
DOI: 10.4018/IJCAC.2017100102

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

An Energy-Aware Task Scheduling in the
Cloud Computing Using a Hybrid Cultural
and Ant Colony Optimization Algorithm
Poopak Azad, Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Nima Jafari Navimipour, Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

ABSTRACT

In a cloud environment, computing resources are available to users, and they pay only for the used
resources. Task scheduling is considered as the most important issue in cloud computing which
affects time and energy consumption. Task scheduling algorithms may use different procedures to
distribute precedence to subtasks which produce different makespan in a heterogeneous computing
system. Also, energy consumption can be different for each resource that is assigned to a task. Many
heuristic algorithms have been proposed to solve task scheduling as an NP-hard problem. Most of
these studies have been used to minimize the makespan. Both makespan and energy consumption
are considered in this paper and a task scheduling method using a combination of cultural and ant
colony optimization algorithm is presented in order to optimize these purposes. The basic idea of the
proposed method is to use the advantages of both algorithms while avoiding the disadvantages. The
experimental results using C# language in cloud azure environment show that the proposed algorithm
outperforms previous algorithms in terms of energy consumption and makespan.

Keywords
Ant Colony Optimization Algorithm, Cultural Algorithm, DAG, Task Scheduling

1. INTRODUCTION

Cloud computing is a popular phenomenon (Chiregi & Navimipour, 2016; Sheikholeslami &
Navimipour, 2017) in which shared resources are prepared to end-users in an on-demand fashion that
brings many advantages, including data ubiquity, the flexibility of access, high availability of resources,
and scalability (Bouarara, Hamou, Rahmani, & Amine, 2014; Kumar, Ashok, & Subramanian,
2012). Cloud computing focuses on commercial resource provision and allows customers to use the
computing resources presented by multiple service providers (Kim & Jo, 2016; Mohammadi, 2017).
It is a model of service delivery and access mechanism where virtualized resources are provided as
a service over the Internet (Milani & Navimipour, 2016; Anil Singh, Dutta, & Singh, 2014; Sood,
2013). It follows a pay-per-use model and can be dynamically reconfigured to satisfy user requests
via on-the-fly virtual resources (Navimipour, Rahmani, Navin, & Hosseinzadeh, 2015; Vakili &
Navimipour, 2017).

20

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

21

The main problems of cloud computing are dynamism, requiring continuous monitoring of
requests and resources, handling of ever changing requirements, schedules and prices, selecting
appropriate services and plans to meet overall objectives of the cloud (Aznoli & Navimipour, 2017;
Chowhan, Shirwaikar, & Kumar, 2016). Cloud computing presents many services to users (Alami
Milani & Jafari Navimipour, 2016; Ezugwu, Buhari, & Junaidu, 2013) such as Software as a Service
(SaaS) (Alkhanak, Lee, & Khan, 2015), Infrastructure as a Service (IaaS) (Mehta & Gupta, 2013),
Platform as a Service (PaaS) (Shao, Wang, & Mei, 2012) and Expert as a service (EaaS) (Navimipour
et al., 2015). These services can then be accessed through a cloud client which could be a web browser,
mobile app, and so on (Chong, Wong, & Wang, 2014).

On the other hand, task scheduling on distributed computing environments such as cloud
computing is an interesting issue (Keshanchi, Souri, & Navimipour, 2017). In order to arrange the
performance of the task in a cloud, an efficient task scheduler is requested in which applications
should divide into subtasks (Navimipour, 2015a, 2015b). These subtasks are shown as a directed
acyclic graph (DAG). The type of task scheduling greatly affects the energy consumption of a cloud
datacenter, if the task is not properly scheduled can increase energy consumption, therefore an energy
aware task scheduling can save lots of energy. In the cloud computing environment, various types of
users perform their tasks (Aarti Singh & Malhotra, 2015). Each of them has entirely different resource
requirements (Habibi & Navimipour, 2016).

By considering the important role of task scheduling in cloud computing, this paper is aimed to
propose an efficient task scheduling algorithm including two important criteria, the makespan, and
energy consumption. During the last few years, the high price of energy consumption has become
a critical issue (Koomey, 2011) and cloud providers faced with the pressure of minimizing their
energy consumption as well as their amount of CO2 emissions. Since ant colony optimization (ACO)
algorithm has long iteration time and convergence time is uncertain. On the other hand, the cultural
algorithm has been successfully applied to optimization problems and has advantages in overcoming
some weaknesses of conventional optimization methods (Yang & Gu, 2014), the ACO algorithm is
combined with a cultural algorithm to improve the performance of the task scheduling algorithm and
deal with that issues. Briefly, the main purpose of this paper is proposing a new hybrid algorithm
using the cultural algorithm and ACO algorithm for minimizing makespan and energy consumption.

The rest of this paper is organized as follows. Related mechanisms are reviewed in Section 2.
An introduction to ACO algorithm, cultural algorithm, and the proposed algorithm are discussed in
Section 3. Empirical experiments of evaluating the improved algorithm are conducted in Section 4.
Finally, the paper concludes in the last section.

