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ABSTRACT

In a cloud environment, computing resources are available to users, and they pay only for the used 
resources. Task scheduling is considered as the most important issue in cloud computing which 
affects time and energy consumption. Task scheduling algorithms may use different procedures to 
distribute precedence to subtasks which produce different makespan in a heterogeneous computing 
system. Also, energy consumption can be different for each resource that is assigned to a task. Many 
heuristic algorithms have been proposed to solve task scheduling as an NP-hard problem. Most of 
these studies have been used to minimize the makespan. Both makespan and energy consumption 
are considered in this paper and a task scheduling method using a combination of cultural and ant 
colony optimization algorithm is presented in order to optimize these purposes. The basic idea of the 
proposed method is to use the advantages of both algorithms while avoiding the disadvantages. The 
experimental results using C# language in cloud azure environment show that the proposed algorithm 
outperforms previous algorithms in terms of energy consumption and makespan.
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1. INTRODUCTION

Cloud computing is a popular phenomenon (Chiregi & Navimipour, 2016; Sheikholeslami & 
Navimipour, 2017) in which shared resources are prepared to end-users in an on-demand fashion that 
brings many advantages, including data ubiquity, the flexibility of access, high availability of resources, 
and scalability (Bouarara, Hamou, Rahmani, & Amine, 2014; Kumar, Ashok, & Subramanian, 
2012). Cloud computing focuses on commercial resource provision and allows customers to use the 
computing resources presented by multiple service providers (Kim & Jo, 2016; Mohammadi, 2017). 
It is a model of service delivery and access mechanism where virtualized resources are provided as 
a service over the Internet (Milani & Navimipour, 2016; Anil Singh, Dutta, & Singh, 2014; Sood, 
2013). It follows a pay-per-use model and can be dynamically reconfigured to satisfy user requests 
via on-the-fly virtual resources (Navimipour, Rahmani, Navin, & Hosseinzadeh, 2015; Vakili & 
Navimipour, 2017).
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The main problems of cloud computing are dynamism, requiring continuous monitoring of 
requests and resources, handling of ever changing requirements, schedules and prices, selecting 
appropriate services and plans to meet overall objectives of the cloud (Aznoli & Navimipour, 2017; 
Chowhan, Shirwaikar, & Kumar, 2016). Cloud computing presents many services to users (Alami 
Milani & Jafari Navimipour, 2016; Ezugwu, Buhari, & Junaidu, 2013) such as Software as a Service 
(SaaS) (Alkhanak, Lee, & Khan, 2015), Infrastructure as a Service (IaaS) (Mehta & Gupta, 2013), 
Platform as a Service (PaaS) (Shao, Wang, & Mei, 2012) and Expert as a service (EaaS) (Navimipour 
et al., 2015). These services can then be accessed through a cloud client which could be a web browser, 
mobile app, and so on (Chong, Wong, & Wang, 2014).

On the other hand, task scheduling on distributed computing environments such as cloud 
computing is an interesting issue (Keshanchi, Souri, & Navimipour, 2017). In order to arrange the 
performance of the task in a cloud, an efficient task scheduler is requested in which applications 
should divide into subtasks (Navimipour, 2015a, 2015b). These subtasks are shown as a directed 
acyclic graph (DAG). The type of task scheduling greatly affects the energy consumption of a cloud 
datacenter, if the task is not properly scheduled can increase energy consumption, therefore an energy 
aware task scheduling can save lots of energy. In the cloud computing environment, various types of 
users perform their tasks (Aarti Singh & Malhotra, 2015). Each of them has entirely different resource 
requirements (Habibi & Navimipour, 2016).

