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a b s t r a c t

While the Bayesian SEM approach is now receiving a strong attention in the literature, tourism studies
still heavily rely on the covariance-based approach for SEM estimation. In a recent special issue dedicated
to the topic, Zyphur and Oswald (2013) used the term “Bayesian revolution” to describe the rapid growth
of the Bayesian approach across multiple social science disciplines. The method introduces several ad-
vantages that make SEM estimation more flexible and powerful. We aim in this paper to introduce
tourism researchers to the power of the Bayesian approach and discuss its unique advantages over the
covariance-based approach. We provide first some foundations of Bayesian estimation and inference. We
then present an illustration of the method using a tourism application. The paper also conducts a Monte
Carlo simulation to illustrate the performance of the Bayesian approach in small samples and discuss
several complicated SEM contexts where the Bayesian approach provides unique advantages.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades, structural equation modelling (SEM)
has become one of the most popular methodologies in tourism
research. The method's popularity stems from its ability to handle
complicated relationships between latent and observed variables,
which are highly common in tourism research (Reisinger & Turner,
1999).While relatively a complexmethod, the availability of several
SEM software packages (e.g. AMOS, LISREL, Mplus) has certainly
facilitated the widespread application of the method and brought it
within the reach of the applied researcher (Assaf, Oh, & Tsionas,
2016). Basically, SEM consists of the “measurement equation”,
the paper.

. Assaf), m.tsionas@lancaster.
which is like a regression model between the latent and observed
variables, and the “structural equation”, which is a regression be-
tween the latent variables. With latent variables not being directly
observed, one cannot use normal regression techniques to analyse
the model.

A traditional approach in estimating SEM has been, “the
covariance based approach”, which focuses “in fitting the covari-
ance structure of the model to the sample covariance matrix of the
observed data” (Lee & Song, 2014, p. 276). Though in many situa-
tions, this estimation method works fine and produces reliable
estimates (Assaf et al., 2016), there are some complicated data
structure and model assumptions where the “covariance based
approach” will encounter “serious difficulties and will be unable to
produce correct results for statistical inferences” (Lee & Song, 2014,
p. 277). As recently highlighted by Assaf et al. (2016), one of the
main motivations for using the Bayesian approach for SEM esti-
mation is its flexibility to handle many complicated models and/or
data structures. Importantly, the “covariance approach” based on
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estimation methods such as maximum likelihood (ML) or gener-
alized least squares (GLS) is only asymptotically correct (viz. it only
works according to statistical theory with large sample). It is also
“well known that the statistical properties of the estimates and the
goodness-of-fit test obtained from these approaches are asymp-
totically true only” (Lee& Song, 2004, p. 653). Hence, using them in
small samples should be done with caution.

Our aim in this paper is to provide for the first time a thorough
introduction of the Bayesian approach for SEM estimation. Despite
the growing popularity of the Bayesian approach in related fields
such as Marketing and Management, it has yet to receive strong
attention in the tourism literature (Zyphur & Oswald, 2013). Apart
from its ability to handle more complicated SEM models, the
Bayesian approach introduces several important advantages: 1) it
allows the inclusion of prior information in the analysis; 2) it ismore
robust to small sample sizes, 3) it provides more reliable formal
model comparison statistics, 4) it “provides a better approximation
to the level of uncertainty, or, conversely, the amount of information
provided by themodel” (Rossi& Allenby, 2003, p. 306), and 5) it can
be usedwith SEMmodels that include unobserved heterogeneity in
the form of various random effects.

It is surprising that despite these advantages there are very
limited Bayesian SEM studies in tourism (Assaf et al., 2016). We aim
in this paper to introduce tourism researchers to the power of the
Bayesian SEM approach, and discuss how the method can address
some of the main limitations of the covariance-based approach. We
discuss several interesting contexts where the Bayesian approach
can help SEM researchers overcome complex model situations.
With the method not being well established in the tourism litera-
ture, we start first with a brief overview of the Bayesian approach,
demonstrating its advantages and illustrating how the results can
be presented and interpreted. We then discuss the Markov Chain
Monte Carlo (MCMC) technique, the most common method for
Bayesian estimation. We follow this with an illustration of a
Bayesian SEM estimation using the Winbugs software. We also
conduct aMonte Carlo simulation to illustrate the advantages of the
Bayesian approach over the covariance-based approach in small
samples, using a well-established tourism model. The paper con-
cludes with a discussion of several complicated SEM contexts
where the Bayesian approach can provide unique advantages. Our
main goal is to encourage the use of Bayesian methods for SEM
estimation in the tourism literature.

2. Basic illustration of SEM

The basic linear SEM framework1 consists of the following
measurement and structural equations:
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where in (1), yi and xi are the observed variables which are the
respective indicators of hi, xi, Ly. Lx are loading matrices and εi, and
1 As most tourism researchers are now well familiar with SEM, we do not intend
here to provide a detailed background of the method.
di are random vectors of error measurements. J, F, Qε, and Qd are
the covariance matrices of zi, xi, εi and di, respectively, usually
assumed to be diagonal, and in (2), hi is an endogenous latent
vector, B and G are matrices of regression coefficients, xi is an
exogenous latent vector, and zi is a random vector of error
measurement.

From Bollen (1989, p. 325) we can find the implied covariance
matrix of the model after collecting all unknown parameters into
the vector q2Q4ℝd;where d is the number of parameters and Q is
the parameter space. We have:

SðqÞ ¼
�
SyyðqÞ SyxðqÞ
SxyðqÞ SxxðqÞ

�
; (3)

where
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0
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Based on these expressions themaximum likelihood criterion to
be maximized (Bollen, 1989, p. 335) is:

FMLðqÞ ¼ �
n
logjSðqÞj þ tr

�
SS�1ðqÞ

	o
þ log




S


þ ðpþ qÞ; (8)

where S is the empirical covariance matrix, the last two terms can
be omitted and a “quick” necessary condition for identification is
d � 1

2 ðpþ qÞðpþ qþ 1Þ: Maximization of (8) is performed numeri-
cally in many commonly available software programs like AMOS,
LISREL, Mplus etc. There are many situations where using this
covariance based approach will encounter serious difficulties “for
many complicated situations: for example, when deriving the
covariance structure is difficult, or the data structures are complex”
(Lee & Song, 2012, p. 15). Our goal here is to elaborate on the
Bayesian estimation of SEM, illustrating its advantages and its
reliability in small samples. We also present several complicated
data generating processes or models where the Bayesian approach
presents some unique advantages.