2. RELATED WORK

Since task scheduling is an NP-hard problem, many researchers presented the nature-inspired
optimization algorithms for task scheduling in cloud environments. In this section, some state-of-
the-art mechanisms are discussed and analyzed.

Zuo (2015) has proposed a multi-objective optimization method for solving the task scheduling
problem in cloud computing. They proposed a resource cost model that defines the demand of tasks
on resources with more details. This model reflects the relationship between the user’s resource costs
and the budget costs. A multi-objective optimization scheduling method has been proposed based
on the proposed resource cost model. This method considers the makespan and the user’s budget
costs as limitations of the optimization problem, to achieve multi-objective optimization of both

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

22

performance and cost. An improved ACO algorithm has been proposed to solve this problem. It reduces
the makespan, prevented from falling into a locally optimal solution and optimized the user costs.

Also, Xu (2014) has proposed a task scheduling scheme on heterogeneous computing systems
using multiple priority queues based on genetic algorithm. The basic idea of this approach is to
exploit the advantages of both evolutionary-based and heuristic-based algorithms while avoiding
their disadvantages. The proposed algorithm incorporates a genetic algorithm to assign a priority to
each subtask while using a heuristic-based earliest finish time (EFT) approach to search a solution for
the task-to-processor mapping. The proposed method also employs crossover, mutation, and fitness
function. The advantages of the algorithm are the low makespan and high efficiency but it suffers
from slow convergence and high complexity.

On the other hand, the growth of energy consumption has been explosive in current data
centers, supercomputers, and public cloud systems. This explosion leads to the greater defense of
green computing, and many efforts and works are focused on the task scheduling in order to reduce
dissipation of energy. Tang (2016) has proposed a dynamic voltage and frequency (DVFS)-enabled
energy efficient workflow task scheduling algorithm. The proposed method combines the relatively
inefficient processors by reclaiming the slack time, to calculate the initial scheduling order of all
tasks, and obtains the whole makespan and deadline based on heterogeneous EFT (HEFT) algorithm.
Finally, the tasks can be distributed in the idle slots under a lower voltage and frequency using
DVFS technique. The obtained results showed that the total power consumption for various parallel
applications is improved. But the algorithm does not consider overheads and parameters in the actual
presence of a heterogeneous environment.

Furthermore, Khan (2012) has suggested an approach called constrained EFT (CEFT) to provide
better schedules for heterogeneous systems using the concept of the constrained critical paths. In
contrast to other approaches used for heterogeneous systems, the CEFT strategy includes a broader
view of the input task graph. Furthermore, the statically generated constrained critical paths may
be efficiently scheduled in comparison with other methods. The proposed method outperforms the
well-known HEFT, DLS, and LMT strategies by producing shorter schedules for a diverse collection
of task graphs. However, this method produces unstable results in large problems.

Keshanchi and Jafari Navimipour (2016) have proposed a new task scheduling algorithm in a
cloud environment using multiple priority queues and a memetic algorithm. The method uses a genetic
algorithm along with hill climbing to assign a priority to each subtask while using a heuristic-based
EFT approach to search a solution for the task-to-processor mapping. The basic idea of the approach
is using the advantage of the memetic algorithm to increase the convergence speed of the solutions.
The simulation results show that the algorithm outperforms the makespans of the three heuristic
algorithms, but it has high complexity and running time.

Mentioned works have some advantages and disadvantages that listed in Table 1. Due to the
problems of previous works in this paper, we introduce a new hybrid energy-aware approach that
detailed in Section 3.

3. PROPOSED METHOD

A task scheduling algorithm in a cloud environment is proposed in this section to exploit the advantages
of both ACO and cultural algorithms. The system model is presented in Section 3.1 and the details
of our task scheduling model are presented in Section 3.2.

3.1. System Model
In this work, the cloud application model has a set of P heterogeneous processors that are fully
interconnected with a high-speed network. The inter-processor communications are performed at the
same speed on all links to simplify task scheduling model same as the model in (Dorigo & Gambardella,
1997). In this system, each subtask can be run only on one processor, and all of them must be scheduled.

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

23

Time dependency relationship should be considered when two dependent subtasks are assigned to
different processors.

A static computational model is considered in this model and the relation and execution
precedence is predetermined and it doesn’t change during the task scheduling or performance. The
task scheduling problem is shown by using directed acyclic graph (DAG) to represent the tasks and
their dependencies. In DAG, the vertices represent tasks and the edges represent execution precedence
between tasks as shown in Figure 1. The edges of the graph are labeled with communication cost.
In Table 2, the first column shows the tasks of the application of Figure 1, columns 2 to 4 represent
the computation cost of each task on processors and the last column shows the average computation
cost of each task on all processors.