By considering the important role of task scheduling in cloud computing, this paper is aimed to 
propose an efficient task scheduling algorithm including two important criteria, the makespan, and 
energy consumption. During the last few years, the high price of energy consumption has become 
a critical issue (Koomey, 2011) and cloud providers faced with the pressure of minimizing their 
energy consumption as well as their amount of CO2 emissions. Since ant colony optimization (ACO) 
algorithm has long iteration time and convergence time is uncertain. On the other hand, the cultural 
algorithm has been successfully applied to optimization problems and has advantages in overcoming 
some weaknesses of conventional optimization methods (Yang & Gu, 2014), the ACO algorithm is 
combined with a cultural algorithm to improve the performance of the task scheduling algorithm and 
deal with that issues. Briefly, the main purpose of this paper is proposing a new hybrid algorithm 
using the cultural algorithm and ACO algorithm for minimizing makespan and energy consumption.

The rest of this paper is organized as follows. Related mechanisms are reviewed in Section 2. 
An introduction to ACO algorithm, cultural algorithm, and the proposed algorithm are discussed in 
Section 3. Empirical experiments of evaluating the improved algorithm are conducted in Section 4. 
Finally, the paper concludes in the last section.

2. RELATED WORK

Since task scheduling is an NP-hard problem, many researchers presented the nature-inspired 
optimization algorithms for task scheduling in cloud environments. In this section, some state-of-
the-art mechanisms are discussed and analyzed.

Zuo (2015) has proposed a multi-objective optimization method for solving the task scheduling 
problem in cloud computing. They proposed a resource cost model that defines the demand of tasks 
on resources with more details. This model reflects the relationship between the user’s resource costs 
and the budget costs. A multi-objective optimization scheduling method has been proposed based 
on the proposed resource cost model. This method considers the makespan and the user’s budget 
costs as limitations of the optimization problem, to achieve multi-objective optimization of both 
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performance and cost. An improved ACO algorithm has been proposed to solve this problem. It reduces 
the makespan, prevented from falling into a locally optimal solution and optimized the user costs.

Also, Xu (2014) has proposed a task scheduling scheme on heterogeneous computing systems 
using multiple priority queues based on genetic algorithm. The basic idea of this approach is to 
exploit the advantages of both evolutionary-based and heuristic-based algorithms while avoiding 
their disadvantages. The proposed algorithm incorporates a genetic algorithm to assign a priority to 
each subtask while using a heuristic-based earliest finish time (EFT) approach to search a solution for 
the task-to-processor mapping. The proposed method also employs crossover, mutation, and fitness 
function. The advantages of the algorithm are the low makespan and high efficiency but it suffers 
from slow convergence and high complexity.

On the other hand, the growth of energy consumption has been explosive in current data 
centers, supercomputers, and public cloud systems. This explosion leads to the greater defense of 
green computing, and many efforts and works are focused on the task scheduling in order to reduce 
dissipation of energy. Tang (2016) has proposed a dynamic voltage and frequency (DVFS)-enabled 
energy efficient workflow task scheduling algorithm. The proposed method combines the relatively 
inefficient processors by reclaiming the slack time, to calculate the initial scheduling order of all 
tasks, and obtains the whole makespan and deadline based on heterogeneous EFT (HEFT) algorithm. 
Finally, the tasks can be distributed in the idle slots under a lower voltage and frequency using 
DVFS technique. The obtained results showed that the total power consumption for various parallel 
applications is improved. But the algorithm does not consider overheads and parameters in the actual 
presence of a heterogeneous environment.

Furthermore, Khan (2012) has suggested an approach called constrained EFT (CEFT) to provide 
better schedules for heterogeneous systems using the concept of the constrained critical paths. In 
contrast to other approaches used for heterogeneous systems, the CEFT strategy includes a broader 
view of the input task graph. Furthermore, the statically generated constrained critical paths may 
be efficiently scheduled in comparison with other methods. The proposed method outperforms the 
well-known HEFT, DLS, and LMT strategies by producing shorter schedules for a diverse collection 
of task graphs. However, this method produces unstable results in large problems.

