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Abstract—In this paper, we propose a scheme of an intelligent
capacitive pressure sensor (CPS) using an artificial neural network
(ANN). A switched-capacitor circuit (SCC) converts the change in
capacitance of the pressure-sensor into an equivalent voltage. The
effect of change in environmental conditions on the CPS and sub-
sequently upon the output of the SCC is nonlinear in nature. Espe-
cially, change in ambient temperature causes response character-
istics of the CPS to become highly nonlinear, and complex signal
processing may be required to obtain correct readout.

The proposed ANN-based scheme incorporates intelligence into
the sensor. It is revealed from the simulation studies that this CPS
model can provide correct pressure readout within 1% error
(full scale) over a range of temperature variations from 20 C to
70 C. Two ANN schemes, direct modeling and inverse modeling
of a CPS, are reported. The former modeling technique enables an
estimate of the nonlinear sensor characteristics, whereas the latter
technique estimates the applied pressure which is used for direct
digital readout. When there is a change in ambient temperature,
the ANN automatically compensates for this change based on the
distributive information stored in its weights.

Index Terms—Artificial neural networks, automatic temper-
ature compensation, intelligent sensor, multilayer perceptron,
pressure-sensor modeling.

I. INTRODUCTION

PRESSURE sensors have wide applicability in various sys-
tems including instrumentation, automobiles, bio-medical,

and process control systems. The capacitive pressure sensor
(CPS), in which the capacitance of a chamber changes with
application of pressure finds extensive applications because of
its low power consumption and high sensitivity [1]. However,
its highly nonlinear response characteristics give rise to several
difficulties including on-chip interface, direct digital readout
and calibration.

To compensate for the difficulties faced due to the nonlinear
response characteristics of the CPS, several techniques have
been suggested. A switched-capacitor charge balancing tech-
nique [2], a ROM-based look-up table method and a nonlinear
encoding scheme have been proposed [3]. The problem of
nonlinear response characteristics of a CPS further aggravates
the situation when there is change in environmental conditions.
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As the output of a CPS is dependent on applied pressure as
well as temperature, when the ambient temperature changes
frequently, the situation becomes very complicated. In this case
the problem becomes two-dimensional (2-D), and complex
signal processing techniques are required to make necessary
corrections to obtain a correct digital readout. A scheme
of microcomputer-based 2-D look-up table [4] and another
approach based on an oversampling demodulator and
complex signal processing techniques for the sensor model
have been reported [5] with some success.

For nonlinearity estimation and to obtain a direct digital
readout of a CPS, an artifical neural network (ANN)-based
modeling technique has been proposed with quite satisfactory
performance [6]; however without any consideration of change
in the ambient temperature. Recently, using two multilayer
perceptrons (MLP’s), auto-calibration and nonlinear com-
pensation of a CPS, under variation of ambient temperature
has been proposed [7]. The maximum error in estimation of
pressure over a wide variation of temperature is reported as

1% full scale (FS). An ANN-based smart CPS in a dynamic
environment has been reported [8]. In practice, in a dynamic
environment, the change in ambient temperature influences the
sensor characteristics nonlinearly. This ANN model is capable
of providing pressure readout with a maximum FS error of

2% over a wide variation of ambient temperature.
In the present paper, we address the 2-D problem of a CPS

using a multilayer ANN. A switched-capacitor circuit (SCC)
converts the change in capacitance into an equivalent voltage.
The intelligent behavior is implanted into the sensor by training
the ANN to adapt to any temperature change. Two modeling
techniques are proposed in this paper. In the direct modeling, the
ANN is trained in a parallel mode to estimate the capacitance of
the CPS. This model may be used for the purpose of on-line fault
detection and quality control of the sensor during its production.
In the inverse modeling, the ANN is trained in a series mode to
estimate the applied pressure which is independent of ambient
temperature. A plug-in module (PIM) is proposed to implement
the scheme on-line. The effectiveness of both schemes has been
verified by extensive computer simulation studies.

