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a b s t r a c t

This paper proposes a real-time energy management system (EMS) suitable for rooftop PV installations
with battery storage. The EMS is connected to a smart grid where the price signals indirectly control the
power output of the PV/battery system in response to the demand variation of the electricity networks.
The objective of the EMS is to maximize the revenue over a given time period while meeting the battery
stored energy constraint. The optimization problem is solved using the method of Lagrange multipliers.
The uniqueness of the proposed EMS remains in the reactive real-time control mechanism that com-
pensates for the PV power forecast error. The proposed EMS requires only forecasting the average PV
power output over the total optimization period. This is in contrast to the predictive power scheduling
techniques that require accurate instantaneous PV power forecast. The proposed EMS method is verified
by benchmarking against the predictive brute-force dynamic programming (DP) approach. The simu-
lation analysis considers days with varying solar irradiance profiles. The simulation analysis shows the
proposed EMS operating under practical assumptions, where the battery storage capacity is subject to
constraints and the PV power output is not known a priori.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the intermittency of PV, large-scale deployment of
distributed PV generation poses technical challenges to the grid.
High penetration levels of distributed PV generation cause reverse
power flow in the distribution networks. This leads to the problem
of voltage rise, as demonstrated in simulation analyses using actual
load and solar irradiance data [1], [2]. Reverse power flow also in-
troduces additional loading and power losses in the distribution
transformers and the primary feeder sections [3], [4]. Mitigating
these challenges will reduce grid reinforcement costs and opera-
tional costs [5].

To operate as a dispatchable generator similar to the conven-
tional power sources, PV systems need energy storage device to
balance the intermittency. The energy storage unit is used to bal-
ance intermittent PV generation. It stores the excess PV power
when solar irradiance is abundant or when load consumption is
low. On the other hand, it discharges when the demand rises or
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when PV ceases generation.
The techniques for finding a solution to the power scheduling

problem of PV with energy storage encompass the traditional
mathematical approaches and the modern approaches of artificial
intelligence. The method of Lagrange multipliers is a mathematical
technique for optimization problems subject to constraints. The
Lagrange relaxation method is used to solve the optimal dispatch
and security-constrained unit commitment problems of a PV/bat-
tery in a large power system with thermal units in Ref. [6]. In
Ref. [7], a linear programming routine is used to minimize the grid
power flow in a PV/battery system in real-time when the residen-
tial load exceeds the PV production. Furthermore, Ref. [7] adds a
simple scheduling strategy to charge the battery during off-peak
pricing period and discharge the battery during on-peak pricing
period. Linear programming is also used in Ref. [8] to schedule
different energy sources (a PV, a conventional energy source and a
battery storage) and optimize the profit. The power path and
conversion losses are assumed negligible in Refs. [7,8], hence
providing only linear functions in the constraints and objective
functions. In order to account for the nonlinear inputeoutput
characteristics and the discrete working ranges of the building
energy systems, mixed-integer nonlinear programming is utilized
in Ref. [9] to optimize the scheduling of grid-connected energy
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systems consisting of PV and thermal energy storage. Dynamic
programming technique is used in Ref. [10] for PV/battery sched-
uling with the objective of minimizing the operational cost. The
operational cost in Ref. [10] includes the battery replacement cost,
and the monetary transaction for selling and buying the electricity.
Quadratic programming algorithm is used in Ref. [11] to maximize
the revenue of a residential PV/battery system. The PV/battery
system is assumed connecting to a grid with pricing scheme that
aims to minimize the reverse power flow and peak loading in
Ref. [11].

The scheduling approaches presented in Refs. [8e11], are pre-
dictive algorithms where perfect forecast of PV generation is
assumed available. In Ref. [12], the comparative analysis shows that
the scheduling of PV with energy storage can be improved by
reducing the PV forecasting error. The day-ahead scheduling
problem for a system with PV/battery has been reformulated as a
fuzzy optimization problem to account for PV generation uncer-
tainty in Ref. [13]. A membership function that represents varying
degrees of truth models the uncertain PV generation, which in turn
yields a fuzzy objective function. The uncertainty in the renewable
energy system scheduling problem can also be approached by
utilizing robust approach [14] or chance-constrained programming
[15]. A two-stage robust approach is used in Ref. [16] to schedule
the building energy systemwith PV and thermal energy storage, in
order to minimize the operational cost. The “budget of uncertainty”
of the robust scheduling strategy that yields low average operation
costs with small standard deviations needs a priori determination.
In Ref. [17], a unit commitment problem of wind power generation
is formulated as a chance-constrained two-stage stochastic pro-
gram, where the risk level is determined a priori.

