research. Big Data technologies, together with the increased use of
cloud based and high performance computing, create new opportunities for data intensive science in the
multi-disciplinary agro-environmental domain. A theoretical framework is presented to structure and
analyse data-intensive cases and is applied to three case studies, together covering a broad range of
technologies and aspects related to Big Data usage. The case studies indicate that most persistent issues
in the area of data-intensive research evolve around capturing the huge heterogeneity of interdisci-
plinary data and around creating trust between data providers and data users. It is therefore recom-
mended that efforts from the agro-environmental domain concentrate on the issues of variety and
veracity.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Societal challenges (e.g. food security, ecosystem restoration,
climate change, resource use efficiency as captured in the Sus-
tainable Development Goals (https://sustainabledevelopment.un.
org/topics/sustainabledevelopmentgoals) and EU's societal chal-
lenges (https://ec.europa.eu/programmes/horizon2020/en/h2020-
section/societal-challenges) require more and more complex ap-
proaches in terms of combining cross-sectoral and cross-discipline
knowledge, information and data. For example, Steffen et al. (2015)
introduce the concept of planetary boundaries to define a safe
operating space for humans in the earth system, and thereby using
data and models coming from many different domains and back-
ground. Such integrated scientific and societal perspectives require
the combination of a multitude of data sources and the application
of different analytical techniques.

Traditionally, science has operated along disciplinary lines in
using and applying its data and analytical tools. Data management
and curation was hardly an issue, with data being connected and
analysed for separate applications and with researchers working
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with data files on their own computers and not actively publishing
or sharing these. In roughly the period 1985e2005 there was a
large focus on developing models for knowledge derivation from
available data, see for example a review of farm models in Janssen
and Van Ittersum (2007), crop models in Van Ittersum and
Donatelli (2003), ecological models in Schmolke et al. (2010),
land use models in Verburg et al. (2004). This period was followed
in 2000e2012 by a period of building modelling frameworks as a
method of combining more comprehensive analysis for decision
making (e.g. Argent (2004); Van Ittersum et al. (2008); Van Meijl
et al. (2006); Knapen et al. (2013)), combined with many infor-
mation technology and computational innovations to enable rapid
analysis of large amounts of datawithin a single discipline (e.g. Villa
et al. (2009)). As a consequence, at this stage the capabilities within
disciplines for data processing and analysis are well developed, just
as the high level linkage of models in abstract modelling frame-
works, even if the methodological framework underlying such ef-
forts is often lacking (Janssen et al., 2011). Looking at Wang's Levels
of Conceptual Interoperability Model (Wang et al., 2009), in envi-
ronmental modelling and simulation there has been substantial
and useful progress at the lower levels of technical and semantic
interoperability. To advance, besides further addressing these lower
levels, also the still unexplored higher levels of semantic and con-
ceptual interoperability have to be targeted.

Fortunately, in recent years a number of trends have emerged
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals
https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
mailto:rob.lokers@wur.nl
mailto:rob.knapen@wur.nl
mailto:sander.janssen@wur.nl
mailto:yke.vanranden@wur.nl
mailto:jacques.jansen@wur.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.07.017&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.07.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.envsoft.2016.07.017
http://dx.doi.org/10.1016/j.envsoft.2016.07.017


R. Lokers et al. / Environmental Modelling & Software 84 (2016) 494e504 495
that could fundamentally change this status over the coming
decade. First and for all, the mentioned trend of broadening policy
and decision contexts research has challenged the science domain
in general towards much more multi-disciplinary and integrative
research, while the pace of decision making also puts pressure on
the timeliness of research results. Second, the political attention
has turned to open data as public good resource, as witnessed by
open data initiatives (e.g. Global Open Data for Agriculture and
Nutrition, www.godan.info), open data conferences and open data
portals (e.g. data.gov, data.gov.co.uk, data.overheid.nl, data.fao.org).
This development was preceded by a movement to make scientific
publications available as open access, which has led to specialized
journals being set up and traditional journals offering the option to
publish under open access licences. Third, the amount of data
available for science has grown enormously in the past years,
driven by technology developments such as open access re-
positories of remote sensing images, the advance of the mobile
phone enabling crowd sourcing and citizen science and digital
connectedness through social media and internet of things. Fourth,
the computational resources have massively increased over the
past decades, according to Moore's Law, with also a better avail-
ability and accessibility of storage and computational resources in
the cloud such as Platform-as-a-Service (PaaS) and Model-as-a-
Service (MaaS) technologies.

These developments of more (open) data and higher connect-
edness in principle offer opportunities to support larger, faster and
more complex data-intensive processing and analysis across dis-
ciplines as required for supporting evidence-based decisionmaking
towards societal challenges. Against this background, recently Big
Data has emerged and to some extent has been hyped as a new
trend to provide unlimited capabilities in analysis of data, providing
revolutionary new insights (McAfee and Brynjolfsson (2012); Boyd
and Crawford (2012); McKinsey Global Institute, McKinsey (2011)).
Related to the agro-environmental domain, Vitolo et al. (2015) have
investigated web technologies dealing with “Big Environmental
Data”, while Lokers et al. (2015) explore the use of semantic tech-
nologies to improve access to Big Data in agriculture and forestry
science. For the purpose of this paper, Big Data is defined as: a term
encompassing the use of techniques to capture, process, analyse
and visualize potentially large datasets in a reasonable timeframe
(as defined by NESSI (2012)), while incorporating both structured
and unstructured data and covering several disciplines and do-
mains. This definition primarily focusses on technology and on the
technological support of some of the elementary data-intensive
tasks in science. Use cases on data management in research
(Lokers et al., 2014) show a variety of technological challenges
associated for instance with environmental modelling, that range
from metadata oriented information retrieval issues to heavily
data-oriented problems related to Big Data mining and data inte-
gration. These challenges in particular concern the effective dis-
covery of the appropriate data for a specific research task. In data-
intensive research areas like agro-environmental modelling we
have reached the point where automated procedures for selection,
collection and indexing are becoming indispensable to effectively
exploit this global network of data.

