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Abstract—Utilities frequently use remote load control as an ef-
fective means to achieve suitable network operational conditions.
This procedure, usually designated Load Management (LM), is a
part of the resources considered under the general designation of
Demand-Side Management (DSM).

However, the use of LM in electric distribution network manage-
ment is a problem that involves different conflicting aspects such as
reducing peak demand, maximizing utility profits and minimizing
discomfort caused to consumers. Hence, the problem is multiobjec-
tive in nature: economical, technical and quality of service aspects
must all be explicitly accounted for in mathematical models.

This paper presents a multiobjective decision support model
which allows the consideration of the main concerns that have an
important role in LM: minimize peak demand as perceived by
the distribution network dispatch center, maximize utility profit
corresponding to the energy services delivered by the controlled
loads, maximize quality of service in the context of LM.

Index Terms—Load management, Multiobjective programming,
Load modeling, Energy management.

I. INTRODUCTION

E LECTRICITY distribution network management activi-
ties encompass situations where it is convenient, or even

indispensable, to control maximum demand. This may happen
either due to economic reasons (to reduce losses and increase
load factor as a means of reducing energy purchase costs to the
distributor) or due to physical limitations of the network equip-
ment (namely associated with lines and transformers).

To face this situation, it is usual to consider the adoption
of demand-side management (DSM) programs, by means of
which the consumers are encouraged to modify their load pat-
terns through the use of adequate stimuli. Time-of-use rates or
rates based on spot prices are examples of such stimuli, together
with advising campaigns or funding programs to encourage the
use of more efficient end-use equipment or smart clocks which
prevent the use of energy by some loads at certain periods of the
day.

An alternative exists for the utilities, consisting in remotely
controlling customer loads, acting behind the meter according
to some pre-defined contractual terms. This procedure is desig-
nated load management (LM) and it is usually considered as a
DSM option. In situations of highly constrained operation due
to capacity shortage, LM is a very effective means of avoiding
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high losses and low voltage levels at delivery nodes. On the
other hand, even when no such critical constraints exist, LM
helps reducing network losses in peak periods also reducing
energy purchase costs to the utility. The loads most frequently
used in this type of remote control procedures are those which
deliver energy services whose quality is not substantially af-
fected by supply interruptions of short duration. In the residen-
tial sector such typical loads are those associated with some
form of thermal energy storage, e. g. water heaters and air con-
ditioners.

Traditionally, utilities have carried out demonstration or pilot
test programs to verify the cost-effectiveness of direct load con-
trol. A pilot test program allows the utility to forecast load shape
impacts and may help it to develop marketing strategies. Two
sets of customers are normally selected - one to test the program
and a second one as a control group to be used as the reference
case. This methodology is very expensive and may not produce
accurate results [9]. A utility can avoid pilot testing programs
and proceed directly to a program implementation if it designs
and conducts a proper load research program in which average
customer usage and instantaneous demand are determined as a
function of the variables that affect each of them. The use of
models such as the one described in this paper can significantly
reduce the initial costs associated with the prior economical and
technical evaluation of load management programs implemen-
tation.

In order to achieve a successful implementation of LM pro-
grams, consumers’ acceptance is a vital issue. Direct load con-
trol, concerning both water heating and air conditioning, affects
comfort of final users. Therefore, the issue of how to minimize
the inconvenience caused to consumers has to be assigned a
high priority whenever a LM program is considered. Thus, it
is desirable that the model of load control used to assess the LM
program can accommodate the interests of the participant con-
sumers.

Some approaches presented in the literature on the optimiza-
tion of remote load control programs address the problem in a
relatively narrow perspective and may basically be divided in
two categories, in accordance with the intended goals. One con-
cerns minimizing peak demand ([6], [12], [15]) and the other
one concerns minimizing operational costs ([3], [4], [7], [10],
[14]). Other approaches, mentioned below, reveal concerns on
other aspects of a more diversified nature.

The model proposed by Chuet al. [5] attempts to cope with
the negative impact on comfort, by defining the minimization
of the amount of load reduction as the goal of load control in
order that the peak demand does not exceed a given maximum
threshold.
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The approach presented by Lee and Breipohl [15] considers
the use of direct load control to reduce spinning reserve, thus
providing significant cost savings and often a limited inconve-
nience for the participant consumers.