3.2. Hybrid Algorithm
The ACO methodology was originally introduced by Dorigo (1997). The general principal of ACO
is that the pheromone information reflects the outcomes of the decision which have been made by
former ants to find good solutions (Kang, Zhang, Lin, & Lu, 2014). It is inspired by the observation
of the behavior of ants when trying to reach a food source (Tumeo, Pilato, Ferrandi, Sciuto, & Lanzi,
2008). At first, the ants wander randomly. When an ant finds a food source, it walks back to the colony
leaving pheromones that show the path of the food (Navimipour & Milani, 2016). When other ants
come across the pheromones, they are likely to follow the path with their own pheromones as they
bring the food back. As more ants find the path, it gets stronger until there are a couple streams of
ants traveling to various food sources near the colony. By dropping pheromones every time, they bring
food. Shorter paths are more likely to be stronger, hence the solution is optimized. The pheromone
also has evaporation factor. Over time, the pheromone trail starts to evaporate and less reinforced
routes will slowly disappear (Tumeo et al., 2008).

In ACO algorithm, convergence is guaranteed, but convergence time is uncertain. The
traditional ACO algorithm is prone to stagnation. In order to avoid the disadvantages of ACO

Table 1. Task scheduling comparison

Technique Approach Advantages Disadvantages

Zuo (2015)

A multi-objective
optimization method for
task scheduling

• High performance﻿
• Preventing from falling
into a locally optimal
solution﻿
• Low makespan﻿
Optimizing user costs

• The performance do
not compare with existing
algorithms

Xu (2014)

A genetic algorithm
for task scheduling on
heterogeneous computing
systems using multiple
priority queues

• Low makespan﻿
• High efficiency

• Slow convergence﻿
• High complexity

Tang (2016)

An energy efficient task
scheduling algorithm based
on DVFS

• Low power consumption﻿
• Low makespan

• Low reliability﻿
• Not considering
overheads and parameters
in the actual presence of a
heterogeneous environment

Khan (2012) Based on constrained
critical paths

• Low makespan • Producing unstable
results in large problems

Keshanchi and Jafari
Navimipour (2016)

Priority based task
scheduling using a memetic
algorithm

• Low makespan﻿
• Fast convergence • High complexity﻿

• High running time

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

24

algorithm, the ACO is combined with a cultural algorithm for solving the task scheduling
problem, which could essentially improve the performances of the algorithm and deal with long
iteration time and local convergence issues. Both algorithms are based on population and they
share information among the population. ACO algorithm gets benefits from the dual inheritance
of cultural algorithm.

The Cultural algorithm is a branch of evolutionary computation that has two components: the
belief space which is the evolutionary process from the experiences and knowledge acquired; and
the population space which is a group of individuals from the specific space (Reynolds & Zhu,
2001). These two components communicate with each other through a supporting communication
protocol (Zhu & Wang, 2016). The dual inheritance mechanism makes the cultural algorithm a self-
adaptation system that enables global evolutionary information to be more fully utilized. The belief
space is updated after each iteration by the best individuals using a fitness function that determines
the performance of each individual in the population. Figure 2 represents the framework of the
cultural algorithm.

Acceptance and influence are considered as the major operations of the cultural algorithm. Other
operations are performed inside belief or population space independently. Therefore, it is possible
to set other algorithms into cultural algorithm framework by adding specific logics into belief and
population spaces and performing acceptance and influence operations between them (Zhu & Wang,
2016). In the proposed method, ACO is used to processor selection and the cultural algorithm is used
to select the best solution and avoid falling into local optimum solution using its operators. The steps
of the method are shown in Figure 3.

Figure 1. A simple DAG with 10 nodes and 14 edges

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

25

Table 2. Computation cost of DAG in Figure 1

Task p0 p1 p2 ωω

t0 9 11 7 9

t1 8 7 6 7

t2 12 9 9 10

t3 15 13 17 15

t4 9 7 11 9

t5 6 10 8 8

t6 16 17 15 16

t7 13 8 12 11

t8 12 18 15 15

t9 8 7 6 7

Figure 2. Framework of cultural algorithm (Reynolds & Zhu, 2001)

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

26

3.3. Processor Selection
In the proposed algorithm, ants select the processor based on its pheromone information and heuristic
information. Every ant chooses a processor for the first task randomly. Ant k selects a task in sequence
and assigns task i to processor P according to the probability information:

pt
phr i j heu i j

phr i j heu i j
i

j

n=
()  () 

()  () =∑
, ,

, ,

β

1

ββ 	 (1)

where phr i j,() is the pheromones information and the last completion time for the processor Pj .
heu i j,() is the heuristic information and the earliest start time for task Ti on the processor Pj .
Heuristic information is obtained from the equations of Section 3.2.2 that gives EFT of task Ti on

Figure 3. Flowchart of the proposed method

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

27

processor Pk . A task can only be selected when it’s all prior tasks are scheduled (Ashouraie & Jafari
Navimipour, 2015). An important issue is the definition of trail pheromones for the particular processor
assignment of each task. When an artificial ant has been assigned to a processor, the pheromone
information is updated by applying the pheromone update rule as follows:

phr i j phr i j fitness, , ,() = −() () +1 ρ ρ 	 (2)

In this equation, ρ is the pheromone evaporation rate which is between 0 and 1, and fitness
that is calculated using formulas in Section 3.2.3, is the fitness value. The effect of the pheromone
update rule is to make the choosing of putting Ti on the processor Pj less desirable for other ants
to achieve diversification because ants tend to converge to a common path. The purpose of the
pheromone update rule is to encourage the ants to search for processors with less energy consumption
and execution time.

