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a b s t r a c t

Smart grid initiatives require integrated solution for radial distribution networks (RDNs) to achieve their
optimum performance. The optimal allocation of distributed energy resources (DERs), such as shunt
capacitors and distributed generation, when integrated with distribution network reconfiguration
(DNR), can achieve desired objectives of smart distribution systems. This paper addresses a multi-
objective formulation for simultaneous allocation of DERs in RDNs to maximize annual savings by
reducing the charges for annual energy losses, peak power losses and substation capacity release against
the annual charges incurred to purchase DERs while maintaining better node voltage profiles and feeder
current profiles. An improved particle swarm optimization (IPSO) method is proposed to overcome
against the inherent tendency of local trappings in PSO. A node sensitivity-based guided search algorithm
(GSA) is also suggested to enhance the overall performance of the optimizing tool. GSA virtually squeezes
the problem search space without loss of diversity. Distribution networks are optimally reconfigured
after optimally placing DERs. The proposed method is investigated on the benchmark IEEE 33-bus and
69-bus test distribution systems. The application results show that the proposed integrated approach
is very useful for electric utilities to enhance their profits and stagger their future expansion plans.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The electric power industries have witnessed many reforms in
recent years. The present trend toward the deregulation in power
sector is forcing distribution network operators (DNOs) to improve
energy efficiencies for cost reduction whereas customers are
becoming more sensitive to reliability and power quality. Distrib-
uted energy resources (DERs) such as shunt capacitors (SCs) and
distributed generators (DGs) are some of the essential components
for achieving higher energy efficiency in distribution system
operation. The energy efficient grid requires integrated solutions
to well-formulated problems that reflect facts on the ground where
all such devices coexist to achieve smart grid goals of efficiency
through loss minimization and high-quality power delivered to
the ultimate user [1]. Optimal DER placement can improve net-
work performance in terms of better node voltage profiles, reduced
power flows, reduced feeder losses, improved power quality and
reliability of electric supply, but inappropriate DER placement
may increase system losses as well as network capital and operat-
ing costs [2]. Whatever be the particular driver for a DNO, e.g., to
allow the connection of more DG capacity, to reduce energy losses,
or to increase network reliability, the DG planning tools must take
into account essential network constraints such as voltage and
thermal limits [3].
ization.
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Nomenclature

c1, c2 acceleration coefficients
D number of design variables
d discount rate
E total number of branches in the system
GQB grid reactive power at base case (kVAr)
GPB grid active power at base case (kW)
GQn

TSC grid reactive power with test capacitor at the nth node
(kVAr)

GPn
TDG grid active power with test DG at the nth node (kW)

gbestk best particle position based on overall swarm experi-
ence at kth iteration

Hj load duration at jth load level (h)
Imax
n maximum current of nth branch (p.u.)
Ipf feeder current deviation penalty function
Inj current of nth branch at jth load level (p.u.)
DInj current deviation of nth branch at jth load level (p.u.)
itr current iteration
itrmax maximum iteration count
itrs predefined iteration count
Ke unit cost of energy (US $/kW h)
Kp unit cost of peak power losses (US $/kW)
KS cost of annual charges for sub-station capacity release

(US $/kVA)
KSC cost of annual charges on shunt capacitor installation

(US $/kVAr)
KDG cost of annual charges on DG installation (US $/kW)
Kb number of capacitor banks
Kd number of discrete dispatches of DG
L set of load levels
loc total number of candidate locations for capacitor/DG

placement
NL total number of load levels
NSC/NDG candidate nodes for capacitor/DG placement
N set of system nodes
n branch number
nsc maximum number of candidate capacitor banks at a

node
ndg maximum number of discrete dispatches of DG at a

node (kW)
P population size
PD nominal active power demand of the system (kW)
Ploss,bj power loss for uncompensated system at jth load level

(kW)

Ploss,aj power loss for compensated system at jth load level
(kW)

PP
loss;b peak power loss for uncompensated system (kW)

PP
loss;a peak power loss for compensated system (kW)

PDG,min/PDG,max minimum/maximum active compensation limit at
a node (kW)

Pd unit size of DG (kW)
Pnj/Qnj real/reactive power for sending end of nth branch at jth

load level (kW/kVAr)
DP minimum discrete dispatch of DG (kW)
pbestp best position of pth particle achieved based on its own

experience
QSC,min/QSC,max minimum/maximum reactive power generation

limit at a node (kVAr)
QSC/PDG reactive/active power generation at a candidate node