II. CAPACITIVE PRESSURESENSORMODEL

We have chosen a CPS in this study because of its wide appli-
cability. The CPS has lower power dissipation and higher sen-
sitivity than other types of pressure sensors. A CPS senses the
applied pressure due to the elastic deflection of its diaphragm. In
the case of a simple structure, this deflection is proportional to
the applied pressure, and the sensor capacitance varies
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Fig. 1. Switched-capacitor interface circuit.

hyperbolically. Neglecting higher-order terms, may be
approximated by

(1)

where is the sensor capacitance when is
the change in capacitance due to applied pressure;

is the sensitivity parameter which depends upon
the geometrical structure of the sensor; is the normalized
applied pressure given by ; and is the max-
imum permissible input pressure.

In the 2-D problem discussed in this paper, the sensor ca-
pacitance is a function of the applied pressure and the ambient
temperature . Assuming that the change in capacitance due to
change in temperature is linear and independent of the applied
pressure, the CPS model may be expressed as

(2)

where represents the change in capacitance due to
applied pressure at the reference temperatureas given in (1).
The functions and are given by

(3)

where the coefficients and may have different values de-
pending on the CPS chosen. The normalized capacitance of the
CPS, is obtained by dividing (2) by and may be ex-
pressed as

(4)

A SCC for interfacing the CPS is shown in Fig. 1, where
represents the CPS. The circuit operation can be con-

trolled by a reset signal. When (logic 1), charges
to the reference voltage while the capacitor is discharged
to ground. Whereas, when , the total charge
stored in the is transferred to producing an output
voltage given by , where . It may be
noted that if ambient temperature changes, then the SCC output
also changes although the applied pressure remains the same.
By choosing proper values of and , the normalized SCC
output can be adjusted in such a way that .

III. D IRECT MODELING OF CPS

A scheme of direct modeling of a CPS is shown in Fig. 2. This
scheme is analogous to that of the system identification problem

Fig. 2. Scheme of direct modeling of a CPS.

Fig. 3. Direct response characteristics of the CPS at�10 C, 25 C and 60 C.

in control engineering. The purpose of the direct modeling is
to obtain an ANN model of the CPS in such a way that the
outputs of the CPS and the ANN match closely. Once a model
of the CPS is available, it may be used for fault detection of the
sensor. An ANN based on the MLP is a feed-forward network
with one or more layers of nodes between its input and output
layers. The popular back-propagation (BP) algorithm, which is
a generalization of the LMS algorithm, is used to train the MLP.
The details of the BP algorithm may be seen in [9], [10].

Simulation studies were carried out to obtain a direct model of
the CPS. The SCC output voltage was obtained experimen-
tally at the reference temperature of 25C for different values of
normalized pressure chosen between 0.0 and 0.6 with an interval
of 0.05. Thus, these 13 pairs of input-output data constitute a
set of patterns at the reference temperature. Using (3), the func-
tions and were generated by setting the values of

and to and , respectively. From the
available CPS pattern set at the reference temperature, i.e.,

, and with the knowledge of functions and ,
eight sets of patterns (each containing 13 pairs of input-output
data) were obtained at an interval of 10C ranging from 10 C
to 60 C. The CPS response characteristics for the chosen values
of and at 10 C, 25 C, and 60 C are plotted in
Fig. 3.

A two-layer MLP with 3-5-1 structure was chosen for direct
modeling of a CPS as shown in Fig. 2 (3, 5, and 1 denote the
number of nodes including the bias units in the input layer, the
first layer, i.e., the hidden layer and the output layer of the ANN,
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TABLE I
FINAL WEIGHTS OF THE ANN USED IN

THE DIRECT MODEL OF THECPS

Fig. 4. True (T) and estimated (E) capacitances of the CPS at 0C and 60 C
(test set). The true characteristics at 25C are shown for reference.

respectively). Four sets of patterns corresponding to10 C,
10 C, 30 C, and 50 C were chosen for training of the ANN.
The BP algorithm in which both the learning rate and the mo-
mentum rate were chosen as 0.5, was used to adapt the weights
of the ANN.

The normalized temperature and the normalized ap-
plied pressure were used as input pattern, and the SCC
output was used as the desired pattern to the MLP.
After application of each pattern, the ANN weights were up-
dated using the BP algorithm. Completion of all patterns of all
the training sets constitutes one iteration of training. To make the
learning complete and effective, 10 000 iterations were made to
train the ANN. Then, the weights of the MLP were frozen and
stored in an EPROM. These weight values are shown in Table I.