Keshanchi and Jafari Navimipour (2016) have proposed a new task scheduling algorithm in a 
cloud environment using multiple priority queues and a memetic algorithm. The method uses a genetic 
algorithm along with hill climbing to assign a priority to each subtask while using a heuristic-based 
EFT approach to search a solution for the task-to-processor mapping. The basic idea of the approach 
is using the advantage of the memetic algorithm to increase the convergence speed of the solutions. 
The simulation results show that the algorithm outperforms the makespans of the three heuristic 
algorithms, but it has high complexity and running time.

Mentioned works have some advantages and disadvantages that listed in Table 1. Due to the 
problems of previous works in this paper, we introduce a new hybrid energy-aware approach that 
detailed in Section 3.

3. PROPOSED METHOD

A task scheduling algorithm in a cloud environment is proposed in this section to exploit the advantages 
of both ACO and cultural algorithms. The system model is presented in Section 3.1 and the details 
of our task scheduling model are presented in Section 3.2.

3.1. System Model
In this work, the cloud application model has a set of P  heterogeneous processors that are fully 
interconnected with a high-speed network. The inter-processor communications are performed at the 
same speed on all links to simplify task scheduling model same as the model in (Dorigo & Gambardella, 
1997). In this system, each subtask can be run only on one processor, and all of them must be scheduled. 
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Time dependency relationship should be considered when two dependent subtasks are assigned to 
different processors.

A static computational model is considered in this model and the relation and execution 
precedence is predetermined and it doesn’t change during the task scheduling or performance. The 
task scheduling problem is shown by using directed acyclic graph (DAG) to represent the tasks and 
their dependencies. In DAG, the vertices represent tasks and the edges represent execution precedence 
between tasks as shown in Figure 1. The edges of the graph are labeled with communication cost. 
In Table 2, the first column shows the tasks of the application of Figure 1, columns 2 to 4 represent 
the computation cost of each task on processors and the last column shows the average computation 
cost of each task on all processors.

3.2. Hybrid Algorithm
The ACO methodology was originally introduced by Dorigo (1997). The general principal of ACO 
is that the pheromone information reflects the outcomes of the decision which have been made by 
former ants to find good solutions (Kang, Zhang, Lin, & Lu, 2014). It is inspired by the observation 
of the behavior of ants when trying to reach a food source (Tumeo, Pilato, Ferrandi, Sciuto, & Lanzi, 
2008). At first, the ants wander randomly. When an ant finds a food source, it walks back to the colony 
leaving pheromones that show the path of the food (Navimipour & Milani, 2016). When other ants 
come across the pheromones, they are likely to follow the path with their own pheromones as they 
bring the food back. As more ants find the path, it gets stronger until there are a couple streams of 
ants traveling to various food sources near the colony. By dropping pheromones every time, they bring 
food. Shorter paths are more likely to be stronger, hence the solution is optimized. The pheromone 
also has evaporation factor. Over time, the pheromone trail starts to evaporate and less reinforced 
routes will slowly disappear (Tumeo et al., 2008).

In ACO algorithm, convergence is guaranteed, but convergence time is uncertain. The 
traditional ACO algorithm is prone to stagnation. In order to avoid the disadvantages of ACO 

Table 1. Task scheduling comparison

Technique Approach Advantages Disadvantages

Zuo (2015)

A multi-objective 
optimization method for 
task scheduling

• High performance﻿
• Preventing from falling 
into a locally optimal 
solution﻿
• Low makespan﻿
Optimizing user costs

• The performance do 
not compare with existing 
algorithms

Xu (2014)

A genetic algorithm 
for task scheduling on 
heterogeneous computing 
systems using multiple 
priority queues

• Low makespan﻿
• High efficiency

• Slow convergence﻿
• High complexity

Tang (2016)

An energy efficient task 
scheduling algorithm based 
on DVFS

• Low power consumption﻿
• Low makespan

• Low reliability﻿
• Not considering 
overheads and parameters 
in the actual presence of a 
heterogeneous environment