In this paper we examine and analyse use cases from three
European projects as guidance to describe current possibilities and
future challenges for deployment of Big Data techniques in the field
of agro-environmental research, facilitating decision support at the
level of societal challenges. For that purpose, a theoretical frame-
work is proposed that allows positioning of Big Data challenges and
techniques in the context of interdisciplinary science and the
policy-science interface. This framework is then applied to analyse
three scientific cases in the agro-environmental domain and to
reflect on the current state of play of the application of Big Data
technologies in the domain. Based on the analysis of the cases along
the theoretical framework, overall observations are made on
technology readiness and suggestions are provided for further
developments.

2. Analysis

2.1. Theoretical framework

It is useful to start from a theoretical framework framing the
complexity of challenges and demystifying the hype of Big Data.
Such a theoretical framework needs to be tailored to the context of
the agro-environmental domain. To achieve this, Big Data, its
characteristics and ways of processing should be connected to the
context of evidence based decision making and to the specifics of
data-intensive challenges in the agro-environmental domain.

To frame the way (big) data is used in decision making we
introduce a knowledge management model, extending a broadly
used and recognized concept which has been elaborated on in
numerous publications in different forms and under different
names and to which we will refer here as the data-
einformationeknowledgeewisdom or DIKW hierarchy (Rowley,
2007).

The model (see Fig. 1) is used to contextualize data, information,
knowledge, and sometimes wisdom, with respect to one another
and to identify and describe the processes involved in the trans-
formation of an entity at a lower level in the hierarchy (e.g. data) to
an entity at a higher level in the hierarchy (e.g. information). The
idea is that decision makers need ‘wisdom’ for taking evidence
based decisions. Such wisdom can be developed by combining
available knowledge with less tangible assets like interests, values,
preferences, ethics etc. The knowledge base they use is essentially
derived from data. Data can in this respect be considered the raw
material to produce information through the addition of meaning.
Information is again enriched, creating knowledge by using and
combining decision and policy contextual applications like for
instance integrated models, impact assessments or decision sup-
port systems.

Agro-environmental research use cases usually concern dy-
namic systems with complex interactions between living organ-
isms or perishable products (e.g. plants, animals, humans,
agricultural products) and their environment. Describing such
systems requires complex and usually detailed information
regarding status and behaviour of its entities and their environ-
mental conditions. It can include its actual status, but also historical
or predicted future conditions. Because of the spatial dynamics and
temporal variability of living systems, data regarding the temporal
and spatial behaviour of entities and local conditions are essential.
Moreover, understanding these interactions requires the observa-
tion, analysis and integration of knowledge of subsystems of very
different nature, for example biological, climate, soil and water
subsystems. The complexity of describing, analysing and under-
standing such systems and the magnitude and heterogeneity of the
data involved can be easily understood.

The complexity of handling Big Data is highly associated with its
typical characteristics, often described as the “3 V's” of Big Data, i.e.
Volume, Variety and Velocity (Laney, 2001).

Volume refers to the unprecedented amounts of data becoming
available through new technologies supporting massive generation
or collection of data and efficient means of storage. Relevant ex-
amples for the agro-environmental domain include climate data
(especially climate projections) and remote sensing data. Terabyte
to Petabyte size volumes are easily reached when attempting to
capture - for example - natural variability on detailed spatial and
temporal scales.

http://www.godan.info
http://data.gov
http://data.gov.co.uk
http://data.overheid.nl
http://data.fao.org


Fig. 1. DIKW hierarchy, from Big Data to decision making for societal challenges.

R. Lokers et al. / Environmental Modelling & Software 84 (2016) 494e504496
Velocity refers to the pace at which new data is becoming
available, e.g. through real-time data streams, but also refers to the
usually high requirements regarding processing time to make the
data and its value-add derivatives available for end users. In the
agro-environmental domain, real-time data generated by sensor
networks or citizen science networks are good examples of such
streams, while monitoring and early warning systems commonly
require near real-time processing of such data streams in order to
provide timely information to decision makers.

Variety concerns the ever increasing heterogeneity of data
relevant for decision making. Firstly, this is caused by the contin-
uous evolvement of available streams and formats, e.g. from social
media and mobile applications. Moreover, information from an
increasing range of disciplines is needed, in particular in the agro-
environmental domain. This is due to the many subsystems of very
different nature, the tremendous width of current societal chal-
lenges to be addressed and the resulting complexity of associated
decision contexts. Because individual disciplines tend to have a
background of working in silos and using their own tailored data
formats and vocabularies, these attempts to integrate data or in-
formation from different domains face a multitude of technical and
semantic challenges.

In addition to the three V's mentioned, additional characteristics
of Big Data have been identified. Veracity, often mentioned as being
“the fourth V” (http://www.ibmbigdatahub.com/infographic/four-
vs-big-data), seems to be the most relevant one when we specif-
ically consider the agro-environmental domain. Veracity, which
addresses among others the integrity and accuracy of data and data
sources, is highly associated with trust and with having confidence
that the quality of data is sufficient to serve as evidence base for
critical decision making. Researchers will have to leave the safe
environment of familiar data silos in peer networks, while at the
same time the growing size and complexity of the data ecosystems
grows beyond the capacities of a human being to judge the quality
of all associated data sources. Consequently, frameworks and
working procedures that ensure integrity of data and its derived
products and trustworthy indicators for integrity become
indispensable.