(kVAr/kW)
QD nominal reactive power demand of the system (kVAr)
Qb size of capacitor bank (kVAr)
DQ tapping size of capacitor bank (kVAr)
Rn resistance of the nth branch (X)
r1(), r2() random number in the range [0,1]
SPb sub-station capacity at base case (kVA)
SPa sub-station capacity after DER allocation and reconfigu-

ration (kVA)
SnSC sensitivity of nth node for capacitor placement
SnDG sensitivity of nth node for DG placement
skp=s

kþ1
p position of pth particle at kth/(k + 1)th iteration

Dt time step (s)
Vpf node voltage deviation penalty function
Vmax/Vmin maximum/minimum permissible node voltage (p.u.)
VminS minimum specified node voltage (p.u.)
Vnj voltage of nth node at jth load level (p.u.)
DVnj maximum node voltage deviation of nth node at jth load

level (p.u.)
vk
p=vkþ1

p velocity of pth particle at kth/(k + 1)th iteration
w inertia weight
wmax/wmin maximum/minimum value of inertia weight
Y planning horizon
f capital recovery factor
k penalty function
Uj closed loop at jth load level
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Several successful attempts have been made in the recent past
to solve the problem of optimal allocation of either SCs [4–10] or
for DGs [11–16] separately. However, the simultaneous placement
strategy of DERs is more practical and can independently set and
control the real and reactive power flow in distribution network
(DN) [12]. Some researchers [17–24] have attempted this simulta-
neous allocation strategy and have shown mutual impact of these
devices on the performance of distribution network using analyti-
cal or/and heuristic technique. Zou et al. [17] proposed an analyt-
ical approach for the simultaneous placement of SCs and DGs for
minimizing investment cost. They reduced the search space by
identifying voltage support zones using analytical approach and
solved the problem using particle swarm optimization (PSO).
Abu-Mouti and El-Hawary [18] employed artificial bee colony
(ABC) algorithm to determine the optimal size of DGs’ power fac-
tor, and location to minimize power losses while considering var-
ious scenarios. It has been shown that there is a substantial
enhancement in the results in terms of voltage profile improve-
ment and loss reduction. A heuristic approach is suggested by Naik
Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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et al. [19] where a node sensitivity analysis is used to identify the
optimal candidate locations, and then the optimal capacity of
SCs/DGs are determined by suggesting heuristic curve fitting tech-
nique. Moradi et al. [22] proposed a combined imperialist compet-
itive algorithm (ICA)–genetic algorithm (GA) method to solve this
multi-objective optimization problem. In this method, first the
ICA is used to find siting and sizing of distributed resources and
then the operators of GA are used to further refine these solutions.
In Ref. [24] different types of DGs are employed for real and reac-
tive power injections to minimize power losses. The problem is
solved using an analytical approach and PSO. The authors con-
cluded that the heuristic approach is more suitable for larger sys-
tems. However, these attempts have considered only loss
minimization and node voltage enhancement as the problem
objectives and not considered peak power losses, feeder current
profiles and substation capacity release for DER allocation.

Distribution network reconfiguration (DNR) is another opera-
tional strategy which has been frequently used to achieve multiple
performance objectives such as power loss minimization, voltage
distributed energy resource using improved particle swarm optimization.
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profile enhancement and congestion management. Therefore,
coordinated approach for DER allocation with DNR can more effec-
tively achieve the objectives such as increased energy efficiency,
decreased peak power losses and enhancing substation capacity
release. Usually, the SCs are placed by power distribution utility
whereas the owner of DGs is a private investor. The electric
utility should provide coordinated solution for the siting and sizing
of DERs to the DG investor so that both DGs and SCs can be
allocated simultaneously. In fact, such coordinated initiative can
provide maximum benefits for the network owner and/or the net-
work users, and can evaluate the feasibility of DERs investment
versus other traditional planning options [2].