Distributed generation unit such as PV can be indirectly
controlled via price signals in response to demand variation. This
brings about market integration of PV generations, and the optimal
power flow is achieved throughmarket mechanism. The economics
of price distortion due to the lack of exposure of retail customers to
the spot prices is explained in Ref. [18]. Among the price-based
demand response mechanisms are time-of-use pricing, critical-
peak pricing and real-time pricing schemes [19], [20]. A market-
based demand response model involves the end consumers in the
bidding processes. Due to the complexity that arises from the large
number of residential appliances that participate in demand
response, the end consumers need an interface with the market
structure consisting of aggregators as considered in Ref. [21] or a
microgrid coordinator as proposed in Ref. [22].

This paper proposes an energy management system (EMS) for
grid-connected PV inverters with battery storage. The EMS is con-
nected to a smart grid that employs demand response model. The
EMS has the objective of maximizing the total revenue over a given
time period. This paper aims to address the limitation of predictive
power scheduling approach that requires a priori knowledge of
instantaneous PV power. The proposed EMS utilizes reactive real-
time control mechanism to compensate for the PV power forecast
error. For a 24-hour period power scheduling, the proposed EMS
requires only the average daily PV power output.

The paper is organized as follows. Section 2 develops the system
level power flow model for use in formulating the economic opti-
mization problem of a PV/battery system. Dynamic programming
(DP) method that is used as a benchmark for the proposed EMS is
presented in Section 3. The DP method is a predictive brute-force
approach that requires accurate instantaneous PV power to be
known a priori. Section 4 presents the proposed EMS that uses the
method of Lagrange multipliers for solving the constrained opti-
mization problem. In order to enable the reactive real-time control
mechanism, the proposed EMS uses linear approximation for the
dispatch function and a direct method for the Lagrange multiplier
estimation. Section 5 provides a simulation analysis that compares
the proposed EMS to the brute-force DP approach. Final discussion
and conclusions are offered in Section 6.

2. System modeling

The battery-link topology as depicted in Fig. 1 is a variant of dc-
link topology similar to that proposed in Ref. [23]. The battery
module is connected directly at the dc-link between the two step-
up converters. The first step-up converter boosts the PV voltage Vpv
to the battery voltage Vb. The second step-up converter further
boosts Vb to the dc-link voltage, Vdcl.

Fig. 2 depicts the basic circuit implementation of the conven-
tional dc-link topology. The operating principles of the boost con-
verter, the bidirectional dc-dc converter and the full-bridge PWM
inverter are available in the power electronics textbooks, such as
[24].

The system power flow of the battery-link topology is described
in (1). The arrows besides the power variables Ppv, Pb, Pac, Pg and Pd
indicates the direction of positive power flow, where the variables
are defined as follows. The terms Ppv and Lpv denote the power and
the loss functions of the PV power path. The output of Ppv branches
into the battery power path Pb and the ac power path Pac. The
variable Lac is loss function of the ac power path. The variable Lb is
loss function of the battery power path.

Ppv � Lpv ¼ Pac þ Lac þ Pb þ Lb (1)

where

Pp ¼ Ppv � Lpv (2)

Pac ¼ Pg þ Pd (3)

The ac power path Pac is the sum of the grid power Pg and the
local demand power Pd.

This section aims to establish the mathematical models for the
power loss functions, and represent the system power flow as a
simplemathematical function. This allowsmathematically deriving
the power flowing through each power path in the PV/battery
system. The power flowing through each power path needs to be
derived to solve the power scheduling problem.

Fig. 3 provides the experimental result of Lac of a battery-link
topology PV/battery inverter. The ac power path loss function Lac
of the battery-link topology is the aggregate of the boost converter
and full-bridge inverter conversion losses. Each boost converter
consists of a 680 mH inductor (labeled respectively as LB1 and LB2 in
Fig. 2) and it operates at 50 kHz switching frequency. MOSFET
IXTP42N25P is used as the switching device for both the boost
converter and the full-bridge inverter. The flyback diode (labeled
respectively as DB1 and DB2 in Fig. 2) in the boost converter is
SDT06S60. The full-bridge inverter consists of two 1mH inductors
(labeled as LI in Fig. 2).