Khan (2012) Based on constrained 
critical paths

• Low makespan • Producing unstable 
results in large problems

Keshanchi and Jafari 
Navimipour (2016)

Priority based task 
scheduling using a memetic 
algorithm

• Low makespan﻿
• Fast convergence • High complexity﻿

• High running time
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algorithm, the ACO is combined with a cultural algorithm for solving the task scheduling 
problem, which could essentially improve the performances of the algorithm and deal with long 
iteration time and local convergence issues. Both algorithms are based on population and they 
share information among the population. ACO algorithm gets benefits from the dual inheritance 
of cultural algorithm.

The Cultural algorithm is a branch of evolutionary computation that has two components: the 
belief space which is the evolutionary process from the experiences and knowledge acquired; and 
the population space which is a group of individuals from the specific space (Reynolds & Zhu, 
2001). These two components communicate with each other through a supporting communication 
protocol (Zhu & Wang, 2016). The dual inheritance mechanism makes the cultural algorithm a self-
adaptation system that enables global evolutionary information to be more fully utilized. The belief 
space is updated after each iteration by the best individuals using a fitness function that determines 
the performance of each individual in the population. Figure 2 represents the framework of the 
cultural algorithm.

Acceptance and influence are considered as the major operations of the cultural algorithm. Other 
operations are performed inside belief or population space independently. Therefore, it is possible 
to set other algorithms into cultural algorithm framework by adding specific logics into belief and 
population spaces and performing acceptance and influence operations between them (Zhu & Wang, 
2016). In the proposed method, ACO is used to processor selection and the cultural algorithm is used 
to select the best solution and avoid falling into local optimum solution using its operators. The steps 
of the method are shown in Figure 3.

Figure 1. A simple DAG with 10 nodes and 14 edges
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Table 2. Computation cost of DAG in Figure 1

Task p0 p1 p2 ωω

t0 9 11 7 9

t1 8 7 6 7

t2 12 9 9 10

t3 15 13 17 15

t4 9 7 11 9

t5 6 10 8 8

t6 16 17 15 16

t7 13 8 12 11

t8 12 18 15 15

t9 8 7 6 7

Figure 2. Framework of cultural algorithm (Reynolds & Zhu, 2001)
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3.3. Processor Selection
In the proposed algorithm, ants select the processor based on its pheromone information and heuristic 
information. Every ant chooses a processor for the first task randomly. Ant k  selects a task in sequence 
and assigns task i  to processor P  according to the probability information:

pt
phr i j heu i j

phr i j heu i j
i

j

n=
( )  ( ) 

( )  ( ) =∑
, ,

, ,

β

1

ββ 	 (1)

where phr i j,( )  is the pheromones information and the last completion time for the processor Pj . 
heu i j,( )  is the heuristic information and the earliest start time for task Ti  on the processor Pj . 
Heuristic information is obtained from the equations of Section 3.2.2 that gives EFT of task Ti  on 

Figure 3. Flowchart of the proposed method
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processor Pk . A task can only be selected when it’s all prior tasks are scheduled (Ashouraie & Jafari 
Navimipour, 2015). An important issue is the definition of trail pheromones for the particular processor 
assignment of each task. When an artificial ant has been assigned to a processor, the pheromone 
information is updated by applying the pheromone update rule as follows:

phr i j phr i j fitness, , ,( ) = −( ) ( ) +1 ρ ρ 	 (2)

In this equation, ρ  is the pheromone evaporation rate which is between 0 and 1, and fitness  
that is calculated using formulas in Section 3.2.3, is the fitness value. The effect of the pheromone 
update rule is to make the choosing of putting Ti  on the processor Pj  less desirable for other ants 
to achieve diversification because ants tend to converge to a common path. The purpose of the 
pheromone update rule is to encourage the ants to search for processors with less energy consumption 
and execution time.