To set the framework for Bayesian SEM, we believe it is impor-
tant to start first with description of the Bayesian approach. The
literature currently lacks such description, not only within the
context of SEM but within other modelling approaches. We focus
on the basic ideas of Bayesian inference for both model estimation
and model comparison.
3. Brief overview of the Bayesian approach

3.1. Basic concepts

The key difference between the “Bayesian approach” and the
“sampling-theory or frequentist paradigm” is that in the latter one
proceeds under the assumption that the coefficients are fixed but
unknown. In the Bayesian paradigm, the data is treated as fixed and
statistical uncertainty comes from the stochastic nature of the pa-
rameters. More often than not, in the frequentist paradigm, the
exact finite-sample distributions of estimators of parameters are
unknown and one has to resort to asymptotic approximations for
them. Such approximations can range from totally invalid to hardly
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acceptable. In the Bayesian paradigm, we can derive exact posterior
distributions of the parameters given the data using Bayes’ theorem
which combines the likelihood and the prior. The prior is indeed a
distinguishing feature that quantifies a priori uncertainty in
Bayesian analysis, and summarizes all knowledge that we have
(from theory or previous studies) about the parameters before
observing the data. There is no need to resort to asymptotic ap-
proximations when the data set is small and, therefore, we expect
more precise statistical inferences. In addition, model selection
become rather easy once we adopt the Bayesian approach. Of
course, asymptotically, under any prior, the Bayesian posteriors
converge to normal distributions with moments given by the usual
ML quantities.

To better understand how Bayesian analysis works, we start first
with specifying the likelihood of the data, Lðq;D Þ, given an unob-
served parameter “q” and the given data, D . In the frequentist
approach, q is treated as unknown but fixed, while with the
Bayesian approach q is treated as random (Kaplan & Depaoli, 2012,
pp. 650e673). In addition, along with the likelihood, Lðq;D Þ which
contains all the relevant sample-based information regarding the
model parameters, the Bayesian approach also requires prior be-
liefs about q, say pðqÞ.

Combining the likelihood and the prior distribution, Bayes’
theorem transforms the prior data beliefs into posterior (or after
data) beliefs (Rossi & Allenby, 2003):

pðqjD ÞfLðq;D ÞpðqÞ: (9)

where pðqjD Þ is known as the posterior distribution of q, given the
data. To be more precise, we have:

pðqjD Þ ¼ Lðq;D ÞpðqÞ
MðD Þ ; (10)

where

MðD Þ ¼
Z
Q

Lðq;D ÞpðqÞdq; (11)

is known as themarginal or integrated likelihood or “evidence” and
represents the normalizing constant of the posterior. The marginal
likelihood is an important object as it represents the evidence of a
given model, in the light of the data, after parameter uncertainty
has been fully taken into account by integrating the parameter
vector out in (11).

The Bayesian approach (as shown in (9)) is also known for its
ability to incorporate prior information, pðqÞ, in the estimation. This
is a key advantage of the Bayesian approach, as in addition to the
information provided by the data, one can obtain more accurate
and reliable parameter estimates by incorporating some “genuine
prior information” (Lee & Song, 2012).2 Within the context of SEM,
for instance, a researcher may have information from different
sources, such as expert opinion, or result from past studies using
similar data, that can be incorporated into the analysis. Such in-
formation may range from prior information about the estimates of
factor loading from a previous tourism model to the level of cor-
relation between two latent variables (e.g. satisfaction or return
2 The argument that non-Bayesians do not use prior information is quite wrong.
Choosing a model is prior information. Using instrumental variables also involves
choices which are equivalent to prior information. Regarding the randomness of q,
the purpose of introducing a random variable is because we wish to learn about
something unknown. The unknown quantity in statistical studies is the parameter,
not the data.
intention).
Basically, there are two types of priors: informative and non-

informative priors. Informative priors are used when a researcher
has good knowledge about the prior distribution from previous
studies, while non-informative prior is adopted when we are not in
possession of enough prior information to help in drawing posterior
inferences. Non-informative priors are also known as “vague” or
“diffuse” priors. Some examples of non-informative prior distribu-
tions include the uniform distribution over some sensible range of
value or the so-called “Jeffrey's prior” (Kaplan & Depaoli, 2012, pp.
650e673). Basically,with theuseof non-informative priors, Bayesian
inference based on the posterior distribution (9) becomes less
dependenton thepriordistribution,pðqÞ, andmoredependenton the
likelihood, Lðq;D Þ. However, even in such case, Bayesian inference is
still fundamentally different compared to the frequentist approach,
because it is based directly on the posterior in (9) and not on hypo-
thetical “infinite replication of the study (via sampling distributions)
that never occurred” (Zyphur & Oswald, 2013, p. 4).

The Bayesian approach has also several other advantages such as
performing better in small samples, and providing more accurate
statistics for goodness-of-fit and model comparison (Lee & Song,
2012). It can also handle more complicated structural equation
models. Before elaborating further on these issues, we provide first
some background on Bayesian inference using the Markov Chain
Monte Carlo (MCMC) approach.
3.2. Brief overview of MCMC estimation

As the posterior (9) can be highly dimensional, information
about the posteriors can be summarized in terms of the mean
and standard deviation. For example, if we have a regression of the
form “y ¼ q0 þ q1x1 þ :::þ qkxk”, the posterior mean (E½q� ¼ R qp
ðqjy; x1; :::; xkÞdq) and the posterior variance of q1 will be used to test
hypotheses. A challenge however is that both of these quantities
require calculating some multidimensional integrals of the poste-
rior distribution (Rossi & Allenby, 2003). Historically, the compu-
tation of complicated integrations has put the Bayesian approach
beyond the reach of many applied researchers (Coelli, Rao,
O'Donnell, & Battese, 2005). Recent developments in powerful
simulation algorithms, now provided through several software
packages has, however, facilitated the estimation of posterior
probability distribution for many models.