This paper assumes the ac power path loss Lac can be modelled
as a quadratic curve-fit function, where the ac power output Pac is
the explanatory variable. The method of ordinary least squares can
be used to estimate the unknown coefficients of the linear
regression model [25]. The ac power path loss in a quadratic
function can be written as

Lac ¼ aPac þ bP2ac þ c (4)

The quadratic function as given in (4) is used to model the
experimental results where the estimated coefficients of the linear
regression model are a¼ 3.69� 10�2, b¼ 1.29� 10�3, c¼ 5.23.

This paper assumes lithium-ion battery, which has negligible



Fig. 1. Block diagram of battery-link topology.

Fig. 2. Circuit diagram of the conventional battery-link topology.

Fig. 3. Ac power path conversion losses in a battery-link topology. Fig. 4. Characteristic of battery power loss.
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faradic power losses [26]. A lithium-ion battery module is used to
obtain the experimental results of the battery loss Lb, as shown in
Fig. 4. The lithium-ion battery module H2B182-B from HY-LINE AG
is used to measure the battery power loss. Each battery module
consists of four battery cells in series and three strings of cells in
parallel. The lithium-ion battery cell is the popular 18650 cylin-
drical type, where the nominal voltage is 3.6 V. Two battery mod-
ules are connected in series to obtain 28.8 V nominal voltage. By
observing the experimental results, we assume the battery loss Lb is
proportional to the squared of the battery power
Lb ¼ kP2b (5)

where k is a constant.
The loss function given in (5) is fitted to the empirical results

where the coefficient k of the curve-fit model equals 4.62� 10�4. By
assuming that the models given in (4) and (5) provide sufficient
curve-fitting accuracy, we can write the system power flow as a
polynomial function
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Pp;t ¼ ðaþ 1ÞPac;t þ bP2ac;t þ cþ Pb;t þ kP2b;t (6)

3. Dynamic programming (DP)

This section presents the dynamic programming (DP) method
that is used as a benchmark for the proposed EMS. The DP method
presented here is based on the basic principles found in
Refs. [27,28]. In order to apply the dynamic programming (DP)
approach, the PV/battery scheduling problem is formulated as a
multistage problem. The battery stored energy is the state variable.
We wish to find the optimum trajectory of the battery stored en-
ergy states over a given time period thatmaximizes the total sum of
revenues. Consider the battery stored energy states in two
consecutive time intervals

Eb;t;j ¼ Pb;tDt þ Eb;t�1;i (7)

for i¼ 1, …, N and j¼ 1, …, N. The lower limit of the battery stored
energy state is given as Eb,t,1 whereas the upper bound is given as
Eb,t,N. Also, Dt is the step size of the time interval. The system
operates in a liberalized electricity market where the electricity
price pg,t is time variable. The revenue function for a given time
interval is given as

Rt
�
Eb;t;j; Eb;t�1;i

�
¼ Pg;t

�
Eb;t;j; Eb;t�1;i

�
pg;tDt (8)

We consider the battery-link topology as shown in Fig. 1, in
which the power lossmodel is provided in the previous section. The
grid power Pg,t as a function of the battery stored energy state can
be obtained by substituting (3) and (7) in (6)

Pg;t
�
Eb;t;j; Eb;t�1;i

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ2 þ 4bcij;t

q
� a� 1

2b
� Pd;t (9)

where

cij;t ¼ k

�
Eb;t;j � Eb;t�1;i

Dt

�2

þ
�
Eb;t;j � Eb;t�1;i

Dt

�
þ c� Pp;t

Let Ft�1ðEb;t�1;iÞ be the maximum total sum of revenues up to
the time interval te1. Then, for arbitrary i and j battery stored en-
ergy states, the total sum of revenues at time interval t is

Ft;ij ¼ Rt
�
Eb;t;j; Eb;t�1;i

�
þ Ft�1

�
Eb;t�1;i

�
(10)

We wish to maximize the total sum of revenues over a given
time period. An optimal choice of i is the one that maximizes Ft,ij
function. We thus obtain the basic recursive form functional
equation for maximizing the total sum of revenues for a given time
period as