3.4. Heuristic Information
Heuristic information in the processor assigning probability equation is achieved from heuristic based
HEFT algorithm. This algorithm is proposed to minimize makespan without violating precedence
constraints. The HEFT algorithm selects the subtask with the highest upward rank value at each step
and assigns the selected task to the processor which minimizes its earliest finish time with an insertion
based approach (Xu et al., 2014). The EST of the task Ti on processor Pk is represented as
EST T Pi k,() :

EST T P

if T T

AFT T P if P P
i k

i entry

T Pred T j l k l
j i,

,

, ,() =

=

() =
∈ ()

0

max

mmax
T Pred T j l j i k l
j i

AFT T P C T T if P P
∈ ()

() + ()() ≠









 , , ,

	 (3)

The actual start time (AST) of task Ti on processor Pk is represented as AST T Pi k,() :

AST T P EST T P Avail Pi k i k k, max , ,() = () ()() 	 (4)

The Avail Pk() is defined as the earliest time at which the processor Pk is ready for the task

execution. The EFT of task Ti on processor Pk is represented as EFT T Pi k,() :

EFT T P AST T P W T Pi k i k i k, , ,() = () + () 	 (5)

The actual finish time (AFT) of a task Ti over all processors is represented as AFT T Pi k,() ,
Pk is the fittest processor for the task Ti :

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

28

AFT T P EFT T Pi k l m i l, min ,() = ()
≤ ≤1

	 (6)

3.5. Fitness Function
The fitness function can directly affect the algorithm convergence and the search for an optimal solution.
In this study, generally, the task scheduling objective function is considered the minimum makespan and
the lowest energy as the target. The normalization process is conducted in order to create a balance of
proportion of makespan and energy consumption. The makespan is derived from the following equation:

makespan i AFT texit() = (){ }max 	 (7)

Due to the scheduling proposed model, the fitness function is calculated based on the makespan
and energy consumption. The fitness function algorithm is as follows:

fitness i
makespan i energyConsumption i

() = ()× ()
1

	 (8)

Here, i is a practical solution in order to ensure the quality of the solution, to avoid falling into
local optimum and to achieve the optimal solution as far as possible. A fitness function is used to
evaluate the quality of practical solutions.

3.6. Belief Space
The major operations of the cultural algorithm are acceptance and influence (Zhu & Wang, 2016). The
acceptance function determines which individuals from the current population will be used to shape
the beliefs of the entire population. In acceptance function, static methods use absolute ranking based
on fitness values to select the top n% individuals. But dynamic methods do not have a fixed number of
individuals that adjust the belief space, Instead, the number of individuals may change from generation
to generation (Engelbrecht, 2007). Alternatively, the number of individuals is determined as:

n t n
t
s () = γ

	 (9)

where ns is the population size, γ ∈[]0 1, and t is the counter of iterations. Using this
approach, the number of individuals which are used to adjust the belief space is initially large
by decreasing overtime.

3.7. Cultural Algorithm Operators
Three cultural algorithms operators including selection, crossover and mutation operator are presented
in this section. Rolette wheel selection is used to select the solution with the highest fitness and single
point crossover operator of a genetic algorithm for crossover operation. Finally, mutation operator of
the genetic algorithm is used to maintain diversity.

3.7.1. Selection Operator
Several selection operators are introduced as an important part of a genetic algorithm. Selection
operator prefers to select the better solutions and better individuals with high probability of its survival

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

29

and mating (Abdelhalim & El Khayat, 2016). Rolette wheel method is used for this operator. This
method assumes that the probability of selection is proportional to the fitness of a solution. A solution
having a higher fitness value should have a higher chance to be selected. We consider PopSize
number of population, each characterized by its fitness fitness i popsizei > = …()0 1 2, , , . The
probability pi of each solution to be selected can be calculated according to the probability defined
by the equations:

p fitness
fitness

i
i

j

PopSize
j

=
=∑ 1

	 (10)

and:

S pi
j

i

j=
=
∑

1

	 (11)

where Si is the sum of p j from 1 to i . Consequently, a more fitted solution will be selected with
higher probability and it will get more offsprings. The average will stay and the worst will die off.

3.7.2. Crossover Operator
The crossover is a genetic operator to change the programming of a chromosome. A crossover is used
as a procedure of replacing some of the genes in one parent by corresponding genes of the other. In
the task scheduling problem, the crossover operator is combining two valid parents, whose subtasks
are ordered topologically to generate two offsprings which will also be valid. Figure 4 represents the
single point crossover.