During the testing phase, the frozen weights are loaded into
the ANN model. Then the inputs, and from the test set
were fed to this model. Next, the model output was computed
and compared with the actual output (if known) to verify the ef-
fectiveness of the model. The normalized pressure values were
chosen from 0.0 to 0.7 with an increment of 0.01 and applied to
the ANN model along with normalized temperature. The esti-
mated values and at 0 C and 60 C (test set samples)
are plotted in Fig. 4. From this figure it may be observed that
the estimated values follow the true values very closely. Even
for the values from 0.6 to 0.7, for which true capacitance
values are not known, the ANN model is capable of predicting

Fig. 5. Percentage of error (FS) between the true and estimated capacitances
at 0 C, 20 C, 40 C, and 60 C.

Fig. 6. Scheme of inverse modeling of a CPS.

the corresponding values correctly. Similar estimated character-
istics close to actual one were observed for other temperatures.

The percentages of error (FS) between true and estimated ca-
pacitances at 0C, 20 C, 40 C, and 60 C are shown in Fig. 5.
It may be noted that, the MLP was not trained for the patterns at
these temperature values. It may be seen from this figure that the
estimation error remains within 1% (FS). From these studies the
effectiveness of the ANN-based direct model is quite evident.

IV. I NVERSEMODELING OF CPS

A scheme of inverse modeling of a CPS using an MLP for es-
timation of applied pressure is shown in Fig. 6. This is analogous
to the channel equalization scheme used in a digital communi-
cation receiver to cancel the adverse effects of the channel on the
data being transmitted. To obtain a direct digital readout of the
applied pressure, an inverse model of the CPS may be used in
cascade with it to compensate for the adverse effects on the CPS
output due to the nonlinear response characteristics and the vari-
ations with ambient temperature. The generation of training-set
and test-set patterns is similar to that of the direct modeling
scheme. However, in the inverse modeling scheme, the normal-
ized temperature and the CSS output are taken as input
patterns, and the normalized input pressureis taken as the
desired output pattern in the ANN model. .

In the simulation study, the same MLP with 3-5-1 structure
was chosen for inverse modeling of the CPS. The ANN was
trained in a similar fashion as in the case of direct modeling.
In this case also, all the 13 patterns corresponding to tempera-
ture values of 10 C, 10 C, 30 C, and 50 C were applied
randomly during training. The learning rate and the momentum
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TABLE II
FINAL WEIGHTS OF THEANN USED IN THEINVERSEMODEL OF THECPS

Fig. 7. Inverse response characteristics of the CPS at�10 C, 25 C, and
60 C.

rate were chosen as 0.5 and 0.7, respectively. The MLP was
trained for 10 000 iterations using the BP algorithm, the evolved
weights were frozen, and stored in an EPROM. The final weight
values of the MLP are listed in Table II.

The inverse response characteristics of the CPS for10 C
and 60 C are calculated using (4) and are plotted in Fig. 7. In
the testing phase, the CSS output was applied as input to the
MLP with an increment of 0.001 in the range from 0.9 to 1.9
along with the normalized temperature . Then, the estimated
pressure was obtained from the output of the ANN model.
The estimated pressure and the true pressure at 0C and 60 C
(test set) are plotted in Fig. 8. From this figure, a quite close
resemblance between the estimated pressure and true pressure
may be observed. Similar results were found for the full range
of temperatures from 20 C to 70 C

The plots of normalized actual pressure versus estimated
pressure (by the ANN model) at different ambient temperatures
indicate a nearly linear relationship between the two. The
variations of error in the estimation of pressure by the ANN
model at 0 C, 20 C, 40 C, and 60 C are plotted in Fig. 9.
From this plot it may be seen that the error between the actual
and estimated pressure remains within1%(FS).

Extensive simulation studies were carried out with different
MLP structures over a wide temperature range and tested for dif-
ferent temperature values. The 3-5-1 MLP structure was found
to provide optimum performance. It may be noted that, although
the MLP was trained with patterns corresponding to only four
temperature values (10 C, 10 C, 30 C, and 50 C), the

Fig. 8. True (T) and estimated (E) pressures at 0C and 60 C (test set). The
true characteristics at 25C are shown for reference.

Fig. 9. Percentage of error (FS) between the true and estimated pressures at
0 C, 20 C, 40 C, and 60 C.