The optimal placement of DERs involves the determination of
their optimal number, sizing and siting in DN. It is a nonlinear com-
plex combinatorial optimization problem. Swarm and evolutionary
based optimization techniques, like GA, PSO, etc. have proven
potential to obtain global or near global optima. However, care
should be taken to avoid premature or slow convergence, particu-
larly in large scale applications [3], where enormously large search
space is offered to these techniques. Several attempts [4,7,9–
11,16,17,19] have been reported to reduce the search space by
employing node sensitivity based approaches for optimal allocation
of DERs. In these approaches a node priority list (NPL) is prepared.
From this list only a few top priority nodes are selected for DER allo-
cation. However, these approaches are not foolproof and provide
only a coarse guidance about the priority of candidate nodes. In fact
the node sensitivities are calculated for the base case conditions
where no such devices have been installed [6]. Furthermore, when
selecting only top few nodes as the sensitive components, it did not
give the true picture of the entire distribution network [8].

In this paper a coordinated approach is proposed for the simul-
taneous allocation of DERs and optimal network reconfiguration
using an improved PSO (IPSO) method. The proposed approach
maximizes the annual profit of electric utility by reducing the
annual charges on energy losses, peak power losses and substation
capacity release against the annual charges incurred to purchase
DERs. A node sensitivity-based guided search algorithm (GSA) is
suggested to enhance the overall performance of the proposed
method. GSA virtually squeezes the problem search space without
loss of diversity. The proposed IPSO method is investigated on two
standard test distribution systems.

2. Problem formulation

The problem for the optimal allocation of DERs is formulated to
maximize annual savings in such a way that maximizes the annual
profit by reducing the charges for annual energy losses, peak power
losses and substation capacity release against the annual charges
incurred to purchase DERs while maintaining better node voltage
and feeder current profiles under multi-level load pattern. A pen-
alty function approach is suggested to check the maximum node
voltage deviation and thermal limit of distribution feeders. The
objective function is therefore formulated as below:

Max: F ¼ k Ke

XNL

j¼1

Ploss;bjHj �
XNL

j¼1

Ploss;ajHj

 !
þ fKp PP

loss;b � PP
loss;a

� � 

þ fKS SPb � SPa
� ��

� fKSC

Xloc
n¼1

QSC;n � fKDG

Xloc
n¼1

PDG;n;

8n 2 N; 8j 2 L ð1Þ
where N and L denote the set of system nodes and the set of load
levels, respectively. NL and Hj refer to the number of load levels
and their corresponding load durations, respectively which are con-
sidered in the multi-level piece-wise annual load profile. Ploss,bj and
Ploss,aj are the power losses for uncompensated and compensated
Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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system at jth load level, PP
loss;b and PP

loss;a are the peak power loss

for uncompensated and compensated system, SPb is the sub-station

capacity for base case, SPa is the sub-station capacity after DER allo-
cation and reconfiguration, QSC and PDG are the reactive and active
compensation at a candidate node. Ke, Kp, KS, KSC, KDG represent
the unit cost of energy, unit cost of peak power losses, annual
charges for sub-station capacity release, annual charges on shunt
capacitor installation and annual charges on DG installation, respec-
tively. Therefore, the first and second terms represents the cost of
annual energy loss reduction and the cost of peak power loss reduc-
tion, respectively. The third term, refers to the annual charges for
the substation capacity release. The fourth and last terms denote
the annual charges to install SCs and DGs, respectively. k is the pro-
posed penalty function to take care node voltage deviations and fee-
der current limits and is defined by the geometric mean of the node
voltage penalty function Vpf and the feeder current penalty function
Ipf as shown below:

k ¼ pðVpf � Ipf Þ ð2Þ
where

Vpf ¼ 1
1þMaxðDVnjÞ ; 8n 2 N; 8j 2 L ð3Þ

Ipf ¼ 1
1þMaxðDInjÞ ; 8n 2 N; 8j 2 L ð4Þ

The Eq. (3) shows that Vpf is determined by evaluating maxi-
mum node voltage deviation among all system nodes while consid-
ering all load levels, where DVnj denotes the voltage deviation of
the nth node from the source voltage at jth load level. Similarly
Ipf is determined using (4), where DInj denotes the deviation of
the nth feeder current from its rated ampacity during the jth load
level. The value ofDVnj andDInj are calculated by proposing (5) and
(6), respectively. It is noteworthy that a soft voltage constraint is
used in (5) by defining minimum specified node voltage VminS

which has to be kept less than the minimum permissible node
voltage Vmin, which is being specified by the power regulation
authorities. Vmax is the maximum permissible node voltage speci-
fied by the regulation authorities and Imax

n is the rated line ampacity
of the nth line.