One of these most powerful algorithms is MCMC. It is “an iter-
ative process where a prior distribution is specified and posterior
values for each parameter are estimated in many iterations”
(Zyphur & Oswald, 2013, p. 11). Hence, instead of computing the
integrals analytically, one can use simulation-based methods.
Specifically, in MCMC approach, we generate a long sample; say

fqðsÞ; s ¼ 1; :::; Sg that converges in distribution to the posterior in
(11). The normalizing constantMðD Þ is not needed as the posterior
expectation of an arbitrary vector function of the parameters, say
gðqÞ, can be approximated accurately by:

E½gðqÞjD �xS�1
XS

s¼1
g
�
qðsÞ
	
: (12)

The marginal likelihood, MðD Þ, can be approximated as a by-
product. There are many ways to do this. One way is to use the
Laplace approximation.3 Since
3 It is, perhaps, useful to mention that well-known model selection criteria such
as the AIC and BIC are simply different asymptotic approximations to the marginal
likelihood.
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log MðD Þ ¼ log Lðq;D Þ þ pðqÞ � log pðqjD Þ; (13)

In principle, any specific q, say q , may be used to obtain:

log MðD Þ ¼ log L
�
q;D

	
þ log p

�
q
	
� log p

�
q



D 	: (14)

Typically, for q we can use the posterior mean of q. Both

log Lðq;D Þ and log pðqÞ are known and can be easily computed.

However, log pðq



D Þ is unknown. The Laplace approximation as-

sumes that pðqjD Þ can be approximated by a multivariate normal
distribution around themean and, therefore, we have the following
simple expression:

log MðD Þxlog L
�
q;D

	
þ p
�
q
	
þ d
2
logð2pÞ þ 1

2
log


V

; (15)

where V is the posterior covariance matrix of the parameter vector:

V ¼ E
h�

q� q
	�

q� q
	0


D ixS�1

XS

s¼1

�
qðsÞ � q

	�
qðsÞ � q

	0
:

(16)

The remaining problem is to implement MCMC, that is to draw a

long sample; say fqðsÞ; s ¼ 1; :::; Sg, that converges in distribution to
the posterior distribution whose density is in (11). One MCMC
technique is the Gibbs sampler.

The Gibbs sampler operates by drawing random numbers from
the posterior conditional distribution of each parameter given the
rest. For example if q ¼ ½q1; q2; :::; qd�0; the Gibbs sampler draws
random numbers from the following distributions:

q1jq2; q3; :::; qd;D ;
q2jq1; q3; :::; qd;D ;
ð: : :Þ
qdjq1; q2; :::; qd�1;D :

Therefore, we have to draw from the posterior conditional dis-

tribution with density pðqm



qð�mÞ;D Þ; m ¼ 1; :::;d, where qð�mÞ

denotes the parameter vector qwith the exception of parameter qm.
If we repeat this process a large number of times, we obtain a

sample fqðsÞ; s ¼ 1; :::; Sg which converges in distribution to (11).
However, the MCMC sample is not i.i.d., as we have autocorrelation.
3.3. Bayesian model comparison

It is common in SEM to compare between different competing
models, and to ensure the model fits the data well. The Bayesian
approach offers reliable statistics for goodness-of-fit and model
comparison (Lee & Song, 2012). For instance, the model fit indices
and model comparison tools (e.g. chi-square, RMSEA, etc.) associ-
ated with the covariance-based approach have only asymptotic
justification. Hence, we expect them to deliver misguided conclu-
sions in small or moderate samples.

We elaborate here on three of Bayesian fit statistics that are very
common within the context of Bayesian SEM: the Bayes factor, the
Deviance information Criterion and the Posterior predictive p-
value. The Bayes factor has been shown to be highly reliable and has
many nice statistical properties (Lee & Song, 2012). It has been also
extensively adapted within the context of SEMs (Assaf et al., 2016).
To introduce the concept of Bayes factor, suppose Lðq;D Þ is the
likelihood function of themodel whereD denotes all available data
on x and y. Denote D ¼ ½xi; yi; i ¼ 1; :::;N�; Di≡ðxi; yiÞ2ℝdD . We as-
sume the data are in deviations about their means to simplify
notation. The likelihood function of the SEM is:

Lðq;D Þ ¼ ð2pÞ�NðpþqÞ
2 jSðqÞj�N=2 exp

�
� 1
2

XN

i¼1
D0

iSðqÞ�1Di

�
:

(17)

The posterior is” pðqjD ÞfLðq;D Þ,pðqÞ where pðqÞ is the prior.
In this context, model comparison becomes easy. If we have two

models, say I and II with marginal likelihoods MIðD Þ and MIIðD Þ,
then the Bayes factor in favor of model I and against model II is
simply:

BF ¼ MIðD Þ
MIIðD Þ : (18)

If BF > 1 then model I is preferred to model II, in the light of the
data. For a number of models, say 1;2; :::; J we can obtain marginal
likelihoods, M1ðD Þ;M2ðD Þ; ::::;MJðD Þ. In turn, we can define
posterior model probabilities as follows:

Pj≡Pðmodel jjD Þ MjðD ÞPJ
j0¼1Mj0 ðD Þ

: (19)

Posterior model probabilities can be used for model selection
but also for model averaging. For example, if we are interested in
parameter q1 and its marginal posterior densities across models
are p1ðq1jD Þ; p2ðq1jD Þ; :::; pJðq1jD Þ; the model-averaged posterior,
which accounts for model uncertainty is:

p*ðq1jD Þ ¼
XJ

j¼1
Pjpjðq1jDÞ: (20)