Ft
�
Eb;t;j

�
¼ max

fig

h
Rt
�
Eb;t;j; Eb;t�1;i

�
þ Ft�1

�
Eb;t�1;i

�i
(11)

The forward dynamic programming (DP) algorithm that maxi-
mizes the total sum of revenues over the given time period T is
shown as a flow chart in Fig. 5. We introduce StðEb;t;jÞ for storing the
te1 state Eb,te1,i that maximizes the total sum of revenues at t state
Eb,t,j. A variable Fmax is used to store the “maximum revenue so far”
and track the optimal result in each i state iteration and it is reset to
an arbitrary minimum value every time j is assigned a new value.
Note that the DP algorithm is a predictive approach that requires
accurate PV power to be known a priori. The instantaneous PV
output power Pp,t is required to obtain the grid power Pg,t as given
in (9), which in turn is used to calculate the total revenue as given in
(10).
4. Energy management system based on the method of
Lagrange multipliers

The proposed EMS aims to provide a mean for reactive real-time
control to the PV/battery system. Here we use the method of
Lagrange multipliers to obtain a closed form expression for the
optimal dispatch function. The objective function for maximizing
the total sum of revenues over the given time period T can be
written as

RT ¼ max
XT
t¼1

Rt ¼ max
XT
t¼1

Pg;tpg;tDt (12)

The objective function is subject to the law of power
conservation:

ft ¼ Pp;t � ðaþ 1ÞPac;t � bP2ac;t � c� Pb;t � kP2b;t ¼ 0 (13)

The objective function is also subject to constraint that ensures
the battery stored energy over the given time period meet the
target Eb,T

j ¼
XT
t¼1

Pb;tDt � Eb;T ¼ 0 (14)
4.1. Method of Lagrange multipliers

The constrained optimization problem can be addressed using
methods of calculus involving the Lagrange function L as follows:

L ¼
XT
t¼1

Pg;tpg;tDt þ
XT
t¼1

ltft þ gj (15)

where l and g are Lagrange multipliers.
For any given values of Pp and Pd the independent variables are

Pg and Pb. The solutions for the partial derivatives of the Lagrange
equation yield the optimum point

dL
dPg;t

¼ pg;tDt � lt
	
2b

�
Pg;t þ Pd;t

�þ ðaþ 1Þ
 ¼ 0

dL
dPb;t

¼ gDt � lt
�
2kPb;t þ 1

� ¼ 0

dL
dlt

¼ ft ¼ 0

dL
dg

¼ j ¼ 0

(16)

We solve these two sets of constraints in two stages. The first
stage is to find the solution for optimal dispatch problem and
eliminate the first Lagrange multiplier l. By solving the first three
equations in (16), the solution for the battery power Pb,t and the
grid power Pg,t, at any given t are as follows:



Fig. 5. Flow chart for solving the PV/battery scheduling problem using DP.
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Pb;t ¼
1
2k

2
664� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b

�
Pp;t � c

�þ ðaþ 1Þ2 �
�
pg;t
g

�2
�
pg;t
g

�2 þ b
k

vuuuut
3
775

(17)

Pg;t ¼ pg;tk

gb
Pb;t þ

1
2b

�
pg;t

g
� a� 1

�
� Pd;t (18)

The second stage is to solve the daily scheduling by adjusting the
Lagrangemultiplier g to satisfy the battery stored energy constraint
Eb,T as given in the last equation in (16). The dimension of the
second Lagrangemultiplier g is analyzed by observing (18). The loss
coefficients k and b have no units, so we can conclude that g has the
same unit as the grid feed-in price pg. We can infer that the
Lagrange multiplier g is the “shadow price” of the battery. The
Lagrange multiplier g represents the total revenue the system
would generate for increasing one unit of battery stored energy.
Equation (18) gives a nonlinear relationship between the Lagrange
multiplier g and the battery power Pb. An iterative method is
required to find the exact value of the Lagrange multiplier g that
satisfies the battery stored energy target Eb,T as given in the last
equation in (16). An iteration process using the gradient search
method to solve for the Lagrange multiplier g is presented in
Ref. [29]. In order to enable the reactive real-time control mecha-
nism in the proposed EMS, a direct method is developed to esti-
mate the Lagrange multiplier g as presented in the next subsection.
4.2. Proposed energy management system (EMS)