Fig. 2 shows how these Big Data characteristics are linked to the
DIKW layers when we also consider that in most agro-
environmental cases multiple disciplines are involved, with
different content regarding data, information and knowledge and
different perspectives on policy and decision making.
In the context of Big Data, the DIKW hierarchy also conceptu-
alizes the process of turning the enormous mass of data, which as a
rawmaterial has little or no significance to end users, into compact,
structured and contextualized, manageable ‘chunks’ that are
applicable in a specific decision making context. End users will
implicitly presume that these have been synthesized using the
most appropriate sources from the Big Data pool, interpreted and
processed according to their decision context, using the most reli-
able and timely information available. Evidently, such pre-
sumptions pose an enormous challenge to the whole community of
ICT-experts, data scientists and domain experts that are involved in
handling the various steps in this process. The broad scope, both
vertically over different ICT, data science and knowledge manage-
ment expertise areas and horizontally, covering the multi-
disciplinary of present-day decision contexts, requires a highly
cooperative approach and the establishment of harmonized
concerted processes, organized through a combined top-down and
bottom-up approach.

To explore the possibilities to meet the challenges described
above, in the next section three data-intensive use cases from the
agro-environmental domain will be described and analysed with
regard to their position in the theoretical framework and the
associated Big Data characteristics. Table 1 summarizes the linkage
of the cases with the Big Data characteristics and the DIKW model
described above.
2.2. Case: semantic driven discovery

2.2.1. Problem statement
This use case addresses the harmonized provision of scattered

and heterogeneous data for impact assessment to decision makers
and researchers. An impact assessment study typically requires
assessing the potential economic, social, and environmental effects
of alternative policy options through a number of scientific com-
puter models, which can span various science domains. Each of the
models requires sets of trustworthy input data. For example, agri-
cultural impact assessment studies could use scientific models such
as: APES - a cropping systemmodel (Donatelli et al., 2010); FSSIM -
a bio-economic farm model (Louhichi et al., 2010); CAPRI - an
agricultural sector model (Britz et al., 2007); and GTAP - a
computable general equilibrium model for global markets (Hertel,
1997). Input data required would include, amongst others, crop
parameter data, data on local soil types, historical and simulated

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data


Fig. 2. Multidisciplinary Big Data pool and characteristics.

Table 1
Analysed use cases characteristics.

Use case Volume Velocity Variety Veracity D I K W

Semantic driven discovery X X X X X X
Data driven discovery X X X X X
Big Data querying X X X X X
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future weather data (on local, regional, and global scale)). Many of
such datasets are available, either locally in organization's re-
positories, or on the Internet as open data. Due to the expanding
use of sensors and satellites that can measure e.g. crop, soil and
meteorological data at increasingly finer temporal and spatial res-
olutions, not only the amount of available datasets is growing, but
also their sizes. This makes finding the usable pieces of data one of
the key challenges of Big Data.

In an approach to address this discoverability challenge, the
LIAISE project developed the LIAISE Toolkit (http://www.liaise-kit.
eu). LIAISE d Linking Impact Assessment Instruments to Sustain-
ability Expertise d was established in 2009 to improve the appli-
cation of Impact Assessment (IA) by both the research and the
policy making communities. The Toolkit facilitates the categoriza-
tion and discoverability of metadata for different types of knowl-
edge resources related to IA, for example datasets, scientific
models, frameworks, practical examples and domain experts.
Submitted information is categorized into topics by key experts
before it is published and made accessible through the Toolkit
website. Initially this website supported directory based discovery
with a faceted search mechanism. Following technological de-
velopments near the end of the project it was explored how the
search capabilities could be improved by the use of semantic
technology. In particular this included investigating whether and
how recent Natural Language Processing (NLP) and Machine
Learning (ML) techniques could be used to automatically derive
required metadata from unstructured text sources and relate it to a
defined LIAISE overall ontology. It was assumed that using these
techniques could lead to a system which does not only rely on
manual provision of metadata by experts, but which can also get its
content from automated discovery of relevant metadata, or
enriching existing sparse metadata from auxiliary documentation
such as reports, published papers, or websites. It would support
finding the relevant small pieces of data (at the DWIK Data layer), as
well as make the system more “intelligent”, operating at the
Knowledge and Wisdom layers, linking available heterogeneous
knowledge sources frommultiple disciplines to specific contexts of
decision and policy making. Furthermore, the case is strongly
connected to the variety characteristic, establishing semantic links
between the knowledge and decision making layers and by
exposing new opportunities for innovative re-using and combining
tools in new domains. Through its foreseen approach of automated
linkage, it also touches the aspect of improving velocity, while at
the same attempting to retain veracity or trust in the generated
knowledge.

2.2.2. Methodology and implementation
For its practical implementation, the case aimed at extending

the existing LIAISE Toolkit with (i) a way to use the LIAISE ontology
for linking existing external datasets to all already available
knowledge resources in the Toolkit, and (ii) the use of a similar
pathway to relate typical impact assessment questions to relevant
knowledge resources in the Toolkit, providing a semantic search
mechanism. Fig. 3 illustrates the foreseen steps, including: (1)
selecting and processing of auxiliary documentation of simulations
models and datasets using NLP techniques, (2) mapping of the data
to the defined LIAISE ontology, and (3) storing it. For retrieval
through a stand-alone web interface (6) or from the Toolkit web-
site, questions posed in natural language will be processed (4),
related to the stored information and used to find (5) matching

http://www.liaise-kit.eu
http://www.liaise-kit.eu
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search results (i.e. relevant knowledge resources).
As a proof-of-concept the semantic linkage exercise was

developed around the datasets provided online by the European
Environmental Agency (EEA, http://www.eea.europa.eu/data-and-
maps). The metadata of these EEA datasets contains references to
a list of topics relevant for EEA resources (see http://www.eea.
europa.eu/themes). LIAISE, on the other side, uses a taxonomy of
impact areas for tagging included knowledge items.