Bhattacharyya and Crow [2] present a methodology that seeks
to optimize both the customer satisfaction and the reduction of
production costs to the utility. This approach is based on fuzzy
logic techniques aimed at optimizing the balance between con-
sumer preferences, utility resources and demand uncertainty.

The model presented by Laurentet al.[13] aims at optimizing
interruption schedules for large aggregations of controlled elec-
tric water heating loads within a load management program. In
this approach, the objective is to obtain the maximum system
peak reduction while maintaining an acceptable level of service
to consumers participating in the program.

Electric distribution network management is a problem
that involves generally different conflicting aspects. When
LM is also considered, the integration of demand-side in the
decision process associated with dispatch activities contributes
to increase the conflicting aspects both in number and intensity.
For example, decreasing peak demand may correspond to also
decrease utility revenues. Hence, the problem is multiobjective
in nature: economic, technical and quality of service aspects
must be explicitly accounted for in the mathematical models.
By means of multiobjective models, the decision maker (DM)
may grasp the conflicting nature of the objectives and the
trade-offs to be made in order to obtain satisfactory compro-
mise solutions.

In the decision support model developed and presented
herein, the aim is not optimizing a single objective function of
technical or economical nature (for example, to reduce peak
demand or to minimize operational costs), but to explicitly in-
corporate into the mathematical model the distinct, conflicting
and incommensurate aspects that are at stake for the network
manager. This enables not just to extend the range of potential
alternative plans, but also gives an important role to the network
manager’s structure of preferences to evaluate and select a
satisfactory compromise solution, since no feasible solution
exists which optimizes simultaneously all objective functions.

This paper describes a multiobjective decision support model
that allows the explicit consideration of the main concerns that
have an important role in LM: minimizing peak demand as per-
ceived by the distribution network dispatch center, maximizing
profits resulting from energy sale, maximizing the quality of ser-
vice delivered by the controlled loads.

In Section II a multiple objective model for decision support
is presented and a description is made of an interactive process
to support the DM in selecting a compromise solution. In Sec-
tion III the decision support environment is outlined and it is
described how the control strategies are generated by means of
a physically-based load model. A case study is described in Sec-
tion IV and some results of the multiple objective model are pre-
sented. Some conclusions are drawn in Section V.

II. A M ULTIPLE OBJECTIVE MODEL FOR THESELECTION OF

CONTROL STRATEGIES

The multiobjective model allows the DM to grasp the con-
flicting nature of the objectives in a LM program and to make
trade-off in order to obtain satisfactory compromise solutions

from the set of nondominated solutions. In a multiobjective con-
text the concept of optimal solution gives place to the one of
nondominated solutions (feasible solutions for which no im-
provement in any objective function is possible without sacri-
ficing at least one of the other objective functions).

This model to provide decision support in the selection of
control strategies allows to take into account the main concerns
in an adequate remote load control program: to minimize peak
demand of the load diagram perceived by the distributor, to max-
imize profit and to maximize quality of service. The use of this
multiple objective model allows the DM to select, of a set of
predefined strategies, a satisfactory control strategy to apply to
each group of controlled loads in order to guarantee a compro-
mise (nondominated) solution between the three objectives. The
computed nondominated solutions depend on the time of occur-
rence of the peak of the forecasted network load diagram and on
the network manager’s preferences.

The model can be used to select satisfactory remote load con-
trol strategies for an existing system. At a preliminary design
stage, it is also suited to make a previous economic analysis for
evaluating the attractiveness of new LM programs, since it in-
volves investments, namely in communication equipment and
load switching interfaces.

The multiobjective model does not depend on the type of con-
trolled load, though it has been applied only to the control of
groups of electric water heaters. The information on the elec-
tricity consumption of the load groups and on hot water temper-
atures with or without the application of the control strategies to
the load groups is obtained with a physically-based load model
[8]. Control strategies define the on/off schedule of load groups,
during the period of time where maximum demand control is to
be achieved.