3.4. Heuristic Information
Heuristic information in the processor assigning probability equation is achieved from heuristic based 
HEFT algorithm. This algorithm is proposed to minimize makespan without violating precedence 
constraints. The HEFT algorithm selects the subtask with the highest upward rank value at each step 
and assigns the selected task to the processor which minimizes its earliest finish time with an insertion 
based approach (Xu et al., 2014). The EST of the task Ti  on processor Pk  is represented as 
EST T Pi k,( ) :

EST T P

if T T

AFT T P if P P
i k

i entry

T Pred T j l k l
j i,

,

, ,( ) =

=

( ) =
∈ ( )

0  

max  

mmax  
T Pred T j l j i k l
j i

AFT T P C T T if P P
∈ ( )

( ) + ( )( ) ≠









 , , ,

	 (3)

The actual start time (AST) of task Ti  on processor Pk  is represented as AST T Pi k,( ) :

AST T P EST T P Avail Pi k i k k, max , ,( ) = ( ) ( )( ) 	 (4)

The Avail Pk( )  is defined as the earliest time at which the processor Pk  is ready for the task 

execution. The EFT of task Ti  on processor Pk  is represented as EFT T Pi k,( ) :

EFT T P AST T P W T Pi k i k i k, , ,( ) = ( ) + ( ) 	 (5)

The actual finish time (AFT) of a task Ti  over all processors is represented as AFT T Pi k,( ) , 
Pk  is the fittest processor for the task Ti :
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AFT T P EFT T Pi k l m i l, min ,( ) = ( )
≤ ≤1

	 (6)

3.5. Fitness Function
The fitness function can directly affect the algorithm convergence and the search for an optimal solution. 
In this study, generally, the task scheduling objective function is considered the minimum makespan and 
the lowest energy as the target. The normalization process is conducted in order to create a balance of 
proportion of makespan and energy consumption. The makespan is derived from the following equation:

makespan i AFT texit( ) = ( ){ }max 	 (7)

Due to the scheduling proposed model, the fitness function is calculated based on the makespan 
and energy consumption. The fitness function algorithm is as follows:

fitness i
makespan i energyConsumption i

( ) = ( )× ( )
1

	 (8)

Here, i  is a practical solution in order to ensure the quality of the solution, to avoid falling into 
local optimum and to achieve the optimal solution as far as possible. A fitness function is used to 
evaluate the quality of practical solutions.

3.6. Belief Space
The major operations of the cultural algorithm are acceptance and influence (Zhu & Wang, 2016). The 
acceptance function determines which individuals from the current population will be used to shape 
the beliefs of the entire population. In acceptance function, static methods use absolute ranking based 
on fitness values to select the top n% individuals. But dynamic methods do not have a fixed number of 
individuals that adjust the belief space, Instead, the number of individuals may change from generation 
to generation (Engelbrecht, 2007). Alternatively, the number of individuals is determined as:

n t n
t
s ( ) = γ

	 (9)

where ns  is the population size, γ ∈[ ]0 1,  and t  is the counter of iterations. Using this 
approach, the number of individuals which are used to adjust the belief space is initially large 
by decreasing overtime.

3.7. Cultural Algorithm Operators
Three cultural algorithms operators including selection, crossover and mutation operator are presented 
in this section. Rolette wheel selection is used to select the solution with the highest fitness and single 
point crossover operator of a genetic algorithm for crossover operation. Finally, mutation operator of 
the genetic algorithm is used to maintain diversity.

3.7.1. Selection Operator
Several selection operators are introduced as an important part of a genetic algorithm. Selection 
operator prefers to select the better solutions and better individuals with high probability of its survival 
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and mating (Abdelhalim & El Khayat, 2016). Rolette wheel method is used for this operator. This 
method assumes that the probability of selection is proportional to the fitness of a solution. A solution 
having a higher fitness value should have a higher chance to be selected. We consider PopSize  
number of population, each characterized by its fitness fitness i popsizei > = …( )0 1 2, , , . The 
probability pi  of each solution to be selected can be calculated according to the probability defined 
by the equations:

p fitness
fitness

i
i

j

PopSize
j

=
=∑ 1

	 (10)

and:

S pi
j

i

j=
=
∑

1

	 (11)

where Si  is the sum of p j  from 1 to i . Consequently, a more fitted solution will be selected with 
higher probability and it will get more offsprings. The average will stay and the worst will die off.