The results from the method of Lagrange multipliers are used to
obtain the optimal dispatch function solution in closed form. The
real-time battery power target value Pbr,t as a closed form optimal
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dispatch function is the linear approximation of the battery power
Pb,t, as given in (17), at zero

Pbr;t ¼
b

k
�
pg;t
g

�2 þ b
Pp;t þ

ðaþ 1Þ2 �
�
pg;t
g

�2 � 4cb

4
�
k
�
pg;t
g

�2 þ b

� (19)

Equation (19) is a computationally efficient linear equation. The
dynamic variables in (19) are the PV power output Pp,t and the
electricity price signal pg,t, which typically changes hourly.

Next, we wish to develop a direct method to estimate the
Lagrange multiplier g. We assume the power scheduling algorithm
has a daily cycle time, that is, the optimization duration T corre-
sponds to a 24-hour period. Let pg,d be a constant value repre-
senting the electricity price signal for a given day. Substituting the
daily representative value pg,d as a constant for the time varying pg,t
in (19), we estimate the second Lagrange multiplier as

gzpg;d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kPb;d þ 1

ðaþ 1Þ2 þ 4b
�
Pp;d � Pb;d � c

�
vuut (20)

where Pb,d is the average daily battery power and Pp,d is the average
daily PV power output. The daily representative electricity price pg,d
and the average daily PV power output Pp,d need to be obtained in
advance. As part of the reactive control mechanism to compensate
for the Pp,d forecasting error, the average daily battery power Pb,d is
dynamically adjusted by comparing the battery stored energy
target Eb,T to the actual energy value at interval t

Pb;d ¼ fc

�
Eb;T � Eb;t
T � t þ 1

�
(21)

where fc is a scale factor used to convert the time variables, t and T,
to units compatiblewith the battery stored energy variables Eb,t and
Eb,T.

The control configuration of the proposed EMS for a PV/battery
system is shown in Fig. 6. The first boost converter is controlled by
the voltagemode controller Cpv. The maximum power point tracker
(MPPT) adjusts the reference signal to the voltage mode controller
Cpv to ensure the PV module operates close to the maximum power
point. The MPPT unit also provides the PV power output Pp,t in real
time to the EMS. The battery management system (BMS) sets the
reference signals to the battery charge controllers Cibat and Cvbat.
The voltage mode controller Cvbat ensures that the predetermined
upper limit of battery termination voltage is never exceeded. The
battery charging and discharging current is adjusted by the current
mode controller Cibat, where the reference signal Iref,bat is derived
from the EMS battery power target value Pbr,t. The grid feed-in
controller for the full-bridge inverter consists of two loops. The
outer loop feed-forward controller Cff regulates the power transfer
between the full-bridge inverter and the second boost converter.
The phase locked loop PLL generates a reference sine wave that is in
phase with Vg. The inner loop controller Ciac regulates the ac output
current of the full-bridge inverter to ensure it is in phase with the
grid voltage. The EMS under real-time pricing scheme [19,20],
communicates pg,t directly with the utility system operator every
hour. For market structure that involves bidding processes, the EMS
may communicate pg,t with the aggregator that bids on behalf of
the PV/battery system [21].

Fig. 7 shows the proposed EMS reactive real-time control algo-
rithm in a flow chart. After initialization, the program loops at a
constant Dt time step to read the real-time PV power Pp,t from the
MPPT and then write the calculated battery power target value Pbr,t
to the BMS. Note that the proposed EMS does not require the
instantaneous PV power output forecast. Only the average daily PV
power output Pp,d needs to be forecasted as part of the initialization
process. A hardware timer is assumed to ensure the program loops
at a constant Dt time step.

The EMS algorithm steps that involve data passing between the
EMS and other subsystems (such as the BMS) are highlighted with
circled capital letters Ⓐ, Ⓑ, Ⓒ and Ⓓ in Figs. 6 and 7. On the other
hand, the algorithm steps that involve calculation using the equa-
tions as given in (19)e(21) are highlightedwith circled small letters
ⓧ, ⓨ and ⓩ in Fig. 7. The main algorithm steps of the proposed
EMS are summarized as follow:

Step 1 As part of the initialization process, the EMS resets the
following variables at the beginning of each daily cycle

� The average daily PV power output Pp,d is forecasted
� The daily representative value for the electricity prices
pg,d is estimated

� The initial value for the time variable t is reset to 1
� The initial value for the loop counter q is reset to the end
value qlast
Step 2 The EMS reads the battery stored energy Eb,t from the BMS.
This process is indicated as Ⓐ in Figs. 6 and 7.