A. Mathematical Model

Notation:
Elementary time interval index (i 1, , n)
Load group index (j 1, , m)
Control strategy index (k 1, , q)
Total control period
Elementary control time interval in minutes.
Total number of loads in group whose minimum
comfort threshold is violated when subject to control
strategy , during the control period.
Maximum number of loads in groupwhose min-
imum comfort threshold is simultaneously violated
when subject to control strategy, during the con-
trol period.
Maximum number of loads in group that are al-
lowed to simultaneously violate the minimum com-
fort threshold.
Difference at interval between load group de-
mand when control strategy is applied to it and
load group demand without any control action.
Measure of discomfort defined as a function of
and .
Average forecasted network demand at interval
without load control
Forecasted network peak demand without control
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Decision variable that represents the network peak
demand reduction
Profit variation corresponding to the consumption
variation in group when subject to control strategy

Net revenue perceived by the utility per kWh at in-
terval by selling energy to group.
Average network demand at intervalwith load con-
trol
Binary decision variable that assumes the value 1 if
control strategy is selected to be applied to group
, and 0 otherwise.

Objective Functions:The network load diagram is assumed
to be known by means of a load forecast procedure. The total
control period, that must be as long as needed in order to pre-
vent a new peak demand caused by the payback phenomenon, is
divided into equal intervals ( ). Supply interrup-
tions, as defined by the control strategies, always begin at the
start of a interval and last for an integer number of intervals.

Under load control, demand at each elementary interval is
given by:

i n (1)

Minimize peak demand consists in minimizing the maximum
network controlled demand, that is:

This objective can be formulated in an alternative way: max-
imizing the minimum value of the difference between the fore-
casted peak demand and the instantaneous controlled power de-
mand, that is, maximizing the peak demand reduction.

The optimization of this objective is not a linear problem, but
it can be transformed into a linear problem considering a new
decision variable as the network peak demand reduction.

Thus, the problem can be re-written:

subject to:

i n

(2)

The optimization of profit is equivalent to maximizing
revenue variation caused by electricity consumption variation
achieved with the application of control strategies.

Thus, maximizing profit may be stated as:

(3)

where is given by:

(4)

The measurement of discomfort caused by control actions is
based on the number of loads for which the minimum com-
fort threshold has been violated. In the case of electric water
heating loads, it corresponds to the number of water heaters
whose water temperature is below an admissible minimum. The
lower the number of water heaters that violate the minimum
comfort threshold, the higher the quality of service.

Minimizing discomfort caused to consumers corresponds to
minimizing the following function:

(5)

where is given by:

(6)

Parameters and are coeffcients of importance with re-
spect to the accumulated value ( ) and the maximum number
( ) of loads in group that violate the minimum comfort
threshold, when subject to control strategy.

Model constraints:One control strategy can be applied, at
most, to each load group:

j m (7)

There is a maximum number of loads that are allowed to vio-
late the minimum comfort threshold. Control strategies that lead
to a higher number of loads in such situation are rejected.

j m (8)

Summarizing, the multiobjective model is thus:

subject to:

i n

j m

j m

j m k q

B. Interactive Process

Since there is no solution which is superior to all the others
(within the nondominated set) in all aspects of evaluation, the
simple computation of nondominated solutions does not convey
suffficient information to select a final (compromise) solution.
Once the multiobjective problem has been formulated, the avail-
able methods for dealing with it can be schematically classified
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as (see also [17]): - generating methods; - methods in which
there is apriori articulation of the DM’s preferences; - methods
in which there is a progressive articulation of the preferences
(interactive methods).

Generating methods are aimed at computing the whole non-
dominated solution set. The DM must then select the nondomi-
nated solution to be implemented. The exhaustive computation
of all nondominated solutions becomes cumbersome beyond
certain limits, and, more important than that, this effort is not
worthwhile in most situations. In fact, presenting the DM with
a large set of solutions, in many cases with just slight differences
among the objective function values, may further complicate an
already complex decision problem.

Another way to tackle this problem is to consider that a utility
function is explicitly known, which is supposed to be the analyt-
ical expression of the DM’s preferences. Under this assumption,
the computation of the optimal solution, which maximizes the
utility function, is then a scalar optimization problem. However,
that is not a realistic assumption in most problems.