3.7.2. Crossover Operator
The crossover is a genetic operator to change the programming of a chromosome. A crossover is used 
as a procedure of replacing some of the genes in one parent by corresponding genes of the other. In 
the task scheduling problem, the crossover operator is combining two valid parents, whose subtasks 
are ordered topologically to generate two offsprings which will also be valid. Figure 4 represents the 
single point crossover.

3.7.3. Mutation Operator
The mutation operator is a genetic operator to maintain diversity. This operator changes genes of a 
chromosome and transforms it from one generation of a population to the next generation and helps 
the search algorithm to avoid from falling to locally optimal solutions by preventing the population 
from becoming too similar to each other, or cooperates with crossover operator to achieve a better 
solution. Figure 5 represents the mutation operator.

Figure 4. Single point crossover operator
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4. EXPERIMENTAL RESULTS

This section presents simulation results to evaluate the performance of the proposed method in terms 
of energy consumption and makespan with ACO and HEFT-upward rank. The rest of this section 
is organized as follows. Simulation tools are introduced in Section 4.1. Simulation parameters and 
dataset are presented in Section 4.2 and 4.3, respectively. Finally, the acquired results are presented 
in Section 4.4.

4.1. Simulation Tools
The proposed algorithm is performed in C# programming language in cloud azure environment, similar 
to (Keshanchi & Navimipour, 2016; Keshanchi et al., 2017). Azure was introduced as windows azure 
in 2008 by Microsoft (Copeland, Soh, Puca, Manning, & Gollob, 2015) and it is a cloud computing 
service for building, deploying, and managing applications and services through a global network 
of Microsoft-managed data centers. It provides SaaS, PaaS, and IaaS and supports many different 
programming languages, tools, and frameworks, including both Microsoft-specific and third-party 
software and systems. Simulation and algorithm running have been done on a personal computer 
with an Intel processor with core i5 and 33.3 GHz CPU and 4 GB RAM.

4.2. Simulation Parameters
Crossover and mutation probability are considered 0.3 and 0.7, respectively. Also, the evaporation rate 
of ACO algorithm is considered 0.5. Finally, energy consumption of processors is a random number 
between 0.001 to 0.004. These simulation parameters are shown in Table 3.

4.3. Dataset
Random generated DAGs is used in this section to evaluate the performance of proposed method 
compared with other methods. So the cost of computing and communication through a range of graphs 
randomly selected. We ran our simulation three times with 10, 20, 50 tasks and 3, 6 processor and 
population size in each round is considered 100, 150, 200. Table 4 represents dataset information.

Figure 5. Mutation operator

Table 3. Simulation parameters

Parameters Values

crossover probability 0.3

mutation probability 0.7

Evaporation rate 0.5

Energy consumption of processors 0.001 – 0.004

Termination condition 50 iterations
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4.4. Obtained Results
Figure 6 shows scheduling results of 50 graphs with 10 tasks. Total average graph completion time 
for the HEFT-upward rank method is 105.22, for the ACO is 102.08 and for the proposed method is 
106.48. Also, the results of energy consumption associated with the results of Figure 6 are given in 
Figure 7 and for the HEFT-upward rank, the ACO and the proposed method, are 0.369, 0.253 and 
0.204, respectively. The results indicate that the proposed method in terms of makespan is further 
narrowly than other methods, but it has better performance in terms of the average value of energy 
consumption. Figure 8 shows the convergence behavior of the solution to one of the graphs shown 
in Figure 6.