For reasons of performance and quality an automated procedure
periodically retrieves metadata of available EEA datasets from their
semantic web SPARQL endpoint. It then attempts to find and add
relevant LIAISE taxonomy-based impact area tags to the metadata,
thus establishing links that allow the LIAISE web portal to mention
the datasets at appropriate places, for example as potentially suit-
able input to a simulation model. To create the links, the automated
procedure needs to perform some kind of semantic comparison
based on available metadata and/or data. Several approaches for
such a semantic comparison were explored and tested.

The first approach was based on the exploitation of Machine
Learning and Natural Language Processing techniques, enabling
computers to derive meaning from human or natural language
input (Ng and Zelle,1997). It foresaw the building of a corpus for the
automatic determination of relevant terms from the metadata
available through LIAISE knowledge resources to subsequently
analyse and tag the external metadata with a Machine Learning
algorithm. Unfortunately, at the time of development the Toolkit
was just started to get filled by the experts and a corpus of adequate
size could not yet be constructed within the project time bound-
aries. Existing resources such as the online, publicly available dic-
tionary WORDNET (Miller, 1995) do not contain the very domain
specific knowledge required for e.g. semantic parsing, and a sense-
tagged corpus needs to be added to improve automated semantic
interpretation. Finding sufficient material for building training data
for machine learning was an additional, yet related problem.
Consequently, initial ambitions for this case had to be scaled down.

A second, less elaborate approach based on textual matching
techniques was subsequently explored. Using the OpenNLP tools
Fig. 3. LIAISE semantics driven in
(http://opennlp.apache.org), each textual description of a LIAISE
taxonomy term for an impact area (e.g. “Environmental Impacts -
The environmental consequences of firms and consumers - Sus-
tainable production and consumption”) was syntactically analysed
to find all nouns in it, and compared to nouns found in any text field
(title, description, topics, etc.) of each resource from the EEA
ontology referring to a dataset. The more nouns matched, the more
relevant the resource was considered, and the higher it was ranked
in the search results. This simple approach proved to be relatively
successful due to the fact that both EEA and LIAISE work in the
environmental science domain and thus already use a kind of
shared vocabulary. Their words and terms in most cases mean the
same things. Yet, LIAISE topics and subtopics purposefully have
broad and non-restrictive titles so that experts can always find one
or more topics their knowledge resources fit in without having to
define new topics. While this keeps the taxonomy stable, it makes it
harder to use for machine processing. Hence precision and recall of
the text matching turned out to be too low tomake it an acceptable
approach, and the search results contained too much noise over
signal to make it acceptable to the users.

Therefore, the final implemented approach was an expert-
driven linkage process. This method uses a mapping table in
which the expert manually links the LIAISE impact areas (or tax-
onomy terms) to EEA thematic topics. It does not provide an explicit
indication of the quality of the match, which is implicitly associated
with the expert and their level of expertise. Because this mapping
requiresmanual input by experts for each data provider to be added
to the system and for changes in the taxonomies, it is more time
consuming and less dynamic, but it does provide expert based
quality of the links, creating trust for the web portal users, thus
addressing the veracity aspect.
2.2.3. Results
From the three explored approaches to link (EEA) datasets with

the knowledge base available in the LIAISE Toolkit, the semi-
manual method where experts manually link Impact Assessment
terms to terms related to the datasets was implemented. The two
formation retrieval concept.

http://www.eea.europa.eu/data-and-maps
http://www.eea.europa.eu/data-and-maps
http://www.eea.europa.eu/themes
http://www.eea.europa.eu/themes
http://opennlp.apache.org
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automatic processes that were examined proved to be too costly or
ineffective in this particular case. For the Machine Learning and
NLP-based approach, the main barrier was that building a working
corpus for this purpose from available LIAISE resources was not
possible, due to the lack of sufficient material available at the time
of development, and the unforeseen amount of time that it would
take.

Using textual matching, it appeared that in all cases the process
resulted in considerable amounts of erroneous matches (low pre-
cision and recall values) producing undesired and unusable results.
This could be at least partially assigned to the relative simplicity of
the non-semantic textual matching techniques used in the process.
Moreover, matching also failed because the process operated on
extracted high level generic terms (water, air, pollution) instead of
more specific compound terms (also known as n-grams) like ‘sur-
face water’ and ‘air pollution’. Retrospectively it can be concluded
that trust, or veracity, also plays a relevant role. Even if conditions
are met to successfully implement automated procedures for
tagging, it will remain hard at the moment for these technologies to
gain the level of trust that the scientific user community tends to
exhibit if experts perform the job manually.

2.3. Case: data driven discovery

2.3.1. Problem statement
The Trees4Future project (www.trees4future.eu) is an integra-

tive European Research Infrastructure project that aims at inte-
gration and further development and improvement of major forest
genetics and forestry Research Infrastructures. One of the objec-
tives is to make forestry scientific data discoverable and accessible
for a broad audience of modellers and decision makers in and
outside the forestry research community. Like in many other sci-
entific domains, forestry researchers traditionally rely on their own
peers and scientific networks when collecting the data required for
their work. Only recently the forestry research community has
started to harmonize and share their data, especially in the area of
genetics. However, a lot of relevant data is still stored in silos,
sometimes even in local or private repositories. Moreover, datasets
often are not documented with appropriate metadata. In many
cases, researchers do not see the benefits of documenting data, or
data is consciously kept private for example because associated
research results are still to be published or because of fear for
misuse. In general there is often no incentive, nor sense of urgency
to actively share data other than through (trusted) networks and
personal contacts. This corresponds to observations in literature,
suggesting that apart from the technology challenges, many disci-
plines also still lack the institutional and cultural frameworks
required for efficient data sharing, together leading to a “scan-
dalous shortfall” in the sharing of data by researchers (“Data's
Shameful Neglect [Editorial]” (2009)). Thus, valuable research
data is hard to find without knowing the right people, and only
partially available for the whole community of interest. Conse-
quently it still remains hard to acquire the specific targeted data for
interdisciplinary work. This lack of discoverability is an even more
pressing issue for “newcomers”, for scientists from associated do-
mains that require forestry data for their work or for decision
makers looking for evidence based information.