Interactive methods are nowadays considered to address the
main drawbacks of the previous approaches (computational and
decision complexity). In interactive methods, phases of decision
(dialog) involving the DM are alternated with phases of com-
putation. The DM intervenes in the solution search process by
inputting information into the procedure which in turn is used
to guide the search process in order to compute a new solution
which more closely corresponds to his/her preferences. Thus,
interactive methods reduce the computational burden and the
number of irrelevant (from the point of view of the DM’s pref-
erences) solutions generated.

In this work, STEM [1] interactive method has been adopted
to provide decision support in selecting remote load control
strategies, both because of the simplicity of its computation and
dialog phases as well as its capability to deal also with integer
variables. Whenever integer variables are considered, nondomi-
nated solutions located to the interior of the convex hull (defined
by the set of nondominated solutions) may exist. These solutions
cannot be computed simply by optimizing a weighted sum pro-
gram, as it is done in some approaches, because they are dom-
inated by a convex combination of vertex solutions (no set of
weights exists which defines a supporting hiperplane for them;
that is, a duality gap exists). For this reason, though they are non-
dominated, they are generally called convex dominated solu-
tions or unsupported (nondominated) solutions (see Fig. 1). But,
since those solutions are actually nondominated, they must be
considered as potential compromise solutions and consequently
the method must accommodate for their computation.

These concepts are illustrated in Fig. 1 for the two-objective
case, where both objective functions must be maximized. Solu-
tions 1 and 2 are the nondominated solutions which maximize
f (x) and f (x) objective functions, respectively. Solutions 3, 4
and 5 are vertex nondominated solutions. Solution 6 is a non-
dominated solution, even though it is dominated by a convex
combination of solutions 3 and 4 (which belong to the nondom-
inated boundary of the convex hull). Solution 7 is dominated by
solution 5. z is the so-called ideal solution.

The type of scalarization (that is, transforming the multiple
objective problem into a scalar optimization problem such that

Fig. 1. Nondominated, convex dominated, dominated and ideal solution.

an optimal solution to this latter is a nondominated solution to
the former) which is used in the framework of STEM (mini-
mizing a weighted Tchebycheff distance to the ideal solution)
enables to compute both supported and unsupported nondomi-
nated solutions.

In each iteration of STEM a nondominated solution is com-
puted, which minimizes a weighted Tchebycheff distance to the
ideal solution. The so-called ideal solution is the one that would
optimize all the objective functions simultaneously, which is not
feasible whenever the objective functions are conflicting.

The problem to be optimized in iterationreflects the DM
choices in the preceding interaction phases, through the reduc-
tion of the feasible region by imposing additional constraints
on the objective function values. In each computation phase of
STEM a problem of the following type

v

s.t.

is solved. Without loss of generality, all the objective functions
are considered to be maximized. zis the maximum of the ob-
jective function in the feasible region X of the original
problem. The values are the product of two terms which aim
at placing the most weight on the objectives with the greatest rel-
ative range and normalizing (using the L-norm) the objective
functions. The feasible region for iteration h Xresults from the
introduction of additional constraints on the objective function
values with respect to the initial feasible region X. v is a variable
used to transform the min-max problem (that is, minimizing the
Tchebycheff distance) into a linear problem.

The nondominated compromise solution computed in each it-
eration by minimizing a weighted Tchebycheff distance to the
ideal solution is presented to the DM. If the values of the ob-
jective functions are considered satisfactory the process stops,
otherwise the DM must specify those which he/she is willing
to relax, and by how much, in order to improve the other ob-
jectives. A reduced feasible region for the next iteration is then
constructed by introducing additional constraints on the objec-
tive functions, in the following way:
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Fig. 2. Decision support environment.

, if the value of objective function k computed
in iteration h has not been considered satisfactory;

, if the value of objective function k
computed in iteration h has been considered satisfactory and the
DM is willing to specify a relaxation quantity in order to
improve the remaining objectives whose values have not been
considered satisfactory. The weight for each objective
function that it is relaxed.

As long as there exist any objective function values for which
the DM is willing to trade-off in order to improve the others, the
interactive process goes on.