Step 3 The average battery power Pb,d is adjusted by comparing the
real time value Eb,t (as read in Step 2) to the target value Eb,T.
This step uses the equation as given in (21) and it is indi-
cated as ⓧ in Fig. 7.

Step 4 The EMS reads the time varying pg,t from the utility system
operator. This process is indicated as Ⓑ in Figs. 6 and 7.

Step 5 The Lagrange multiplier g as the “shadow price” of the
battery is calculated using the equation as given in (20). This
step is indicated as ⓨ in Fig. 7. The variables are obtained in
the previous steps:

� The average daily PV power output Pp,d iss forecasted in
Step 1

� The average daily battery power Pb,d is calculated in Step 3
� The time varying pg,t is read in Step 4
Step 6 The EMS reads the real-time PV power Pp,t from the MPPT.
This process is indicated as Ⓒ in Figs. 6 and 7.

Step 7 The battery reference set point power target value Pbr,t is
calculated using the equation as given in (19). This step is
indicated as ⓩ in Fig. 7. The variables are obtained in the
previous steps:

� The time varying pg,t is read in Step 4
� The Lagrange multiplier g is calculated in Step 5
� The real-time PV power Pp,t is read in Step 6
Step 8 The EMS writes the calculated battery power target value
Pbr,t to the BMS. This process is indicated as Ⓓ in Figs. 6 and
7.

The Lagrange multiplier g does not require rapid adjustment to
compensate for the average daily PV power output Pp,d forecasting
error. The average daily battery power Pb,d and the Lagrange
multiplier g are computed only when the loop counter q reaches
the end value qlast. The EMS algorithm Steps 2e5, which are indi-
cated asⒶ,Ⓑ,ⓧ andⓨ in Fig. 7, are bypassed for each q increment
iteration.

In summary, the proposed EMS continuously adjusts the battery
power (by setting the power target value Pbr,t) in order to achieve
the objective of maximizing the total sum of revenues RT and
meeting the battery stored energy constraint target Eb,Tover a given
time period. The EMS computes the battery power target value Pbr,t
and sends it to the BMS for adjusting the battery charging and
discharging current.



Fig. 6. EMS control configuration of battery-link topology.
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5. Simulation analysis

This section presents the simulation analysis of PV/battery sys-
tem power scheduling with the objective of benchmarking the
proposed real-time EMS (as presented in Section 4) against the
brute-force DP approach (as presented in Section 3). The DP and
proposed EMS algorithms are simulated by implementing the flow
charts (as shown in Figs. 5 and 7) in the Microsoft VBA (Visual Basic
for Application) software. The power scheduling algorithms aim to
maximize the total sum of revenues over a 24-hour period. The
approach for assigning values to the parameters required for the
calculation steps (as presented in Sections 3 and 4) are summarized
here:

� The simulation time interval step size Dt is arbitrarily selected as
5min.

� The time variable T is set equal to 288 since the algorithms aim
to maximize the daily total revenue.

� The battery charge is cycled to the initial capacity for every 24-
hour period to maximize the utilization of the battery. Hence,
the target total battery stored energy constraint Eb,T is set equal
to zero.

� The coefficients of the mathematical models presented in Sec-
tion 2 are derived from the experimental results. The co-
efficients for the ac power path loss Lac quadratic function as
given in (3) are a¼ 3.69� 10�2, b¼ 1.29� 10�3, c¼ 5.23.
Additionally, the coefficient for the battery loss Lb given in (5)
assumes the coefficient k equals 4.62� 10�4.

� For the simulation of the DP approach, the battery stored energy
state Eb,t is incremented in a step size of 5/12Wh. This provides
5Wgranularity in the battery power Pb,t calculation for 5min of
time interval step size Dt. Apparently, the increment size of Eb,t
determines the value of N, number states of the battery stored
energy. For example, N shall be set to 6000 if Eb,t,1 equals 0Wh,
and Eb,t,N equals 500Wh.