3.7.3. Mutation Operator
The mutation operator is a genetic operator to maintain diversity. This operator changes genes of a
chromosome and transforms it from one generation of a population to the next generation and helps
the search algorithm to avoid from falling to locally optimal solutions by preventing the population
from becoming too similar to each other, or cooperates with crossover operator to achieve a better
solution. Figure 5 represents the mutation operator.

Figure 4. Single point crossover operator

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

30

4. EXPERIMENTAL RESULTS

This section presents simulation results to evaluate the performance of the proposed method in terms
of energy consumption and makespan with ACO and HEFT-upward rank. The rest of this section
is organized as follows. Simulation tools are introduced in Section 4.1. Simulation parameters and
dataset are presented in Section 4.2 and 4.3, respectively. Finally, the acquired results are presented
in Section 4.4.

4.1. Simulation Tools
The proposed algorithm is performed in C# programming language in cloud azure environment, similar
to (Keshanchi & Navimipour, 2016; Keshanchi et al., 2017). Azure was introduced as windows azure
in 2008 by Microsoft (Copeland, Soh, Puca, Manning, & Gollob, 2015) and it is a cloud computing
service for building, deploying, and managing applications and services through a global network
of Microsoft-managed data centers. It provides SaaS, PaaS, and IaaS and supports many different
programming languages, tools, and frameworks, including both Microsoft-specific and third-party
software and systems. Simulation and algorithm running have been done on a personal computer
with an Intel processor with core i5 and 33.3 GHz CPU and 4 GB RAM.

4.2. Simulation Parameters
Crossover and mutation probability are considered 0.3 and 0.7, respectively. Also, the evaporation rate
of ACO algorithm is considered 0.5. Finally, energy consumption of processors is a random number
between 0.001 to 0.004. These simulation parameters are shown in Table 3.

4.3. Dataset
Random generated DAGs is used in this section to evaluate the performance of proposed method
compared with other methods. So the cost of computing and communication through a range of graphs
randomly selected. We ran our simulation three times with 10, 20, 50 tasks and 3, 6 processor and
population size in each round is considered 100, 150, 200. Table 4 represents dataset information.

Figure 5. Mutation operator

Table 3. Simulation parameters

Parameters Values

crossover probability 0.3

mutation probability 0.7

Evaporation rate 0.5

Energy consumption of processors 0.001 – 0.004

Termination condition 50 iterations

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

31

4.4. Obtained Results
Figure 6 shows scheduling results of 50 graphs with 10 tasks. Total average graph completion time
for the HEFT-upward rank method is 105.22, for the ACO is 102.08 and for the proposed method is
106.48. Also, the results of energy consumption associated with the results of Figure 6 are given in
Figure 7 and for the HEFT-upward rank, the ACO and the proposed method, are 0.369, 0.253 and
0.204, respectively. The results indicate that the proposed method in terms of makespan is further
narrowly than other methods, but it has better performance in terms of the average value of energy
consumption. Figure 8 shows the convergence behavior of the solution to one of the graphs shown
in Figure 6.

Figure 9 shows the makespan of 50 random graphs with 20 tasks. The total average of completion
time for the HEFT-upward rank is 199.48, for the ACO is 210.55 and for the proposed method is 225.
Also, the results of energy consumption associated with the results of Figure 9 are given in Figure
10 which for the HEFT-upward ranks, the ACO, and the proposed method are 0.736, 0.431, 0.282
watts, respectively. The results which are displayed in Figure 11 show the convergence behavior of
the solution to one of the graphs shown in Figure 9.

Figure 12 shows the makespan of 50 random generated graph with 50 tasks. The total average
of completion time for three methods including HEFT-upward rank, ACO, and proposed method are
486.78, 570 and 579, respectively. The results of energy consumption associated with the results of
Figure 12 for three methods such as HEFT-upward rank, ACO, and the proposed method are1.651,
1.005, 0.756 watts, respectively. The results are plotted in Figure 13. The proposed method in terms
of program completion time compared to other methods is non-optimal narrowly but quantitatively

Table 4. Dataset information

Number of DAGs 50

Number of tasks 10, 20, 50

Number of processors 3, 6

Population size 100, 150, 200

Figure 6. Makespan of 50 random generated DAG (number of tasks = 10, number of resources = 3, number of population = 100)

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

32

significantly minimizes the energy consumption of other methods. Figure 14 shows the convergence
behavior of the solution.

4.4.1. Results for Graph of Figure 1
The Results for the graph of Figure 1 are shown in Figure 15 and 16. Completed time of three methods,
including HEFT-upward rank, ACO and proposed method as a bar for graph Figure 1 with 10 tasks

Figure 7. Energy consumption for 50 random generated DAG (number of tasks = 10, number of resources = 3, number of
population = 100)

Figure 8. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 6

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

33

are displayed in Figure 15. The results of the test for makespan of the HEFT-upward rank is 82, the
ACO is 76 and the proposed method is 77. Also, Figure 16 shows the amount of energy consumption
for these three techniques. The amount of energy consumption in scheduling for HEFT-upward
rank is 0.297, for ACO is 0.225 and for proposed method is 0.216 watts. The results show that the

Figure 9. Makespan of 50 random generated DAG (number of tasks = 20, number of resources = 6, number of population = 150)

Figure 10. Energy consumption for 50 random generated DAG (number of tasks = 20, number of resources = 6, number of
population = 150)

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

34

proposed method in this graph is better than the other two methods in terms of energy consumption
and makespan shows better performance than the HEFT-upward rank method.