III. T HE DECISION SUPPORTENVIRONMENT

In functional terms, the multiple objective model described
in Section II is one of the components of a wider support en-
vironment to a DM in charge of planning short-term load man-
agement programs or, as they may be alternatively designated,
load dispatch schemes. The diagram in Fig. 2 represents this en-
vironment.

The block identified by MODSM (multi-objective decision
support model) is interactively accessed by the DM in the way
previously described (flows (6) and (7)). It is fed with different
kinds of data: short-term demand forecasts (flow (8)), electricity
prices as seen both by consumers and by the utility, load con-
trol strategies and their impacts on load diagrams. Data on these

strategies and respective impacts are obtained through the inter-
action between the DM and the block PBLM (physically-based
load modeling) through the interface designated “Strategy Gen-
erator” (flows 1 to 4).

The PBLM block represents a simulation environment where
detailed individual physically-based load models are used as the
essential components of large scale load representations. The
load model also takes into account the payback phenomenon
effect that occurs after the restoration of electricity supply to
loads. In some previous works such as Chenet al. [4] and Ku-
ruczet al. [12] this effect is accounted for through an empirical
approach. In the case study, an individual electric water heater
(EWH) model is used, which needs several data to be able to
provide information on the rate of electricity consumption, on
the water temperature inside the tank and on the rate of energy
losses through the envelope. Inputs such as the physical charac-
teristics of the tank’s envelope, air temperature, inlet water tem-
perature, thermostat setting, and water consumption pattern are
needed to operate the model. Groups of loads, in the context of
PBLM, are made up of EWH which have similar average phys-
ical characteristics and are subject to similar environmental con-
ditions. Additional concerns should be present when designing
groups, such as the geographical vicinity among the loads to be
controlled, or the total number of control points in each group.
The first, for the sake of feasibility of the actual control system
and its communication requirements. The second, because the
pay-back effect when supply is restored to a group of curtailed
loads is the more important the higher is the number of loads
within a group.

Several hot water consumption patterns may be used, which
usually result from previous consumption research actions. Ran-
domization is used to ensure an appropriate spreading of hot
water consumption among the EWH in each group. The ini-
tial water temperature inside the tank, when simulation starts,
is also randomized among the EWH. Besides, a 24 hour pe-
riod is simulated only to allow for the stabilization of load be-
havior, before results are actually used. Loads may be simulated
with or without shedding actions. In the absence of control, the
model output provides quantitative information on the sponta-
neous contribution of controllable loads to the network load di-
agram, as the base case. When shedding actions are considered,
the physically-based nature of the underlying load model auto-
matically allows a quantitative assessment of the demand mod-
ifications to the base case. Additionally, detailed information is
also available on a major comfort indicator: water temperature
inside the EWH tanks. It may be used to assess the adequacy
of a certain control scheme as regards to the quality of the en-
ergy service provided to customers under control, and may be
compared to a value defined by the DM – the lower water tem-
perature comfort limit.

In the context of PBLM block not only the data needed for the
procedures previously described are defined, but also the EWH
groups and load control strategies (time schedules of supply cur-
tailment and restoration).

Within the Strategy Generator block the DM conducts the
definition of the control strategies which reveal to be the most
appropriate for feeding the MODSM block. The DM’s relation
with the Strategy Generator is interactive (flows 3 and 4). It
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Fig. 3. Network and total group load curves.

needs, in the first place, the definition of a network power de-
mand limit (PDL) that should not be overpassed. PBLM per-
forms the simulation according to the parameters previously de-
fined until a situation occurs where PDL would be violated in
the absence of load control. Here, the DM may use a bi-objec-
tive linear programming model that helps selecting the strategy
best suited for minimizing load shedding and discomfort to cus-
tomers, complying with the defined PDL. It configures a load
leveling approach, in the sense that only the indispensable shed-
ding actions are taken in order to comply with the PDL. The
time interval used may be of 5, 10, 15 or 30 minutes. After each
time interval, information is available on the network base case
power demand, the total number of EWH violating the lower
water temperature limit and the power demand of each EWH
group. The chosen control strategies are retained to be used in
MODSM. The DM may always delete some of them if he/she
considers that a too big number of strategies have already been
retained (flow (5) in Fig. 2).