DVnj ¼
1�jVnjj; VminS <Vnj <Vmin

0; Vmin 6Vnj 6Vmax

a very large number ; else

8><
>:

9>=
>;; 8n2N; 8j2 L

ð5Þ

DInj ¼ 0; Inj 6 Imax
n

a very large number ; else

� �
; 8n 2 N; 8j 2 L

ð6Þ
The capital recovery factor f for DERs investments is obtained as

below:

f ¼ ðdð1þ dÞYÞ=ðð1þ dÞY � 1Þ ð7Þ
where d is the discount rate and Y refers the planning horizon for
the DER allocation project.

The following operational constraints are employed:

gjðhÞ ¼ 0; 8j 2 L ð8Þ
where gj(h) represents the set of power flow equations during jth
load level.

The total active and reactive power injected by DG and SCs at
each node must be within their permissible range as defined by:

QSC;min 6 QSC;n 6 QSC;max; 8n 2 N ð9Þ
distributed energy resource using improved particle swarm optimization.
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PDG;min 6 PDG;n 6 PDG;max; 8n 2 N ð10Þ
where PDG,min and PDG,max are the minimum and maximum active
power generation limit at a node, respectively. Similarly, minimum
and maximum reactive power generation limit at a node is defined
by QSC,min and QSC,max, respectively.

The system power generation limits for SCs and DGs are defined
as:

Xloc
n¼1

QSC;n 6 QD; 8n 2 N ð11Þ

Xloc
n¼1

PDG;n 6 PD; 8n 2 N ð12Þ

Where it is assumed that the sum of active and reactive power
injected by DGs and SCs at all candidate nodes locations should be
less than nominal active PD and reactive power demand QD of the
system, respectively. Eqs. (13) and (14) prohibit the repetition of
candidate sites for DERs.

NSC;a – NSC;b; a; b 2 N ð13Þ

NDG;a – NDG;b; a; b 2 N ð14Þ
where NSC and NDG refer candidate sites for SCs and DGs, respec-
tively. Since DERs are commercially available in discrete sizes and
thus are modeled as:

QSC 6 KbQb; Kb ¼ 0;1;2; . . . ; nsc ð15Þ

PDG 6 KdPd; Kd ¼ 0;1;2; . . . ;ndg ð16Þ
where Qb and Pd represent the respective unit size of SCs and DGs.
Kb and Kd represent number of capacitor banks and discrete dis-
patches of DG, respectively.

First optimizing (1), the solution obtained provides the optimal
siting and sizing of DERs, while considering the annual load profile.
Next, (1) is optimized, but for each load level separately, to deter-
mine the optimal power dispatches of installed DERs. However, the
sites for DERs are kept freeze and their sizing is restricted to that
provided by the obtained solution. The additional constraints
required to determine the optimal dispatches of SCs and DGs are
modeled as below:

QSC;n ¼ KtDQ ; Kt ¼ 0;1;2; . . . ;QSC;n=DQ ð17Þ

PDG;n ¼ KmdDP; Kmd ¼ 0;1;2; . . . ; PDG;n=DP ð18Þ
where DP and DQ represent the available commercial discrete sizes
of SCs and DGs, respectively.

The distribution network is reconfigured for each load level sep-
arately after optimally placing DERs. The reconfiguration problem
is solved to minimize real power loss Ploss at jth load level while
satisfying various network operational constraints. The mathemat-
ical formulation for the DNR problem is formulated as:

Min: Ploss;j ¼
XE
n¼1

Rn
P2
nj þ Q2

nj

jVnjj2
; 8n 2 N; 8j 2 L ð19Þ

where E represents total number of branches in the system, the
active and reactive power flows in nth branch are expressed by
the Pnj and Qnj, respectively. Rn denotes resistance of the nth branch
whereas Vnj denotes the nth node voltage at jth load level.

Eq. (19) is subject to the following constraints:

1. Radial topology constraint

The reconfigured network topology must be radial, i.e. with no
closed path. Therefore, for the rth radial topology the radiality con-
straint is defined as:
Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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UjðrÞ ¼ 0; 8j 2 L ð20Þ
where Uj(r) is the symbolic representation for closed loop.

2. Node voltage constraint

A hard voltage constraint is employed during the DNR as it is
one of the important network operational strategies. All node volt-
ages Vnj of the system must be maintained within the minimum
and maximum permissible limits i.e. Vmin and Vmax, respectively,
during the optimization process.