Figure 9 shows the makespan of 50 random graphs with 20 tasks. The total average of completion 
time for the HEFT-upward rank is 199.48, for the ACO is 210.55 and for the proposed method is 225. 
Also, the results of energy consumption associated with the results of Figure 9 are given in Figure 
10 which for the HEFT-upward ranks, the ACO, and the proposed method are 0.736, 0.431, 0.282 
watts, respectively. The results which are displayed in Figure 11 show the convergence behavior of 
the solution to one of the graphs shown in Figure 9.

Figure 12 shows the makespan of 50 random generated graph with 50 tasks. The total average 
of completion time for three methods including HEFT-upward rank, ACO, and proposed method are 
486.78, 570 and 579, respectively. The results of energy consumption associated with the results of 
Figure 12 for three methods such as HEFT-upward rank, ACO, and the proposed method are1.651, 
1.005, 0.756 watts, respectively. The results are plotted in Figure 13. The proposed method in terms 
of program completion time compared to other methods is non-optimal narrowly but quantitatively 

Table 4. Dataset information

Number of DAGs 50

Number of tasks 10, 20, 50

Number of processors 3, 6

Population size 100, 150, 200

Figure 6. Makespan of 50 random generated DAG (number of tasks = 10, number of resources = 3, number of population = 100)
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significantly minimizes the energy consumption of other methods. Figure 14 shows the convergence 
behavior of the solution.

4.4.1. Results for Graph of Figure 1
The Results for the graph of Figure 1 are shown in Figure 15 and 16. Completed time of three methods, 
including HEFT-upward rank, ACO and proposed method as a bar for graph Figure 1 with 10 tasks 

Figure 7. Energy consumption for 50 random generated DAG (number of tasks = 10, number of resources = 3, number of 
population = 100)

Figure 8. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 6
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are displayed in Figure 15. The results of the test for makespan of the HEFT-upward rank is 82, the 
ACO is 76 and the proposed method is 77. Also, Figure 16 shows the amount of energy consumption 
for these three techniques. The amount of energy consumption in scheduling for HEFT-upward 
rank is 0.297, for ACO is 0.225 and for proposed method is 0.216 watts. The results show that the 

Figure 9. Makespan of 50 random generated DAG (number of tasks = 20, number of resources = 6, number of population = 150)

Figure 10. Energy consumption for 50 random generated DAG (number of tasks = 20, number of resources = 6, number of 
population = 150)
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proposed method in this graph is better than the other two methods in terms of energy consumption 
and makespan shows better performance than the HEFT-upward rank method.

5. CONCLUSION AND FUTURE WORK

This paper studies the task scheduling problem with priority limitation. In the proposed method, 
the total execution time and energy consumption are considered as two factors under investigation. 

Figure 11. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 9

Figure 12. Makespan of 50 random generated DAG (number of tasks = 50, number of resources = 6, number of population = 200)
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Considering the importance of these two factors, a new method is presented that combines ACO and 
cultural algorithm for scheduling the tasks and priorities in green computing. In this way, we tried to 
take advantages and avoid disadvantages of both algorithms. The results represent that the proposed 
method outperforms HEFT-upward rank algorithm and ACO in terms of energy consumption and 

Figure 13. Energy consumption for 50 random generated DAG (number of tasks = 50, number of resources = 6, number of 
population = 200)

Figure 14. Convergence of the best solutions in each repeat of selected sample of 50 graphs in Figure 12
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Figure 15. Makespan of the DAG in Figure 1 using different methods

Figure 16. Results of energy consumption of the DAG in Figure 1 using different methods
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outperforms the HEFT-upward rank in terms of makespan. However, the proposed method improves 
the makespan but could not excel from ACO.

The communication overhead, the voltage/ frequency switching overhead and other uncertain 
parameters in the actual presence of a heterogeneous environment will be discussed in the future 
research. We plan to use DVFS technique to influence on a server’s power efficiency.
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