Typically, we are interested in Bayes factors but also first and
second order posterior moments of the parameter vector q or a
vector function gðqÞ ¼ ½g1ðqÞ; :::; gMðqÞ�0: Generically, the posterior
expectation of gðqÞ is:

E½gðqÞjD � ¼
Z
Q

gðqÞpðqjD Þdq: (21)

Another highly popular Bayesian model comparison tool is the
Deviance Information Criterion (DIC), see Spiegelhalter, Best, Carlin,
and Van Der Linde (2002). It is less computationally involved than
the Bayes factor and has been used extensively in the field of SEM
(Lee & Song, 2012). For example, if we have a competing modelMk,
with a vector of unknown parameter

DIC ¼ DðqkÞ þ dk (22)

where

DðqkÞ ¼ Eqkf � 2 log pðY jqk;MkÞjYg (23)

and dk here is the effective number of parameters in Mk. Hence, as

shown, the calculation of DIC involves simulating fqðjÞk ; j ¼ 1; :::; Jg
from the posterior distribution. The Winbugs software we describe
can be used to compute DIC. Models with smaller DIC are consid-
ered to have a better fit.

Finally, the posterior predictive p-value focuses on the predic-
tive ability of the model in that there “should be little, if any,
discrepancy between data generated by the model, and the actual
data itself” (Lee & Song, 2014, p. 277). To illustrate, assume that
DðY jq;UÞ is the discrepancy measure between the hypothesized
model Mo and the hypothetical replicate data Yrep , the posterior
predictive p-value is given by:
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pBðYÞ ¼ PrfYrepjq;Ug � DðY jq;UjY ;M0Þ (24)

A model is considered a good fit if the posterior predictive p-
value is close to 0.5. For more details refer to Lee and Song (2012).
4 For more details about these indicators refer to Hsu et al. (2012).
4. Monte Carlo experiment

In line with Bayes’ theorem in (9), we can write for example the
posterior distribution of the SEM in (2) as follows:

p
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(25)

where pðLy;Lx;B;G;Qε;Qd;J;FÞ denotes the prior and the rest

denotes the likelihood. The term






I � B







N=2 is the so-called Jaco-

bian of transformation that we need whenwe have to find the joint
distribution of hi from the distribution of zi given B, G and xi. A full
description of a Bayesian SEM, including the priors and the con-
ditional posteriors can be provided by the authors upon request.

Before presenting an illustration, we discuss first the results of a
Monte Carlo experiment which we conducted to emphasize the
power of the Bayesian approach in small samples. As mentioned
above, the covariance based approach (i.e. LISREL, AMOS) approach
to SEM estimation is only asymptotically true. In other words, it
requires large sample to make valid statistical inferences. We
conduct here a Monte Carlo simulation to compare between
Bayesian and covariance approaches across both small and
moderately large sample sizes.

To set up the Monte Carlo experiment: In connection to (1)e(2)
suppose we are given actual data on xi and yi(i ¼ 1; :::;N) and we
perform the traditional covariance based approach usingmaximum

likelihood (ML) to find bq. To proceed with a realistic Monte Carlo

experiment, we treat bq as the true parameter vector and we

generate a set of data D ðrÞ ¼ fxðrÞi ; yðrÞi ; i ¼ 1; :::;Ng for replications
r ¼ 1; :::;R. To generate hi we use the reduced form:

hi ¼ ðI � BÞ�1ðGxi þ ziÞ; i ¼ 1; :::;N:

The generation of xi and zi is straightforward. Given hi we can
easily generate yi and xi for each replication of the Monte Carlo
experiment.

For each generated data set we perform again ML and we also
perform Bayesian analysis using the algorithm of Girolami and
Calderhead (2011). As the Gibbs sampler is, typically, hard to
converge to the posterior if the data are highly correlated or under
anomalies are at work, an alternative is to use techniques that
utilize first- and second-order derivative information from the log
posterior. The algorithm we use is not unlike the Random Walk
Metropolis-Hastings algorithm but it performs much better as it
uses first and second derivative information from the posterior. It is
the Girolami and Calderhead (2011, GC) algorithm. We set the
number of draws to S ¼ 6;000 of which we discard the first 1000 to
mitigate the impact of start-up effects. Our starting value is always

the ML estimator bq. Whenever Geweke's (1993) convergence
diagnostic indicates non-convergence, we take another 2000
iterations and look again at Geweke's statistic.
We use flat priors on all parameters, we assume all covariance

matrices are diagonal, and we repeat the Monte Carlo experiment
for R ¼ 10;000 replications. In the 10,000 replications we found
non-convergence in 322. In all of them taking another 5000 itera-
tions was sufficient. In the vast majority, however, 1000e2000
additional draws were found enough. We implement ML using a
standard Gauss-Newton algorithm with analytic gradient and
Hessian, which is also of use in the GC e MCMC algorithm. For ML
we set the maximum number of iterations to 500; if the limit is
exceeded we generate another data set to performML but Bayesian
MCMC analysis is performed anyway with the data set where ML
failed to converge. We believe this gives to ML a fair advantage. The
number of iterations was exceeded in 812 cases out of the 10,000.

To perform the Monte Carlo experiment we relied on a well-
established model on lodging brand equity (Fig. 1), previously
published in Hsu, Oh, and Assaf (2012). The model and items used
for measurement are well discussed in their paper, so we do not
intend to reiterate them here. Based on Fig. 1, the xs in our case are
perceived quality, brand awareness, brand image, management
trust, and brand reliability. The hs are brand loyalty and brand
choice intention. For xs we have 16 indicators. For example loyalty
is measured through three indicators (BL1, BL2, BL3), intention
through three indicators (BR1, BR2 and BR3), etc.4 All observed
variables are on a Likert scale (1)e(7). To generate the data for a
specific replication we use the following strategy:

a) We estimate the model by maximum likelihood (ML) assuming
all covariance matrices are diagonal.

b) Using the estimated parameters we generate hi; xi; xi; yi as
described above.

c) Since the data is continuous we transform to Likert scale using
the minimum and maximum values of the continuous data. The
covariance matrix is recomputed using the new ordinal data.