One of the research communities in the Trees4Future project are
forestry modellers. Their work on present-day societal challenges
(e.g. related to bio economy, climate change) requires interdisci-
plinary approaches, like integrated modelling. As an example,
assessing climate change impacts and exploring climate adaptation
strategies requires coupling of models that describe various sub-
domains and cover different spatial and temporal resolutions. In
Trees4Future, such integrated assessments required the linkage of
the ForGEM model (Kramer et al., 2013), the EFISCEN model
(Nabuurs et al., 2000) and the Tosia model (Lindner et al., 2010).
While the ForGEM model assesses genetic adaptive responses on
the individual tree and population level, the EFISCEN model pro-
jects forest resource development on a regional and European scale,
and the Tosia model analyses environmental, economic, and social
impacts of changes in forestry-wood production chains. Hetero-
geneous data, varying from detailed genetic data, phenotypic traits
and high resolution climate and soil data, to statistical data on
species distribution, forest management practices and market in-
formation are required to address such integrated modelling ex-
ercises. Given the current disconnectedness and lack of context, it is
quite complex and time consuming to discover and get access to
these data. The Trees4Future project aims at improving this situa-
tion by developing technical solutions to facilitate the documen-
tation, publication and discoverability of forestry data by setting up
a forestry data infrastructure. Moreover, through this infrastructure
it aims at demonstrating benefits and fostering broader uptake of
data sharing and documentation practices.

From the perspective of the theoretical framework, this case is
strongly connected to veracity, addressing issues of trust and
quality. This obviously works in two directions. On the data owner
side, there needs to be trust that data is sufficiently documented
and will not be misinterpreted or misused. Data consumers, on the
other side, should have trust in the reliability and correctness and
completeness of associated metadata. The case also addresses va-
riety, through the requirement to provide integrated access to
sources coming from a range of relevant subdomains and the
related need to provide semantic linkages over the associated
(meta)data. This case mainly concerns the lower levels of the DIKW
hierarchy (the data and information level) and the need to make
the available data and information part of the multidisciplinary Big
Data pool, adding the required context on the dataset level to make
data potentially usable for the broader community.

2.3.2. Methodology and implementation
To improve access to data required for and generated by forestry

research, a data search and discovery service on top of a federated
metadata repository was developed. Main objectives were firstly
that the system had to be able to provide both already documented
and accessible datasets and up till now inaccessible datasets, thus
connecting not only organisations that have already organized and
standardized their processes but also the smaller organisations and
individuals that are not equipped with the required infrastructure.
Secondly, end users were to be provided with a facility to easily
search and discover available forestry data, once datasets have been
documented and published through the developed mechanisms.
This search function was considered to be the necessary “proof of
the pudding”, required to convince end users to use the system, but
also to convince data owners of the benefits of documenting and
publishing their data.

To achieve improved discoverability, the following components
were developed to support the data publication process depicted in
Fig. 4:

� A concise metadata schema, based on the widely supported and
extensible Dublin Core standard and extended with additional
metadata elements to support forestry specific metadata;

� A public metadata registry, composed of an online metadata
editor and an underlying repository, which publishes its meta-
data records through the OAI-PMH protocol, providing a stan-
dardized and harvestable metadata endpoint;

� A forestry ontology that allows the conceptualization of datasets
and its interlinkage with commonly used external ontologies
(e.g. AGROVOC (FAO, 2016), a genetic traits ontology);

http://www.trees4future.eu
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� Ametadata harvesting, triplification and annotation mechanism
that supports harvesting metadata following the developed
forestry metadata schema as well as standardized metadata
schema's like INSPIRE and ISO; decomposes the metadata into
ontology concepts using among others natural language pro-
cessing (NLP) techniques and stores these in an RDF (Resource
Description Framework) database; and links the derived dataset
concepts to the concepts of the available external ontologies;

� A semantic search mechanism and search interface, allowing
users to transparently search the registered datasets, using the
power of semantics in the underlying RDF store.
2.3.3. Results
The developed infrastructure clearly has increased the discov-

erability of forestry research data and improved its availability for a
broader audience. It covers the variety of data required for inte-
grated forestry modelling cases, like the described climate adap-
tation use case and others. This is, first of all, because it provides
federated access to the currently scattered and sometimes inac-
cessible wealth of forestry research data. The developed data
infrastructure already publishes metadata of more than 300 data-
sets from major European data repositories, and offers the option
for small organisations and individuals to publish their (meta)data
through a managed access point. Moreover, it offers opportunities
to publish reference datasets for integrated modelling, providing
less experienced modellers with entry points to build their
experiments.

The developed infrastructure has been tested with a set of
queries to evaluate its added value through the use of semantics.
Typical examples include the linkage of synonyms (e.g. rainfall
results in datasets tagged with the concept rain) and broader and
narrower terms (e.g. precipitation results in datasets tagged with
rain, snow, hail). These tests, and the first impressions of its use in
practice, show that even with relatively simple knowledge tech-
nology additions, well documented data can be made accessible in
a better way, making it easier to discover data through better
structuring, indexing and search capabilities. The addition of se-
mantic capabilities and its ability to directly search topics, concepts
Fig. 4. Publication process workflo
and associations linked to a vast number of sources to a metadata
repository increases the discoverability of datasets, because it re-
veals otherwise unknown linkages between the common vocabu-
laries of different users and the actual metadata concepts. This is
accomplished by (1) returning results that are semantically related
to the provided search terms and (2) revealing related terms to the
user when composing their search conditions (e.g. by a semanti-
cally driven autocomplete function). An observed additional benefit
is that providing the scientific community with improved discovery
mechanisms increases awareness that data documentation is
important, and contributes to insights in how data could be best
documented in order to provide added value to end users.