ANN model was found to be capable of accurately estimating
the applied pressure at any ambient temperature from20 C
to 70 C. This fact is the novel characteristics of the proposed
ANN model.

V. IMPLEMENTATION ISSUES

An implementation scheme of the inverse model for estima-
tion of applied pressure is proposed here. The implementation
scheme and details of the PIM are shown in Fig. 10. The output
of the SCC passes through an ADC, and its digital output along
with the temperature value are fed to the PIM. The output of the
PIM is applied to the display unit for digital display of the ap-
plied pressure.

The training or learning phase of the ANN involves a con-
siderable amount of computation and hence, it is carried out
off-line. The 3-5-1 MLP structure, which is capable of mod-
eling the CPS with quite satisfactory performance, is shown in
the figure. Once the training is over, the frozen weights of the
MLP are to be entered into shift registers of the PIM attached
to the sensor to obtain direct digital readout of the applied pres-
sure.

In the PIM, and refer to inputs, and refers to
first-layer weights of the MLP. The outputs of the first-layer
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Fig. 10. (a) Implementation scheme for inverse modeling of the CPS.
(b) Plug-in module.

nodes, which become input to the output node, are represented
by . The weights of the second layer are denoted by. The
results of the multiplications in the first and second layers are
denoted by and , respectively. The results of the addition
are represented by and . The final output of the MLP is
shown as .

The temperature information after normalization is fed to the
MLP manually. The normalization is made so as to keep the tem-
perature value within . To dispense with manual feeding
of the temperature information, a temperature sensor, such as
a thermistor may be installed with suitable normalization of its
output.

The PIM consists of several registers to store the weights of
the ANN, the inputs, intermediate multiplication and addition
results, and the final output of the ANN model. It also contains
several multipliers, adders, and tanh circuits for carrying out re-
quired computations. All the registers are of 8-bit length, but the
registers containing the results of a multiplication are of 16-bit
length and are formed by cascading two 8-bit registers. For the
3-5-1 MLP structure implementation in the PIM, the hardware
requirements are as follows. The number of shift registers, mul-
tipliers, adders, and tanh circuits needed for the implementation
is 53, 12, 5, and 5, respectively. Finally, the output of the MLP
model, i.e., is fed to the display unit for digital display of the
applied pressure.

The implementation of the PIM may be carried out by
using any available single-chip micro-controller unit (MCU).
Presently, we have not shown the results of the proposed ANN
model by an implementation scheme. We have demonstrated

the effectiveness of the proposed model by simulation results
only. However, we are confident that if this model using the
PIM is implemented by a MCU, it will yield quite satisfactory
result as deduced from the simulation studies.

VI. CONCLUSIONS

In this paper, we have proposed a scheme of ANN-based in-
telligent pressure sensor for the purpose of sensor fault detec-
tion, and for on-line direct digital readout of the applied pres-
sure. Even though the sensor characteristics change with am-
bient temperature, the proposed model performs quite satisfac-
torily irrespective of any change in temperature from20 C to
70 C. This temperature range can be widened by training the
MLP with sufficient number of pattern-sets covering the temper-
ature range. In the direct modeling, the nonlinear response char-
acteristics of the CPS are modeled by a two-layer MLP. From the
simulation studies it is observed that the sensor characteristics
and the model output match very closely. The direct modeling
may be used for detection of sensor failure and quality control
during its manufacturing process.

The proposed inverse model is for the purpose of estimation
of applied pressure and used for direct digital readout. It is found
to be capable of accurate estimation of unknown applied pres-
sure, and is insensitive to the variation of sensor characteristics
due to change in ambient temperature. It is revealed from the
simulation studies that the estimation error remains within1%
(FS) throughout the dynamic range of the sensor over a wide
range of temperature. In the near future, we may be able to report
our findings on the effectiveness of the proposed ANN-based in-
telligent CPS model implemented by using a MCU.

This technique incorporates intelligence into the CPS to make
it temperature independent. Further, it provides flexibility and
simplicity of operation. In the case of replacement of sensor due
to aging, damage, or any other reasons (which may be detected
by direct modeling), the inverse model is to be retrained, and
the final weights of the ANN are to be reentered into the PIM
for correct digital readout. The proposed ANN-based modeling
technique may be extended to other types of sensors and de-
vices to compensate the adverse effects due to change in envi-
ronmental parameters on their performance.
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