The results for both the structural and measurement models
across different sample sizes are presented in Table 1. We tried both
small sample sizes (N¼ 75, 150) as well as moderately large sample
sizes (N ¼ 200, and 300) which we consider typical in empirical
studies. In each case, we show the rootmean square error (RMSE) of
each parameter estimate for both ML and Bayesian approaches,
where a smaller RMSE indicates a better performance.

The results clearly indicate that there is a significant gain from
the Bayesian approach across all sample sizes. For instance, we do
not observe any single instance were the Bayesian approach
generate larger RMSE. This comes to support previous findings
from the literature that the Bayesian approach outperforms the
traditional covariance based approach, particularly for small sam-
ple size (e.g. Lee & Song, 2004). We also believe that such finding is
critically important for the tourism literature as it would eliminate
the need to continuously collect large samples of data.
5. Bayesian estimation of SEM: a model of social exchange
theory (SET)

As we discussed before, Bayesian inference in SEM requires,
first, deriving the conditional posteriors, and then setting up the
MCMC procedure (as explained in 3.1.2) to simulate from the con-
ditional posteriors and obtain statistical inferences. This can be still
highly challenging for the applied researcher and requires some
heavy computer coding. Fortunately, now certain SEM software



Fig. 1. A customer-based lodging brand equity model.
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packages provide Bayesian inference in SEM. However, these can be
highly inflexible in terms of adjusting the prior distribution of the
SEM parameters, or in terms of estimating more advanced version
of SEMs. We encourage tourism researchers to use the Winbugs
software, which is very useful for a wide range of statistical models
including SEM. The advantage of the Winbugs software is that it
helps the researcher “really concentrate on building and refining an
appropriate model without having to invest large amounts of time
in coding up the MCMC analysis and the associated processing of
the results” (Griffin& Steel, 2007, p.164). The algorithm inWinbugs
has been mainly developed using MCMC, and the software neces-
sitates only coding the model and the prior so it requires a much
smaller investment on part of the user.

We do not intend here to provide a detailed description of the
Winbugs software as this has been provided in several textbooks on
the topic (Ntzoufras, 2011), but we describe here its main outputs
as part of our application.5 Winbugs provides some useful
convergence diagnostics, as well as some model comparison tools
such as DIC.

Our illustrative application is a SET model published by Jeong
and Oh (2017) who used the model to examine the prevalent
business-to-business (B2B) relationship between destination
management companies (DMCs) and meeting planners (MPs).
While Jeong and Oh provide an extensive review and background
on both the illustrative model and the DMC-MP B2B relationship,
we briefly recapitulate them here for the purpose of introducing
our illustration. In general, DMCs and MPs work closely to attract
5 The complete Winbugs code used in this paper can be provided by the authors
upon request.
various event and meeting businesses to target destinations
(Sautter & Leisen, 1999). DMCs are typically destination-bound and
serve MPs with local knowledge and resources needed to execute
events, while MPs bring to DMCs an extensive market coverage
beyond the DMC's location. These two business entities have often
formed both formal and informal partnerships over a long period of
time, which may afford both partners an opportunity to build
mutual dependence and trust and, hence, qualify an exemplary
setting for SET applications.

Following a thorough review of key variables of SET by Lambe,
Wittmann, and Spekman (2001), Jeong and Oh (2017) proposes a
SETmodel to examine the B2B relationship between DMCs andMPs
(see Fig. 2). For the purpose of our illustration in this paper, how-
ever, we reanalysed the samemodel from the perspective of MPs in
particular. The model closely follows Morgan and Hunt's (1994)
trust-commitment framework that has been widely used to
explain B2B relationships. Jeong and Oh's proposed model addi-
tionally included the concept of relationship satisfaction as another
key mediating variable to enrich the model's explanatory power.
This SET model aims to predict the relationship partners' long-term
as well as short-term commitment to the focal relationship. Thus,
both trust and relationship satisfaction mediate the effects of the
four independent latent variables (communication quality, oppor-
tunistic behavior, financial dependence, and social dependence) on
relationship commitment and propensity to leave the relationship
(see Anderson & Narus, 1990; Claycomb & Franwick, 1997;
Gundlach, Achrol, & Mentzer, 1995; Morgan & Hunt, 1994; Nevin,
1995). For additional background including the conceptual defini-
tions, variable operationalization, and the theoretical relationships
in the model, refer to Jeong and Oh (2017).

All model variables were “operationalized as latent variables



Table 1
Monte Carlo results, RMSE of parameters.

Parameter N ¼ 75 N ¼ 150 N ¼ 200 N ¼ 300

MLE Bayes MLE Bayes MLE Bayes MLE Bayes

From perceived quality
PQ1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PQ2 0.321 0.158 0.225 0.114 0.173 0.093 0.155 0.087
PQ3 0.244 0.141 0.189 0.112 0.145 0.095 0.132 0.076
From brand awareness
BA1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BA2 0.222 0.132 0.187 0.082 0.144 0.077 0.129 0.054
BA3 0.250 0.137 0.210 0.097 0.152 0.081 0.133 0.071
From brand image
BI1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BI2 0.278 0.112 0.213 0.115 0.157 0.091 0.132 0.083
BI3 0.302 0.130 0.225 0.109 0.176 0.085 0.145 0.074
BI4 0.244 0.132 0.212 0.125 0.194 0.098 0.173 0.095
From management trust
MT1 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000
MT2 0.344 0.141 0.188 0.081 0.133 0.065 0.101 0.055
MT3 0.289 0.137 0.203 0.087 0.136 0.071 0.100 0.062
From brand reliability
BR1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BR2 0.303 0.144 0.271 0.188 0.210 0.103 0.173 0.087
BR3 0.278 0.115 0.213 0.175 0.184 0.102 0.172 0.088
From brand loyalty
BL1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BL2 0.385 0.277 0.317 0.220 0.265 0.171 0.210 0.133
BL3 0.322 0.220 0.288 0.201 0.215 0.177 0.178 0.130
From brand choice intention
BC1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BC2 0.303 0.271 0.285 0.212 0.271 0.187 0.214 0.171
BC3 0.289 0.214 0.277 0.210 0.273 0.188 0.221 0.168
To Brand Loyalty
Perceived Quality 0.442 0.228 0.371 0.187 0.315 0.122 0.280 0.084
Brand Awareness 0.389 0.187 0.313 0.144 0.288 0.115 0.265 0.087
Brand Image 0.335 0.165 0.285 0.132 0.211 0.105 0.189 0.085
Management Trust 0.401 0.213 0.387 0.154 0.222 0.115 0.277 0.086
Brand Reliability 0.423 0.357 0.388 0.132 0.285 0.106 0.255 0.087
To brand choice intention
Brand Loyalty 0.515 0.314 0.473 0.289 0.412 0.233 0.380 0.215
variance parameters(a) 0.345 0.285 0.312 0.217 0.296 0.180 0.275 0.164