� For the simulation of the proposed EMS, the loop counter end
value qlast is set equal to 3 because 15min of interval is arbi-
trarily selected for adjusting the Lagrange multiplier g in order
to compensate for the errors in the PV power forecast.

� For the simulation of the proposed EMS, the daily representative
value for the electricity prices pg,d is set equal to the arithmetic
mean of the hourly electricity prices.

� For the simulation of the proposed EMS, the average daily PV
power output Pp,d needs to be forecasted. One trivial forecast
approach is the basic 24-hour persistence model [30,31], where
Pp,d of the current day is set (at the initialization stage) equal to
the calculated value of Pp,d of the previous day.

Fig. 8 shows the PV power output Pp obtained from the outdoor
measurement results of a 1.71m2 poly-silicon PV module in
Grimstad, Norway between July 10 and July 12, 2011. Days with
varying solar irradiance profiles are chosen to illustrate the effect of
forecast errors on the proposed EMS. The first two days (July 10 and



Fig. 7. Flow chart of the proposed real-time EMS.
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Fig. 8. Measured PV power Pp,t and the electricity price pg,t for three consecutive days of July in Southern Norway.
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July 11) have cloudy conditions whereas the third day (July 12) has a
clear sky condition. The time-varying electricity price signal pg for
the simulation analysis is represented by the hourly electricity spot
price of the Nord Pool day-ahead market [32] in the pricing area of
Grimstad (Kristiansand), Norway between July 10 and July 12, 2015.

The comparative simulation analysis where the proposed real-
time EMS operates under the ideal condition is first presented to
validate the approximation methods. Fig. 9 shows the power
scheduling simulation results assuming unconstrained battery en-
ergy capacity conditions. Also, the proposed EMS has a priori
knowledge of the PV power for accurate forecasting of the daily
average Pp,d in the calculation of the Lagrange multiplier g as given
in (20). In order to provide a comparison for the daily total sum of
revenues, the total revenue Rt is reset to zero Norwegian Krone
(NOK) every day at the midnight. In Fig. 9, the power scheduling
traces of the proposed EMS closely track those of the baseline DP.
We can conclude that the approximations used in estimating the
battery power target Pbr,t as given in (19), and the Lagrange
multiplier g as given in (20) yield negligible errors.

Next, we wish to show the proposed EMS operating under
practical assumptions, where the battery storage capacity is subject
to constraints and the PV power output is not known a priori. The
average daily battery power Pb,d and the Lagrange multiplier g are
adjusted every 15min to compensate for the errors in the PV power
forecast. For this simulation analysis, the basic 24-hour persistence
forecast model [30,31], is used in the real-time EMS.

Fig. 10 shows the comparative simulation analysis considering
the battery maximum capacity is limited to 500Wh. July 10 and
July 11 have similar daily average PV power output. Fig. 10a and b
shows that the power traces (Pb,t and Pac,t) of the proposed EMS and
the baseline DP track closely between t0 and t1. Since the battery
stored energy Eb,t is the integral of battery power Pb,t over time, the
errors in Eb,t gradually increase. Between t1 and t2, the real-time
EMS readjusts g, and it increases Pb,t in order to charge the bat-
tery to the initial 200Wh battery capacity at t2 (andmeet the target
Eb,T). On July 12, the proposed EMS charges the battery to the
maximum limit of Eb,t early on whereas the DP approach reaches
the maximum capacity only at t3. Since the proposed EMS uses the
24-hour persistence PV power forecast model, higher average PV
power on July 12 is unforeseen by the proposed EMS. Even though
Eb,t continues to deviate after t3, the proposed EMS manages to
readjust g toward the end of July 12 and meet the target Eb,T. Note
also that the daily revenues Rt generated by the proposed EMS on
July 11 and July 12 are similar to those generated by the baseline DP.
Given that a trivial PV power forecast model is implemented, the
proposed EMS yields reasonable results in meeting the battery
energy target Eb,T while maximizing the revenues. We can conclude
that the average daily battery power Pb,d function as given in (21),
which in turn adjusts the Lagrange multiplier g, provides sufficient
reactive real-time control for compensating the PV power fore-
casting errors.