On the other hand, we also conclude that in forestry and related
domains the currently available metadata is scarce and often of low
quality, which complicates the linkage of metadata concepts with
(external) ontology concepts. A second observation is that currently
available metadata standards provide insufficient possibilities to
(automatically) select datasets that fit researchers needs, e.g. in
technical domains like modelling and simulation. In general met-
adata schemas lack the structure and depth required to structurally
capture the complexity of scientific datasets. Commonly used and
essential fields, like for example lineage, do not provide the struc-
ture required to address the complex production processes of data.
Moreover, the lack of depth prevents that the structure and con-
tents of the data itself (for example its attributes and datatypes) can
be addressed in a structured manner. In the use case, this issue was
tackled by combining and linking isolated fragments of a broad
coverage vocabulary (AGROVOC) with specific and detailed sub-
domain specific semantics. Obviously, this is a very customized and
elaborate approach and not a viable generic solution.
2.4. Case: Big Data querying

2.4.1. Problem statement
Research in the agro-environmental domain has to deal with

large and very diverse datasets, both in content, structure, and
storage format. Because of the current move towards open access
and open data, an increasing amount of data is brought out of their
information silos and made accessible as part of what is called the
w developed in Trees4Future.
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Linked (Open) Data (LOD) cloud, resulting in an extensive network of
distributed heterogeneous data sources. Unfortunately, access to this
network to date is neither easy nor transparent, and current
centrally-managed or even distributed data repositories are not able
to meet the data science challenges ahead, starting with adequate
Big Data querying facilities. The EU FP7 research project SemaGrow
examined solutions to provide more effective and transparent ways
to access distributed data. It aimed at developing algorithms and
infrastructure for the efficient querying of large-scale federations of
independently-managed data sources, i.e., the nodes of the Linked
Data cloud. To address the differences in storage formats, it builds
upon the already established and frequently used principles behind
the Semantic Web, namely RDF and the SPARQL query language.
These standards enable the sharing and reusing of data across ap-
plications and scientific community boundaries, and allow the
interconnecting of data in the LOD cloud.

SemaGrow specifically focussed on the agriculture domain and
its use cases through a series of data pilots, exploring the specific
data challenges of this domain. These challenges typically include
discovery, merging and integration of large and very diverse spatio-
temporal datasets. One of the use cases explored in SemaGrow is
regional agro-climatic modelling in the frame of climate adapta-
tion. Climate parameters required for regional modelling are usu-
ally stored in large multidimensional files, often with global or
transregional spatial coverage and long term temporal coverage.
Modellers tend to duplicate large amounts of data for their
modelling experiments, which are then locally processed to the
required extent and scales. Besides the general issue of resource
efficiency, such ways of working can pose significant barriers,
specifically in regions where networking, storage and computing
resources are limited. SemaGrow has examined ways to allow the
thematic, spatial and temporal querying and merging of large
distributed datasets, returning relatively light and integrated
datasets. As an example, this would allow an agricultural modeller
in Ghana with limited networking and storage resources to acquire
a merged subset of temperature, precipitation and soil parameters
for a specific region in the country.

With regards to the theoretical framework, the case primarily
focussed on the volume and variety characteristics of Big Data,
exploring ways to allow scientists to efficiently access large,
distributed data sources in a federated manner and to download
and merge manageable subsets of different nature. Although ve-
locity was not the primary focus, it is relevant to note that the case
elaborates on automating data integration problems that generally
are very labour and time intensive through the involvement of
experts of different disciplines. While developed solutions might
technically be considered as non-performant, they could still result
in dramatic improvement of efficiency in the face of timely provi-
sion of information required for decision making. It concerns
mainly the data and information layer of the DIKW hierarchy,
attempting to efficiently bridge the gap between these levels by
automatically processing and harmonising sources from the Big
Data pool to a level that offers better opportunities for connecting
data with the tools (e.g. models, data analysis) operated on the
information level. Consequently, it not only potentially reduces the
efforts and resources required to produce information from raw
data, but also touches some of the integration challenges associated
with interdisciplinary science.

2.4.2. Methodology and implementation
To be able to demonstrate SemaGrow Big Data querying capa-

bilities in the frame of real-world applications, and to be able to
compare its characteristics to a reference situation, as one of the
pilots the Trees4Future Clearinghouse system described in the
previous case was adapted to work using SemaGrow technologies.
For that purpose, the Trees4Future back-end was replaced with the
infrastructure developed by SemaGrow, the so-called SemaGrow
Stack, and a set of distributed RDF databases containing triplified
data and metadata. As a result, the demonstrator application also
extends the reference application by not only offering the option to
perform semantic queries on metadata but also on the underlying
data.

The SemaGrow Stack (https://github.com/semagrow/semagrow)
is a ‘federated SPARQL query processor’ that can efficiently query a
set of distributed heterogeneous data nodes. It includes a query
planner that uses metadata about the nodes of the federation to
optimize the query execution. This metadata follows the Sevod vo-
cabulary (http://www.w3.org/2015/03/sevod), also developed in the
project, that extends the VoID vocabulary with statistical informa-
tion akin to database histograms. The Stack uses the reactive soft-
ware paradigm to properly handle unresponsive or slow data nodes
in the federation. As such, the SemaGrow Stack provides a unifying
endpoint that allows transparent querying of the underlying triple
stores without having to know their (possibly) heterogeneous
schemas.