5. CONCLUSION AND FUTURE WORK

This paper studies the task scheduling problem with priority limitation. In the proposed method,
the total execution time and energy consumption are considered as two factors under investigation.

Figure 11. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 9

Figure 12. Makespan of 50 random generated DAG (number of tasks = 50, number of resources = 6, number of population = 200)

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

35

Considering the importance of these two factors, a new method is presented that combines ACO and
cultural algorithm for scheduling the tasks and priorities in green computing. In this way, we tried to
take advantages and avoid disadvantages of both algorithms. The results represent that the proposed
method outperforms HEFT-upward rank algorithm and ACO in terms of energy consumption and

Figure 13. Energy consumption for 50 random generated DAG (number of tasks = 50, number of resources = 6, number of
population = 200)

Figure 14. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 12

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

36

Figure 15. Makespan of the DAG in Figure 1 using different methods

Figure 16. Results of energy consumption of the DAG in Figure 1 using different methods

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

37

outperforms the HEFT-upward rank in terms of makespan. However, the proposed method improves
the makespan but could not excel from ACO.

The communication overhead, the voltage/ frequency switching overhead and other uncertain
parameters in the actual presence of a heterogeneous environment will be discussed in the future
research. We plan to use DVFS technique to influence on a server’s power efficiency.

ACKNOWLEDGMENT

Nima Jafari Navimipour is a corresponding author on this paper and can be reached at jafari@iaut.ac.ir.

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

38

REFERENCES

Abdelhalim, E. A., & El Khayat, G. A. (2016). A Utilization-based Genetic Algorithm for Solving the University
Timetabling Problem (UGA). Alexandria Engineering Journal, 55(2), 1395–1409. doi:10.1016/j.aej.2016.02.017

Alami Milani, B., & Jafari Navimipour, N. (2016). A comprehensive review of the data replication techniques
in the cloud environments. Journal of Network and Computer Applications, 64(C), 229–238. doi:10.1016/j.
jnca.2016.02.005

Alkhanak, E. N., Lee, S. P., & Khan, S. U. R. (2015). Cost-aware challenges for workflow scheduling approaches
in cloud computing environments: Taxonomy and opportunities. Future Generation Computer Systems, 50, 3–21.
doi:10.1016/j.future.2015.01.007

Ashouraie, M., & Jafari Navimipour, N. (2015). Priority-based task scheduling on heterogeneous resources in
the Expert Cloud. Kybernetes, 44(10), 1455–1471. doi:10.1108/K-12-2014-0293

Aznoli, F., & Navimipour, N. J. (2017). Cloud services recommendation: Reviewing the recent advances
and suggesting the future research directions. Journal of Network and Computer Applications, 77, 73–86.
doi:10.1016/j.jnca.2016.10.009

Bouarara, H. A., Hamou, R. M., Rahmani, A., & Amine, A. (2014). Application of Meta-Heuristics Methods
on PIR Protocols Over Cloud Storage Services. International Journal of Cloud Applications and Computing,
4(3), 1–19. doi:10.4018/ijcac.2014070101

Chiregi, M., & Navimipour, N. J. (2016). Trusted services identification in the cloud environment using
the topological metrics. Karbala International Journal of Modern Science, 2(3), 203–210. doi:10.1016/j.
kijoms.2016.06.002

Chong, H.-Y., Wong, J. S., & Wang, X. (2014). An explanatory case study on cloud computing applications in
the built environment. Automation in Construction, 44, 152–162. doi:10.1016/j.autcon.2014.04.010

Chowhan, S. S., Shirwaikar, S., & Kumar, A. (2016). Predictive Modeling of Service Level Agreement Parameters
for Cloud Services. International Journal of Next-Generation Computing, 7(2), 115–129.

Copeland, M., Soh, J., Puca, A., Manning, M., & Gollob, D. (2015). Microsoft Azure and Cloud Computing.
In Microsoft Azure: Planning, Deploying, and Managing Your Data center in the Cloud (pp. 3–26). Berkeley,
CA: Apress; doi:10.1007/978-1-4842-1043-7_1

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling
salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. doi:10.1109/4235.585892

Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons.
doi:10.1002/9780470512517

Ezugwu, A. E., Buhari, S. M., & Junaidu, S. B. (2013). Virtual machine allocation in cloud computing environment.
International Journal of Cloud Applications and Computing, 3(2), 47–60. doi:10.4018/ijcac.2013040105

Habibi, M., & Navimipour, N. J. (2016). Multi-Objective Task Scheduling in Cloud Computing Using an
Imperialist Competitive Algorithm. International Journal of Advanced Computer Science & Applications,
1(7), 289–293.