Notes: For Bayes MCMC analysis we use flat priors on all coefficients. Zero entries correspond to coefficients normalized to unity. (a) Reported is the average RMSE of all
variance parameters in the SEM.
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measured with the multiple items that were extracted from pre-
vious studies and a series of preliminary studies” (Jeong & Oh,
(2017, p.119)). With the exception of propensity to leave and rela-
tionship commitment, other variables were measured using a 5
point Likert scale. Three items, operationalized each on a 5-point
‘very dissatisfactory-very satisfactory,’ ‘terrible-delightful,’ and ‘of
Fig. 2. Proposed model of social exc
low/high value’ scale, measured the partner's overall satisfaction
with the current DMC-MP business relationship. Table 2 summa-
rizes the measurement items and Jeong and Oh provides more
detail. For details about the sample characteristics refer to Jeong
and Oh (2017).

Before presenting the Bayesian results, we note that we
hange theory and an extension.



Table 2
Measurement model results.

Measures (abbreviated) Posterior mean Posterior S.D

Communication Quality
This major BUSINESS partner … communicates well their expectations about our firm performance 1.000
… frequently discusses with us the business ideas that can benefit mutually 1.277 0.162
… is good at notifying us about potential business opportunities 1.407 0.175
… is helpful in providing feedback on our performance 1.254 0.162

Opportunistic Behavior
Sometimes this major BUSINESS partner … promises to do things without actually doing them later. 1.000
… gets information from us and contacts our vendors directly later 1.040 0.156
… works with my BUSINESS and our competitors simultaneously to maximize own benefits 1.203 0.187
… tends to treat my BUSINESS as one tentative option while considering other BUSINESS as alternatives 1.295 0.189

Financial Dependence
The relationship with this major BUSINESS partner … is built upon frequent business transactions 1.000
… is based on mutual financial gains 1.036 0.226

Social Dependence
… is based largely on a shared feeling of being “on the same boat” for our respective businesses 1.000
… is built rather on our personal networking and acquaintance 1.118 0.263

Trust
In our relationship, this major BUSINESS partner … can be trusted 1.000
… can be counted on to do what is right 0.903 0.102
… has high integrity 0.954 0.102
… is a very reliable business partner 0.979 0.114
… is consistent in the manner the partner conducts the business with my BUSINESS 0.978 0.110

Relationship Satisfaction
The overall relationship with this major BUSINESS partner has been … very dissatisfactory e very satisfactory 1.000
… terrible e delightful 0.951 0.129
… of no value e of very high value 0.921 0.122

Propensity to Leave
The chances of terminating the relationship with this major BUSINESS partner … within the next six months? 1.000
… within the next one year? 1.159 0.105

… within the next two years? 0.863 0.105

Relationship Commitment
The relationship with this major BUSINESS partner … is something we are very committed to 1.000
… is something my BUSINESS intends to develop more in the future 1.022 0.103
… deserves my BUSINESS0 maximum effort to maintain 0.959 0.138
… is something that my BUSINESS will continue devoting necessary resources to strengthen 0.932 0.102

Note: All items were measured on a 5-point scale; the relationship satisfaction items were anchored on the three scale labels directly, the propensity to leave items on a very
low - very high scale, and all the other construct items on a strongly disagree e strongly agree Likert scale.
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attempted to estimate the model first using the traditional
covariance based approach with Mplus. However, the model did
not converge due, most likely, to the small sample size (or more
precisely, a small sample relative to the number of parameters). We
show below that MCMC converged well with this model and
resulted as well in a strong model fit. This comes to further support
the results from our simulation that the Bayesian approach per-
forms better than the traditional approach in small sample sizes.
The correlation matrix between all latent variables and the
Bayesian results for the measurement model are presented in
Tables 2 and 3, respectively. Before discussing the results, we first
checked the convergence of MCMC chains using Winbugs (Fig. 3).
For example, as shown in the convergence plots of some model
parameters the chains have mixed well after few thousands itera-
tion in each case.

With the Bayesian approach, we report results in terms of the
posterior distribution. For instance, the posterior mean and the
posterior SD are presented in Table 2. The loadings were all sta-
tistically significant at the 5% level, as noted by the low standard
deviation.6 The results from the structural model are presented in
6 With Bayesian, it is more appropriate to look at the prediction intervals to
assess significance. We confirmed that all these loadings are “significant”.
Table 4. For each relationship, we show the posterior mean and
standard deviation, as well as 90% and 95% higher posterior den-
sities. Fig. 4 also presents the plots of the empirical posterior dis-
tributions for some these relationships.

As shown, except the impact of communication quality on
relationship satisfaction, all other relationships are significant at
either the 5% or the 10% level. The results seem to be also theo-
retically sound. Communication quality had a significant, positive
relationship with trust whereas opportunistic behavior was nega-
tively related to both trust and relationship satisfaction. As ex-
pected, a significant, positive relationship existed between financial
dependence and trust. Although the effect of social dependence on
trust was “insignificant”,7 its effect on relationship satisfaction was
significant and positive supporting the research hypothesis of in-
terest. Trust was a significant, negative antecedent of propensity to
leave but a positive determinant of relationship commitment.
Finally, relationship satisfaction had a significant negative associ-
ationwith propensity to leave and a significant positive association
7 “Insignificant” in the Bayesian paradigm means that the so-called 95% highest-
posterior-density-interval (HPDI) does not include zero. We use the term for brevity
as there is no such thing as “statistical significance” in the Bayesian paradigm.
Moreover, “significant” in the Bayesian paradigm means that the 95% HPDI oes not
include zero.