IV. CASE STUDY

In this section a case study is described corresponding to 4000
water heaters aggregated into 8 groups. Each group has 500
water heaters and is associated with several typical households
each one characterized by a water consumption pattern. A com-
puter application using a physically-based load model has been
used to generate the group load curves with and without remote
control actions. In Fig. 3 the network load curve is displayed.
The network peak demand is 11 750 kW at 10:30. Without con-
trol actions, the load curve pertaining to all groups has a peak
demand of 3110 kW at 9:00.

Eight control strategies have been generated for each load
group by using a PBLM. The computational load model has also
been used to determine the impact of the different load control
strategies on customers’ discomfort and on load group curves.
Discomfort is measured through the number of water heaters
that violate the minimum comfort threshold. This condition is
violated whenever the water temperature inside the tank is below
45 C (113 F).

The nondominated solutions that individually optimize each
objective function (F1 - reduction peak demand, in kW, F2 -
profit variation, in Portuguese escudos, F3- discomfort) and the
corresponding control strategies are presented in Table I (the
underlined values denote the optimal value of each objective).
The strategies are ordered by groups and identified by a number

TABLE I
INDIVIDUAL OPTIMAL SOLUTIONS AND CONTROL STRATEGIES

Fig. 4. Solution that optimizes F1.

Fig. 5. Solution that optimizes F2.

that represents the control strategy in the group. For instance,
the solution which optimizes F1 consists in applying strategy 1
to group 1, strategy 2 to groups 2 and 5-8, strategy 8 to group 3
and strategy 3 to group 4. These solutions have been determined
imposing that network peak demand can not be greater than its
initial value of 11 750 kW and the variation of profit must be
positive.

The load curves corresponding to the nondominated solutions
that individually optimize each objective function are displayed
in Figs. 4 to 6. Full lines correspond to the uncontrolled situa-
tion, while doted lines correspond to the effects of remote load
control. The upper curves are global network load curves and
the lower ones pertain to the load groups under control.

The nondominated solutions computed by STEM interactive
method are summarized in Table II. The initial solution present
by the method is (123,12607, 4030). To begin the interactive
process let us suppose that the DM decided to relax F2 by

in order to improve the other functions. The new nondom-
inated solution computed by STEM is (364, 9265, 2450). The
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Fig. 6. Solution that optimizes F3.

TABLE II
SOLUTIONS COMPUTED BY STEM INTERACTIVE METHOD

Fig. 7. A compromise solution among the three objectives.

interactive process proceeds then in the same way until the DM
considered solution 5 a satisfactory compromise solution.

The load curves corresponding to solution 5 are displayed in
Fig. 7.

V. CONCLUSIONS

The multiple objective model described in the paper aims at
providing decision aid to select control strategies, which are to
be applied to load groups through the load remote control dis-
patcher. This model takes into account the main concerns in a
load management program: to minimize peak demand (or max-
imize peak demand reduction), to maximize utility profits and
to minimize discomfort caused to consumers.

STEM interactive method has been used to aid the DM in
the progressive and selective search of nondominated solutions,

by using the knowledge about the problem acquired in the pre-
ceding iterations and accommodating the DM’s preferences.

The sets of control strategies, and their impact on group load
curve and discomfort caused to consumers, are generated by a
physically-based load model. The load model also takes into
account the payback phenomenon effect.

An advantage of this multiple objective model, when com-
pared with other approaches consists in the use of binary vari-
ables instead of continuous variables. This enables the model
to select (or not) a control strategy to be applied to a whole
load group and not to a part of it. For instance, Laurentet al.
[13] define a percentage of water heaters in a group that are af-
fected by a specific control strategy, considering that the con-
trol system has the ability to perform this action. This provides
a more flexible load control, but it increases the complexity of
load addressing by the control system.

The multiple objective decision support model is independent
of the load type, even though it has been illustrated with a case
study involv ng control of water heaters. The load model asso-
ciated with each load type must give the following information
to each control strategy: group load curves and number of loads
that violate a minimum comfort threshold.

The use of multiobjective models in the framework of nter-
active decision support environments seems a very promising
research avenue to aid DM’s in selecting remote load control
strategies.
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