Kang, Y., Zhang, Y., Lin, Y., & Lu, H. (2014). An Improved Ant Colony System for Task Scheduling Problem
in Heterogeneous Distributed System. In Computer Engineering and Networking (pp. 83–90). Springer.
doi:10.1007/978-3-319-01766-2_10

Keshanchi, B., & Navimipour, N. J. (2016). Priority-Based Task Scheduling in the Cloud Systems Using a Memetic
Algorithm. Journal of Circuits, Systems, and Computers, 25(10), 1650119. doi:10.1142/S021812661650119X

Keshanchi, B., Souri, A., & Navimipour, N. J. (2017). An improved genetic algorithm for task scheduling in the
cloud environments using the priority queues: Formal verification, simulation, and statistical testing. Journal
of Systems and Software, 124, 1–21. doi:10.1016/j.jss.2016.07.006

Khan, M. A. (2012). Scheduling for heterogeneous Systems using constrained critical paths. Parallel Computing,
38(4), 175–193. doi:10.1016/j.parco.2012.01.001

http://dx.doi.org/10.1016/j.aej.2016.02.017
http://dx.doi.org/10.1016/j.jnca.2016.02.005
http://dx.doi.org/10.1016/j.jnca.2016.02.005
http://dx.doi.org/10.1016/j.future.2015.01.007
http://dx.doi.org/10.1108/K-12-2014-0293
http://dx.doi.org/10.1016/j.jnca.2016.10.009
http://dx.doi.org/10.4018/ijcac.2014070101
http://dx.doi.org/10.1016/j.kijoms.2016.06.002
http://dx.doi.org/10.1016/j.kijoms.2016.06.002
http://dx.doi.org/10.1016/j.autcon.2014.04.010
http://dx.doi.org/10.1007/978-1-4842-1043-7_1
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1002/9780470512517
http://dx.doi.org/10.4018/ijcac.2013040105
http://dx.doi.org/10.1007/978-3-319-01766-2_10
http://dx.doi.org/10.1142/S021812661650119X
http://dx.doi.org/10.1016/j.jss.2016.07.006
http://dx.doi.org/10.1016/j.parco.2012.01.001

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

39

Kim, W.-C., & Jo, O. (2016). Cost-optimized configuration of computing instances for large sized cloud systems.
ICT Express.

Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. Analytical Press.

Kumar, P. S., Ashok, M. S., & Subramanian, R. (2012). A publicly verifiable dynamic secret sharing protocol
for secure and dependable data storage in cloud computing. International Journal of Cloud Applications and
Computing, 2(3), 1–25. doi:10.4018/ijcac.2012070101

Mehta, H. K., & Gupta, E. (2013). Economy based resource allocation in IAAS cloud. International Journal of
Cloud Applications and Computing, 3(2), 1–11. doi:10.4018/ijcac.2013040101

Milani, A. S., & Navimipour, N. J. (2016). Load balancing mechanisms and techniques in the cloud environments:
Systematic literature review and future trends. Journal of Network and Computer Applications, 71, 86–98.
doi:10.1016/j.jnca.2016.06.003

Mohammadi, S. Z. N. J. N. (2017). Invalid cloud providers’ identification using the support vector machine.
The International Journal of Next-Generation Computing.

Navimipour, N. J. (2015a). Task Scheduling in the Cloud Computing Based on the Cuckoo Search Algorithm.
International Journal of Modeling and Optimization, 5. doi:10.7763/IJMO.2015.V5.434

Navimipour, N. J. (2015b). Task scheduling in the Cloud Environments based on an Artificial Bee Colony
Algorithm. In Proceedings of 2015 International Conference on Image Processing, Production and Computer
Science (ICIPCS ’15), Istanbul.

Navimipour, N. J., & Milani, B. A. (2016). Replica selection in the cloud environments using an ant colony
algorithm. In Proceedings of the 2016 Third International Conference on Digital Information Processing, Data
Mining, and Wireless Communications (DIPDMWC) (pp. 105–110). doi:10.1109/DIPDMWC.2016.7529372

Navimipour, N. J., Rahmani, A. M., Navin, A. H., & Hosseinzadeh, M. (2015). Expert Cloud: A Cloud-based
framework to share the knowledge and skills of human resources. Computers in Human Behavior, 46, 57–74.
doi:10.1016/j.chb.2015.01.001

Reynolds, R. G., & Zhu, S. (2001). Knowledge-based function optimization using fuzzy cultural algorithms
with evolutionary programming. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics,
31(1), 1–18. doi:10.1109/3477.907561 PMID:18244764

Shao, J., Wang, Q., & Mei, H. (2012). Model based monitoring and controlling for Platform-as-a-Service (PaaS).
International Journal of Cloud Applications and Computing, 2(1), 1–15. doi:10.4018/ijcac.2012010101

Sheikholeslami, F., & Navimipour, N. J. (2017). Service allocation in the cloud environments using multi-objective
particle swarm optimization algorithm based on crowding distance. Swarm and Evolutionary Computation.