Vmin 6 Vnj 6 Vmax; 8n 2 N; 8j 2 L ð21Þ

and the power flow constraint is defined by (8).
The radiality constraint imposes the biggest hurdle while solv-

ing the problem of network reconfiguration. In the present work,
the codification proposed in [25] is used to solve the problem. This
is a rule-based codification to check and correct infeasible radial
topologies. According to this codification, following three rules
are framed which are based on graph theory to identify and correct
infeasible individuals whenever appeared in the computational
process.

Rule 1: Each candidate switch must belong to its corresponding
loop vector.
Rule 2: Only one candidate switch can be selected from one
common branch vector.
Rule 3: All the common branch vectors of a prohibited group
vector cannot participate simultaneously to form an individual.
The definitions of loop vector, common branch vector and pro-
hibited group vector may be referred from [25].

3. Proposed IPSO

PSO is a robust stochastic swarm computational technique
which is based on the movement and intelligence of swarms
[26]. The conventional PSO is initialized with a population of ran-
dom solutions and searches for optima by updating particles’ posi-
tions. The velocity of particles is influenced by three components
namely, initial, cognitive and social components. Each particle
updates its previous velocity and position vectors according to
the following model [27].

vkþ1
p ¼ wvk

p þ c1 � r1ðÞ �
pbestp � skp

Dt
þ c2 � r2ðÞ �

gbestk � skp
Dt

ð22Þ

skþ1
p ¼ skp þ vkþ1

p � Dt ð23Þ

where vk
p is the velocity of pth particle at kth iteration, r1() and r2()

are random numbers in the range [0,1], skp is the position of pth par-
ticle at kth iteration, c1, c2 are the acceleration coefficients, pbestp is
the best position of pth particle achieved based on its own experi-
ence, gbest is the best particle position based on overall swarm
experience, Dt is the time step, usually set to 1 s. The inertia weight
w is allowed to decrease linearly with iterations through its maxi-
mum and minimum bounds wmax and wmin, respectively and is
modeled as:

w ¼ wmax þ ðwmin �wmaxÞ � itr=itrmax ð24Þ
where itr and itrmax denote the current iteration and the maximum
iteration count, respectively.

The velocity and position updates of particles tend to surf the
search space on the behalf of cognitive and social paradigm of
the swarm. PSO has shown proven potential to solve complex engi-
neering optimization problems, but it typically shows premature
convergence due to local trapping phenomenon [5].
distributed energy resource using improved particle swarm optimization.
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Enormous search space is offered when the problem of simulta-
neous placement of DERs is solved using any population based
technique. The accuracy and convergence of these techniques are
significantly affected by the manner in which the individuals surf
the search space. While initializing, or otherwise, it will be better
if all the tentative solutions are scattered in the problem search
space in such a way so that most of them lie near the promising
region. But, this is a difficult task. Nevertheless, an adequate diver-
sity is essential to explore new solution points in the problem
search space to avoid local trappings. Moreover, the intrinsic nat-
ure of PSO can only generate continuous decision variables. Thus
the accuracy and efficiency of PSO reduces while it is applied to
optimization problems having discrete decision variables. There-
fore, following measures are suggested in the proposed IPSO to
avoid local trapping.

3.1. Guided search algorithm

Several researchers have applied perturbation based node sen-
sitivity approach to get the NPL for optimal allocation of DER and
then selecting top few nodes from it to redefine the problem search
space [4,7,9–11,16,17,19]. These approaches however reduce the
problem search space drastically, but are highly unreliable as the
optimal node may be left outside from the reduced search space.
Thus, the algorithm eventually converges to sub-optimal solution.
Therefore, GSA is suggested where first the NPL is obtained by
proposing a new node sensitivity-based approach, and then the
candidate sites for DERs allocation are selected using a probabilis-
tic approach, as described below.

The flow of active and reactive power in the DN can be indepen-
dently controlled by the active and reactive power injections of
DGs and SCs, respectively. Even when very small test capacity of
these components is placed in DN, they resister their presence in
terms of change in power flow pattern among distribution feeders.
Thus the power transaction with grid is also affected, the node
causes more variation in grid power transaction may be more suit-
able to place these components. Therefore, following separate node
sensitivity indices are defined in order to identify the sensitivity of
candidate nodes for the allocation of SCs and DGs in the DN.