Table 3
Correlation matrix.

MP group a rh AVE 1 2 3 4 5 6 7 8

1. Communication Quality 0.91 0.94 0.78 1.00
2. Opportunistic Behavior 0.88 0.92 0.74 �0.42 1.00
3. Financial Dependence 0.73 0.88 0.79 0.38 �0.14 1.00
4. Social Dependence 0.71 0.87 0.77 0.27 �0.17 0.28 1.00
5. Trust 0.95 0.96 0.83 0.52 �0.47 0.41 0.30 1.00
6. Relationship Satisfaction 0.87 0.92 0.79 0.49 �0.43 0.30 0.42 0.66 1.00
7. Propensity to Leave 0.91 0.94 0.85 �0.23 0.57 �0.26 �0.05 �0.54 �0.50 1.00
8. Relationship Commitment 0.88 0.92 0.74 0.45 �0.31 0.40 0.40 0.65 0.61 �0.36 1.00

a ¼ Cronbach's alpha of internal consistency; rh ¼ composite reliability; AVE ¼ amount of variance extracted.

Fig. 3. MCMC convergence for some model parameters.
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with relationship commitment.
To ensure the validity of our hypothesis tests, and to confirm the

Bayesian model is performing well with this small sample size, we
also assessed the overall fit of the model using the posterior pre-
dictive p-value. For example, we found that the posterior predictive
p-value is 0.58 which confirms that the model fits the datawell. We
also compared the model in Fig. 2 against another competing
model, which allows also for direct relationships between
communication quality, opportunistic behavior, social dependence,
financial dependence and propensity to leave and relationship
commitment respectively.

Using the DIC and Bayes factor (see section 3.3) we showed that
the model in Fig. 2 generally outperforms this competing model.
For instance, the Bayes factor in favor of our model was 8.12 (see



Table 4
Structural model results.

Path Mean SD 95%
HPD interval

90%
HPD interval

Communication Quality / Trust 0.25 0.15 �0.04, 0.54 0.00, 0.49
Communication Quality / Relationship Satisfaction 0.22 0.15 �0.08, 0.52 �0.02, 0.46
Opportunistic Behavior / Trust �0.30 0.12 �0.55, �0.06 �0.51, �0.10
Opportunistic Behavior / Relationship Satisfaction �0.22 0.12 �0.47, 0.03 �0.43, �0.01
Financial Dependence / Trust 0.33 0.19 �0.01, 0.77 0.04, 0.67
Financial Dependence / Relationship Satisfaction 0.30 0.19 �0.04, 0.71 0.00, 0.62
Social Dependence / Trust 0.37 0.23 �0.02, 0.87 0.02, 0.78
Social Dependence / Relationship Satisfaction 0.39 0.23 �0.01, 0.88 0.05, 0.80
Trust / Propensity to Leave �0.43 0.13 �0.75, �0.11 �0.70, �0.16
Trust / Relationship Commitment 0.49 0.14 0.22, 0.78 0.26, 0.73
Relationship Satisfaction / Propensity to Leave �0.49 0.18 �0.87, �0.13 �0.81, �0.19
Relationship Satisfaction / Relationship Commitment 0.49 0.15 0.20, 0.80 0.25, 0.75

HPD stands for higher posterior density.

Fig. 4. Posterior densities of some model parameters.
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equation (18)), indicating a better performance than the competing
model.8
6. Other potential extensions SEM using the Bayesian
approach

So far, we have only discussed examples of linear SEM appli-
cations. In this section, and in line with Lee and Song (2014), we
briefly outline other extensions of SEM where the Bayesian
approach has proven to be highly powerful. We believe it is
8 As indicated in (18), if Bayes factor > 1 then model I is preferred to model II.
important to shed light on these models to encourage more
advanced SEM applications in tourism research. Unfortunately, the
heavy reliance on the covariance based SEM approach creates
limitations in estimating some of these models.

6.1. Finite mixture SEM

A well-known estimation problem that has been ignored in
tourism research is the issue of unobserved heterogeneity (Assaf
et al., 2016). Assuming that the data are always homogenous may
more often than not lead to biased and wrong conclusions. The
goodness-of-fit indices would not reveal that the model was
incorrectly specified and the researcher would not be alerted to the



10 In addition to the models discussed in this section, we note that the Bayesian
approach can also handle effectively latent curve and longitudinal data. Recently
some more advanced Bayesian models have been developed for analyzing longi-
tudinal data, which relaxes the univariate assumption. This is an interesting topic
for future research.
11 One simple example is linear regression y ¼ Xbþu, when X is collinear or even
singular. Then the matrix X’X cannot be inverted or, if it can be inverted, standard
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unaccounted heterogeneity in the model. Furthermore, the struc-
tural parameter estimates would be seriously biased. In other
words, not accounting for unobserved heterogeneity has the same
implications as misspecification in regression analysis. In case
heterogeneity exists an important extension to the linear SEM is the
finite mixture SEM which can be written as:

hi


xi; Ii ¼ g � Nm

�
Pgxi;Uhh;gðqÞ

�
; (26)

whereUhh;gðqÞ ¼ ðI � BgÞ�1JðI � BgÞ�10, and Ii represents a discrete
random variable taking values in f1; :::;Gg, with probabilities

PðIi ¼ gjxiÞ ¼ pg ; g ¼ 1; :::;G; pg � 0;
PG

g¼1pg ¼ 1. Here, g denotes
the particular group and can take values 1,2, …,G where G denotes
the number of groups. We refer the reader to Assaf et al. (2016) and
Lee and Song (2012) for more details about this model. While the
finite mixture model can be estimated using the covariance-based
(i.e. traditional) approach, the Bayesian approach is better suited to
correctly identify the number of groups in the data (Richardson &
Green, 1997).9

6.2. Non-parametric and semi-parametric SEMs

Both non-parametric and semi-parametric SEMs have also been
heavily ignored in the tourism literature, despite being more
appropriate in handling non-normal data. The fact that traditional
SEMs also assume that the latent variables follow a normal distri-
bution can be also be problematic. As the latent variables are un-
observed, it is impossible to check whether this is a valid
assumption. One way to relax this assumption, and avoid having
spurious statistical results is to use the semi-parametric or non-
parametric SEM, where again, the Bayesian approach has been
shown to be highly powerful. For some detailed studies on the topic
refer to Lee, Lu, and Song (2008), and Song, Xia, and Lee (2009).