Singh, A., Dutta, K., & Singh, A. (2014). Resource allocation in cloud computing environment using
AHP technique. International Journal of Cloud Applications and Computing, 4(1), 33–44. doi:10.4018/
ijcac.2014010103

Singh, A., & Malhotra, M. (2015). Agent based resource allocation mechanism focusing cost optimization
in cloud computing. International Journal of Cloud Applications and Computing, 5(3), 53–61. doi:10.4018/
IJCAC.2015070104

Sood, S. K. (2013). A value based dynamic resource provisioning model in cloud. International Journal of
Cloud Applications and Computing, 3(2), 35–46. doi:10.4018/ijcac.2013040104

Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S. U., & Li, K. (2016). An Energy-Efficient Task Scheduling Algorithm
in DVFS-enabled Cloud Environment. Journal of Grid Computing, 14(1), 55–74. doi:10.1007/s10723-015-9334-y

Tumeo, A., Pilato, C., Ferrandi, F., Sciuto, D., & Lanzi, P. L. (2008). Ant colony optimization for mapping
and scheduling in heterogeneous multiprocessor systems. In Proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation SAMOS ‘08 (pp. 142–149). doi:10.1109/
ICSAMOS.2008.4664857

http://dx.doi.org/10.4018/ijcac.2012070101
http://dx.doi.org/10.4018/ijcac.2013040101
http://dx.doi.org/10.1016/j.jnca.2016.06.003
http://dx.doi.org/10.7763/IJMO.2015.V5.434
http://dx.doi.org/10.1109/DIPDMWC.2016.7529372
http://dx.doi.org/10.1016/j.chb.2015.01.001
http://dx.doi.org/10.1109/3477.907561
http://www.ncbi.nlm.nih.gov/pubmed/18244764
http://dx.doi.org/10.4018/ijcac.2012010101
http://dx.doi.org/10.4018/ijcac.2014010103
http://dx.doi.org/10.4018/ijcac.2014010103
http://dx.doi.org/10.4018/IJCAC.2015070104
http://dx.doi.org/10.4018/IJCAC.2015070104
http://dx.doi.org/10.4018/ijcac.2013040104
http://dx.doi.org/10.1007/s10723-015-9334-y
http://dx.doi.org/10.1109/ICSAMOS.2008.4664857
http://dx.doi.org/10.1109/ICSAMOS.2008.4664857

International Journal of Cloud Applications and Computing
Volume 7 • Issue 4 • October-December 2017

40

Vakili, A., & Navimipour, N. J. (2017). Comprehensive and systematic review of the service composition
mechanisms in the cloud environments. Journal of Network and Computer Applications, 81, 24–36. doi:10.1016/j.
jnca.2017.01.005

Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on heterogeneous computing
systems using multiple priority queues. Information Sciences, 270, 255–287. doi:10.1016/j.ins.2014.02.122

Yang, Y., & Gu, X. (2014). Cultural-based genetic tabu algorithm for multiobjective job shop scheduling.
Mathematical Problems in Engineering.

Zhu, F., & Wang, H. (2016). A modified ACO algorithm for virtual network embedding based on graph
decomposition. Computer Communications, 80, 1–15. doi:10.1016/j.comcom.2015.07.014

Zuo, L., Shu, L., Dong, S., Zhu, C., & Hara, T. (2015). A Multi-Objective Optimization Scheduling Method
Based on the Ant Colony Algorithm in Cloud Computing. IEEE Access, 3, 2687–2699. doi:10.1109/
ACCESS.2015.2508940

Poopak Azad received her BS in computer engineering, software engineering, from University College of Daneshvaran,
Tabriz, Iran, in 2014 and the MS in computer engineering, software engineering, from Tabriz Branch, Islamic Azad
University, Tabriz, Iran, in 2017. Her research interests include Cloud Computing and Fault-Tolerance Software.

Nima Jafari Navimipour received his BS in computer engineering, software engineering, from Tabriz Branch, Islamic
Azad University, Tabriz, Iran, in 2007; the MS in computer engineering, computer architecture, from Tabriz Branch,
Islamic Azad University, Tabriz, Iran, in 2009; and the PhD in computer engineering, computer architecture, from
Science and Research Branch, Islamic Azad University, Tehran, Iran in 2014. He is an Assistance Professor in
the Department of Computer Engineering at Tabriz Branch, Islamic Azad University, Tabriz, Iran. He has published
more than 100 papers in various journals and conference proceedings. His research interests include Cloud
Computing, Social Networks, Fault-Tolerance Software, Computational Intelligence, Evolutionary Computing,
and Network on Chip.

http://dx.doi.org/10.1016/j.jnca.2017.01.005
http://dx.doi.org/10.1016/j.jnca.2017.01.005
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1016/j.comcom.2015.07.014
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.1109/ACCESS.2015.2508940