The approximations used in the proposed EMS provide a
computationally efficient real time control at the expense of less
accurate optimization results. One the other hand, the DPmethod is
a brute-force approach that assumes an accurate instantaneous PV
power forecast is available. As shown in Figs. 9 and 10, the ap-
proximations used in the real-time EMS produce slight deviations
of results between the proposed EMS and the brute-force DP
approach. The approximations used in the proposed EMS are
summarized as follow:

� The battery power target value Pbr,t as the dispatch function of
the proposed EMS is a linear approximation.

� In order to use a direct method to approximate the Lagrange
multiplier g, the proposed EMS assumes the daily electricity
price signal can be represented by a constant value pg,d.

� The proposed EMS uses the arithmetic mean of the hourly
electricity prices to approximate pg,d.

� For simulation analysis under practical assumptions (where the
results are as shown in Fig. 10), the proposed EMS estimates the
average daily PV power output Pp,d using the basic 24-hour
persistence forecast model.
6. Conclusion

This paper presents a real-time energy management system
(EMS), which maximizes the total revenue for the PV/battery sys-
tem that connects to a smart grid with time varying electricity
prices. The proposed EMS utilizes reactive real-time control
mechanism to compensate for the PV power forecast error. Hence,
it addresses the limitation of predictive PV power scheduling
approach that requires an accurate instantaneous PV power fore-
cast. The proposed reactive real-time control mechanism requires
only forecasting the average PV power output over the total opti-
mization period. The proposed EMS is based on the method of
Lagrangemultipliers, and the power scheduling algorithm is shown
in Fig. 6. In order to enable the reactive real-time control, this paper



Fig. 9. Power scheduling simulation results comparing the proposed EMS to the DP method assuming unconstrained battery capacity.
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proposes a closed form optimal dispatch function of the battery
power as given in (19) and a direct method for estimating the
Lagrangemultiplier g as given in (20). The proposed EMSmethod is
verified by benchmarking against the brute-force dynamic
programming (DP) approach. The comparative simulation analysis
(between the proposed EMS and the brute-force DP approach) first
shows that the approximations used in the dispatch function and
the Lagrange multiplier estimation yield negligible errors (Fig. 9).



Fig. 10. Power scheduling simulation results comparing the proposed EMS to the DP method assuming battery capacity is constrained.
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Next, the comparative simulation analysis shows that the
compensation function as given in (21) can adjust the Lagrange
multiplier g to compensate for the PV power forecasting error. The
comparative simulation analysis as given in Fig. 10 shows that the
proposed EMS yields reasonable results in meeting the objective of
maximizing the revenue under practical assumptions where the PV
power is forecasted and the battery storage capacity is constrained.
We may conclude that the proposed EMS presents a practical
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approach that is capable of reactively compensating for errors in
the forecasting, system modeling or both.
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Acronyms and Symbols

BMS battery management system
DP dynamic programming
EMS energy management system
PLL phase lock loop
PV photovoltaic
MOSFET metaleoxideesemiconductor field-effect transistor
MPPT maximum power point tracker
NOK Norwegian krone
Wh watt hour, a unit of energy
Cpv voltage mode photovoltaic controller
Cibat current mode battery charge controller
Cvbat voltage mode battery charge controller
Cff feed-forward controller
Eb,t,1 lower limit of battery stored energy state
Eb,te1,i battery stored energy at state i and time interval te1
Eb,t,j battery stored energy at state j and time interval t
Eb,t,N upper limit of battery stored energy state
Eb,T battery stored energy target over the total optimization

time period T
Ft,ij maximum total sum of revenue up to time interval t, and

at state i
Lac loss function of ac power path
Lb loss function of battery power path
Pac,t ac power at time interval t
Pb,d average daily battery power
Pb,t battery power at time interval t
Pbr,t battery power target at time interval t
Pd local demand power
Pg,t grid power at time interval t
Pp,d average daily photovoltaic power output
Pp,t output power of photovoltaic power path at time

interval t
Ppv input power to the photovoltaic system
Rt revenue function at time interval t
RT total sum of revenues over the total optimization time

period T
t time interval
T power scheduling total optimization time period
a, b, c coefficients of the loss function of ac power path
Dt step size of time interval
g second Lagrange multiplier
k coefficient of the loss function of battery power path
l first Lagrange multiplier
pg,d daily representative value for the electricity prices
pg,t electricity price at time interval t
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