Triple stores were set up, holding triplified agro-environmental
data, selected from the ISI-MIP and AgMIP data harmonisation
initiatives. ISI-MIP, The Inter-Sectorial Impact Model Inter-
comparison Project, is a community-driven modelling effort
bringing together impact models across sectors and scales to create
consistent and comprehensive projections of the impacts of
different levels of global warming. Input and output data from ISI-
MIP is made available as NetCDF files using the Climate and Fore-
cast conventions for its metadata. The Agricultural Model Inter-
comparison and Improvement Project, AgMIP, is a major interna-
tional effort, linking the climate, crop, and economic modelling
communities with cutting-edge information technology, to pro-
duce improved crop and economic models and the next generation
of climate impact projections for the agricultural sector. AgMIP
provides data in JSON format using the ICASA Variable List for its
metadata. Both data collections are harmonized, but are quite
different in nature, e.g. global gridded time-series data of simula-
tion model projections, versus single point location based time-
series of field management and weather station observed data.
These features make them well suited to evaluate how the Sema-
Grow Stack handles the heterogeneity related aspects. Data from
these sources has been ‘triplified’ into triple stores, so they can be
queried using SPARQL. Besides, the different vocabularies used (CF
Conventions for ISI-MIP data and ICASA for AgMIP data) have been
aligned through the use of the AGROVOC thesaurus. The amount of
datasets that have been triplified for the demonstrator is limited. It
concerns around 10 global coverage, long-term ISI-MIP datasets
and a few dozen of AgMIP datasets. However, especially due to the
volume of the ISI-MIP datasets, the total size was at the Tera triples
level, allowing to also explore the volume related aspects and the
associated behaviour of the SemaGrow infrastructure.

Lastly a spatio-temporal triple store (Strabon, http://strabon.di.
uoa.gr) has been added to the federated nodes so that spatial
queries, e.g. point-in-polygon, can be resolved. To connect the web
application front-end of the demonstrator with the SemaGrow
Stack instance, a small additional layer of middleware software was
needed. It translates URL requests including parameter values into
the proper SPARQL queries for the Stack, and vice versa pre-
processes the raw query results into a response the demonstrator
can handle. Furthermore, it is able to create valid NetCDF files from
the RDF Data Cube format used internally, to better serve end-users
needs.

2.4.3. Results
So far, the described demonstrator application has been tested

https://github.com/semagrow/semagrow
http://www.w3.org/2015/03/sevod
http://strabon.di.uoa.gr
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by a limited group of end-users. The demonstrator gets positive
remarks for the functionality it offers, but people expect better
performance both for metadata searches (less than 10 s expected,
versus 5e30 s measured) and for data downloads (less than 30 min
expected, versus several minutes to several days measured,
depending on the size of the selected data), as well as access to
much more data. Both can possibly be met by massive upscaling of
the infrastructure. Notably, in the performed expert enquiries
several experts have explicitly mentioned that, even with the
measured response times, the demonstrated querying and data
fusion facilities can be quite useful. It should be realized that, for
example in the formerly mentioned use case of agricultural
modelling in Ghana, composing a dataset for modelling requires
different processing steps. It usually requires consultation of, and
cooperation with local and remote specialists and consequently
aggregated time investments and resulting lead times can be high.
Thus, automated data fusion queries, even when taking hours or
days, could make the research process in such cases more efficient.

The SemaGrow project has also shown how time-consuming it
remains to process data so that it is properly annotated with met-
adata, triplified, and aligned to make it part of the LOD. While tools
for ontology matching and alignment were available through the
project, these could not be used because reference vocabularies did
not comply with the supported standards. Moreover, it appeared
that a commonly used vocabulary like AGROVOC is not well suited
to effectively annotate datasets on the level of detail required for
the research problems examined. AGROVOC provides relatively
rough concepts for specific variables and provides no specific unit
taxonomy. However, fitting selections for specific modelling ex-
periments would require more specific specifications to describe,
for example, the parameter “mean daily temperature 2 m above
ground level” as well as its specific unit of measurement. Besides, in
contrast to for example bibliographic data or text documents, the
multi-dimensional data used in agro-environmental science still
challenges state-of-the-art triple stores and current semantic web
technology. Issues like different spatial projections, spatial and
temporal scales, unit conversions, handling streaming data or
simple data manipulations, could not be considered within the
scope of the project, but were on the list of evaluation comments by
the end-users. Consequently, providing transparent and unified
access to these datasets is not yet trivial.

3. Conclusions and recommendations

Three use cases are described that have addressed different is-
sues related to Big Data usage and technologies in the agro-
environmental domain. These have also been put into the
perspective of a theoretical framework to structure their
complexity. In the analysed cases, a variety of issues were
encountered spanning the whole range of Big Data characteristics
(the 4 V's) and the layers of the DIKW hierarchy. Cases generally
focused on discovering and combining heterogeneous datasets for
modelling and decision making in interdisciplinary domains. While
it is obvious that challenges regarding the volume and velocity
aspects exist, and there are not yet clear solutions in all cases, the
contours of future technical solutions are already visible,
combining cloud based storage and computing with improved and
better integrated infrastructural components. Research initiatives
explore and develop innovative infrastructures and several com-
mercial services are offered. More important for the agro-
environmental domain is that steps are being taken to improve
the handling of Big Data, including the aspect of dealing with the
spatio-temporal data that is very common to the domain. Specific
processing requirements of this type of data include spatial and
temporal up- or downscaling and handling a large variety of spatial
reference systems. Such processing could be more effectively
handled by an additional software layer, e.g. through a data centric
design (http://research.ibm.com/articles/datacentricdesign/),
where much of the processing is moved to the places where the
data is stored.