6.3. SEMs with continuous and ordered categorical variables

The Bayesian approach also offers high flexibility in handling
models with continuous and ordered categorical variables. Most
SEM applications in tourism are often based on the use of Likert
scale data, where satisfying normality can be an issue. For instance,
to claim normality of these Likert scale data we need most answers
to be in the middle category. However, in some cases, this
requirement is not satisfied.

The common approach is to treat all observed variables as
continuous data coming from a normal distribution. However, this
can lead to spurious results if the distribution of these observed
variables does not follow, approximately, a normal distribution (for
example, when most respondents select categories at both ends).
An arguably better way to analyse such type of data is to treat them
as “observations that come from a latent continuous normal dis-
tribution with a threshold specification” (Lee & Song, 2012, p. 87).
For example, if we have left skewed data, the threshold approach
for analyzing such type of data is “to treat the ordered categorical
data as manifestations of an underlying normal variable y” (Lee &
Song, 2012, p. 87).

z ¼ m; if am � y � amþ1 (27)

where a0sare the thresholds, z is the observed ordered categorical
variable, and m0s represent the observed values for z.

Analysing such a model is not trivial and involves computing
9 The Bayesian finite mixture model can also be estimated using the Winbugs
software (see Assaf et al., 2016 for coding details).
multiple complicated integrals. A multistage method using gener-
alized least square (GLS) has been proposed in the literature to
analyse (26). However, other studies have discussed the problem of
reaching an optimal solution with such approach (Lee & Song,
2012). With the Bayesian approach one can handle more effec-
tively (26). Using the idea of data augmentation in MCMC one can
simply augment the observed data with the latent continuous
measurement corresponding to these ordered categorical variables
in the posterior analysis. In other words, one can treat the under-
lying continuous measurement as missing data or parameters, and
then one can “augment them with the observed data in the pos-
terior analysis” (Lee & Song, 2012, p. 88). Hence, the model that is
based on the complete dataset becomes one with continuous var-
iable. For more discussion on the topic, refer to Dunson (2000), Lee
and Song (2014, 2012).
6.4. Transformation SEMs

When the data is highly non-normal, even non-parametric and
semi-parametric SEM can face some challenges (Lee & Song, 2012).
As indicated above, satisfying normality is the one the main as-
sumptions of SEMs. Fortunately, some transformation models have
been developed in a Bayesian framework to address highly skewed
data. The idea is to use a transformation SEM defined by:

f ðyiÞ ¼ mþ Lui þ εi (28)

where fjð:Þ is a transformation function that can be used to generate
a normal distribution or to address extreme skewness so that the
resulting model meets the normality assumption in SEM (Lee &
Song, 2014). With the Bayesian approach fjð:Þ can be approxi-
mated using Bayesian P-splines (see Lee & Song, 2014; Lee & Song,
2012 for more details)10. In some cases even Box-Cox trans-
formations may suffice.
7. Concluding remarks

The aim of this paper was to provide a comprehensive intro-
duction of the Bayesian approach for SEM estimation. Despite
receiving a strong attention across other related fields, the use of
the Bayesian approach is still highly limited in the tourism litera-
ture. We highlighted in this paper the power of the Bayesian
approach and discussed its distinctive difference from the tradi-
tional covariance-based approach to SEM estimation.

Overall, we believe there are five main reasons why tourism
researchers might select the Bayesian approach for SEM estimation.
First, some complicated models such as the ones discussed in the
previous section are harder to converge with traditional methods
(e.g. mixture models; non-normal models, etc.), and some models
are not even possible to estimate. Bayesian statistics can also help in
model identification and result in more accurate parameter esti-
mates (Depaoli, 2013; 2014).11 Second, “many scholars prefer
errors will be very large. A simple normal prior yields the estimator
b¼(X’X þ gI)�1X'y where g is related to prior information. In the frequentist
approach this is known as “ridge regression”: One mechanically adds a small
constant, g, to the cross-products matrix to make it better behaved. However, there
is a clear Bayesian interpretation of this mechanical procedure.
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Bayesian statistics because they believe population parameters
should be viewed as random” (Depaoli & van de Schoot, 2015, p. 3).
Third, with the Bayesian approach one can prior information into
the estimation. Fourth, as highlighted several times above, the
Bayesian statistics is not based on large samples. This was also
reinforced by the results of our Monte Carlo simulation. Fifth, and
finally, the Bayesian approach offers more accurate and less sensi-
tive fit statistics and model comparison tools.

Despite all these advantages, the main goal should not be un-
derstood as encouraging some naïve applications of the Bayesian
approach, or even using the Bayesian approach in the interest of
“mathematistry”. We understand that most researchers in tourism
are usually more comfortable using the frequentist approach for
SEM estimation. As indicated by Depaoli and van de Schoot (2015),
using the Bayesian approach without good knowledge of the
method can be dangerous, particularly in terms of interpreting the
Bayesian features and/or results. The Bayesian approach can also be
sensitive to the selection of appropriate priors ebut this is an
empirical matter. From here, conducting sensitivity analysis to
check whether the results are stable across prior choices becomes
essential (Assaf et al., 2016). There are also other important steps
that should be checked when using the Bayesian approach-we refer
the reader to the study of Depaoli and van de Schoot (2015) for
more details.
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