More persistent barriers in agro-environmental science, and
probably also in other areas that require highly interdisciplinary
knowledge for decision making, lie in handling the variety and
veracity aspects. Not surprisingly, these aspects are also crucial to
link the different levels of the DIKW hierarchy, both vertically,
allowing to work up raw data to knowledge fit for decision making,
and horizontally, to meaningfully connect content from different
disciplines that are currently often disconnected. In order to be able
to meaningfully link heterogeneous sources coming from different
disciplines and being generated for different purposes, improved
semantic interoperability is needed. Possibly it also is needed to
strive towards a higher level of the Conceptual Interoperability
Model introduced by Wang et al. (2009) (Wang et al., 2009). Based
on thework done on the three presented cases, two approaches can
be recognized, one top-down driven and the other one bottom-up.

The top-down approach would include defining and agreeing
upon a top-level ontology for the agro-environmental domain, and
all subdomains relating their specific ontologies to this top-level
ontology by harmonizing or alignment efforts. Many vocabularies
and ontologies exist in the agro-environmental domain, developed
with different purposes and covering different subdomains. They
vary from broad coverage and relatively global (e.g. AGROVOC) to
very specific coverage and detailed. The scope of agro-
environmental scientific challenges usually requires dealing with
different vocabularies that are typically not interoperable and
sometimes even conflicting, which in practice makes it very hard to
align semantics in such a way that the result remains meaningful
and is fit for a specific purpose. Therefore, besides the elements of
coverage and granularity, serious barriers are the fact that different
standards are used, and that alignment is very labour intensive and
requires interdisciplinary expertise. The analysed cases particularly
show that standardized and broadly accepted semantics to describe
datasets on the level of its attributes are generally lacking, and that
available ontologies and vocabularies cannot easily be applied.
Solutions like combining (fragments of) different semantic sources
or manual linkage of vocabularies for very specific purposes can
work for the specific case, but are obviously not sustainable. Yet,
these, often small, semantic differences between simultaneously
existing ontologies competing for adherents may simply continue
to exist as part of our academic and political freedoms. Still it would
be worthwhile to at least work towards common, linked ontologies
instead of ending up with, exaggerating, one ontology per disci-
plinary data silo.

Amore bottom-up oriented approach revolves around the use of
semantic interpretation technologies such as Natural Language
Processing and Machine Learning algorithms. With more data,
including e.g. text documents and web pages, and metadata
becoming available, it will become impossible for humans to
properly relate the data to ontologies, next to discussions about
which ontologies to use. It certainly seems more practical when
computers can tag data on an ad-hoc, case-by-case basis, based on
some level of understanding of the meaning of the data. The
WORDNET dictionary already provides a good starting point, but
needs to be extended with domain specific knowledge, like dis-
cussed in the use case on semantic driven discovery. Building up
such a corpus covering the agro-environmental domain is a time
consuming activity, but it would be highly reusable in many future
applications. As of now, use of semantic technologies is not very
well developed in the agro-environmental domain. Consequently,
consistency of produced results is still varying, making its

http://research.ibm.com/articles/datacentricdesign/
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introduction and acceptance (‘veracity’) a challenge.
The sketched approaches are of course not mutually exclusive,

andmight meet somewhere in themiddle. A relevant initiative that
demonstrates a possible way forward is CYNERGI http://earthcube.
org/group/cinergi). This initiative tries to combine bottom-up (e.g.
enhancers using semantic techniques to improve metadata) and
top-down (e.g. using a generic metadata schema) aspects to
harmonize access to interdisciplinary datasets. More importantly,
CINERGY recognizes the shortcomings of available metadata, se-
mantics and available technologies, like machine learning and NLP.
It explicitly includes human engagement as an indispensable factor
in the process of making data fit for interdisciplinary science. Direct
involvement of scientists to select relevant data sources, metadata
elements and to validate generated metadata and query results is
regarded a crucial element to serve cross-domain, fit-for-use data
to scientists. This corresponds with the experiences and outcomes
of the analysed cases.

Looking from the perspective of the analysed cases at the lower
levels of the DIKW hierarchy, the provision of sufficient, high
quality metadata hinders the smooth access to and linkage of sci-
entific data sources. To be able to work with the available metadata
and to deal with its shortcomings, all observed cases were some-
how confronted with the need to develop customized solutions.
Applied solutions vary from implementing manual ontology
alignment as an alternative for metadata driven automatic anno-
tation to the improvement of awareness and provision of metadata
creation and editing facilities. In general, despite the availability of
standardized metadata schemas, well documented scientific data is
still scarce. This also appears to be a cultural issue, where scientific
practice is often still based on working in silos and interchanging
among trusted peers, and data management policy is not well
developed. There is a clear link to the veracity aspect of Big Data
here. Data users need to trust the provided data, which is most
clearly expressed by the quality of its metadata. On the other hand,
data providers require trust that their data is used in a proper way,
which again can be promoted by adequately documented datasets.

Promising and viable approaches for ICT driven mechanisms to
improve interdisciplinary data-intensive research using technolo-
gies related to the Big Data domain have been identified, examined
and implemented in the analysed use cases. Although in most cases
implementation was successful, we can also conclude that effec-
tiveness is limited, due to the current state of data management
and semantic coverage in the agro-environmental domain. Based
on the analysed cases and the above stated conclusions, we
recommend that Big Data research, and especially the efforts to be
delivered in this area from the agro-environmental domain (in
contrast to the more technically oriented ICT research), focusses on
variety and veracity challenges. This focus should lead to the
improvement of conditions and development and application of
methodologies and techniques required to efficiently provide ac-
cess to and semantically interlink sources from different disci-
plines. Obviously, this does not only require technological
advances, but also a disruptive change of culture and behaviour. To
this end, the development and promotion of working demonstra-
tion cases in research environments has proven to be a valuable
instrument to create awareness and catalyse such change.
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