SnSC ¼ 100ðGQB � GQn
TSCÞ=GQB; 8n 2 N ð25Þ

SnDG ¼ 100ðGPB � GPn
TDGÞ=GPB; 8n 2 N ð26Þ

Here, GPB and GQB are the grid active and reactive power exchange
at base case. Whereas, GPn

TDG and GQn
TSC are the grid active and reac-

tive power exchange with test DG and capacitor at the nth node.
The perturbation with very small capacity of test SC is carried in

the given DN and thereby the NPL is generated, the node with
highest SnSC finds its place at the top of the NPL. Similarly, a separate
NPL is created for DG allocation. The candidate nodes are then
selected from the respective NPL using probabilistic based Roulette
Wheel Selection (RWS). In this way, all system nodes are allowed
to participate in the computational process according to their
probability of priority. This causes directed search, as better nodes
have higher probability of selection. On the other hand, poor nodes
still remain in the problem search space and therefore contribute
adequate diversity in population. Therefore, the algorithm quickly
picks up the best combination of candidate nodes for SCs and DGs
without much wandering and thus may lead to better solution in
Fig. 1. Particle’s stru
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lesser time. This causes virtual squeezing of the problem search
space without loss of diversity.
3.2. Local escape algorithm

PSO has the philosophy of ‘‘to follow the leader” [28]. Therefore,
whenever the best particle stagnates, it eventually converges to
local optima. If the best particle is improved by employing some
mechanism, probable local trappings can be avoided. Interestingly,
the inability of PSO to produce discrete decision variables has been
employed in the proposed IPSO as its affirmative strength to avoid
local trappings. For this purpose, a local escape algorithm (LEA) is
proposed which is explained as under.

Suppose the current best particle suggested by PSO has D con-
tinuous decision variables and it is kept in the memory. Whenever
this particle stagnates, say after a predefined number of iterations
itrs, it is recalled and then two particles are generated from it; one
by ceiling and the other by flooring of all decision variables. Now
with all possible combinations of these decision variables, 2D par-
ticles are produced, each of them with only discrete decision vari-
ables. If any particle is found infeasible, it is corrected under the
guidance of constraint handling algorithm. The fitness of these par-
ticles is evaluated and is compared with that of the best particle. If
it is found better, it replaces the particle with least fitness. Occa-
sionally, the best particle suggested by PSO may be with all dis-
crete variables. In such situations, all 2D particles so produced
will be replica of the best particle itself, and that makes the pro-
posed LEA useless. To overcome this difficulty, one replica of the
best particle is created. The best particle and its replica are
mutated before generating 2D particles. However, candidate loca-
tions of these mutated particles are selected using GSA.
3.3. Particle’s structure

The proposed structure of the particles for IPSO is shown in
Fig. 1 which is composed of candidate sites and sizing for the
respective candidate DERs. While determining optimal installed
capacities of DERs, the candidate sites are allocated using GSA
whereas their sizing is selected randomly within their respective
predefined bounds. Afterwards, when determining optimal power
dispatches of DERs for each load level, the algorithm again runs
with the same structure of particles. However, DERs locations
now freeze to those values that have been already obtained and
the limit of sizing is restricted to the installed capacities of DERs.

The termination criterion is taken as, ‘‘When either the maxi-
mum iteration count is exhausted or all solutions acquire the same
fitness, the computational process stops.”
4. Simulation results

The proposed method is investigated on the benchmark IEEE
33-bus [29] and 69-bus [4] test distribution systems. The initial
system data of these systems are given in Table 1 and the detailed
data may be referred from the respective references. The penetra-
tion limit of SCs and DGs is considered as nominal active and reac-
tive power loading for both test systems. The other design
parameters considered for these distribution systems are pre-
sented in Table 2.
cture for IPSO.

distributed energy resource using improved particle swarm optimization.
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Table 1
Brief data of test distribution systems.

Particular 33-bus system 69-bus system

Line voltage (kV) 12.66 12.66
PD (kW) 3715 3802.19
QD (kVAr) 2300 2694.6
Sectionalizing switches 1–32 1–68
Initial configuration 33–37 69–73
Ploss at light/nominal/peak load (kW) 47.07/202.50/575.39 51.61/225/652.53
Vmin at light/nominal/peak load (p.u.) 0.9583/0.9131/0.8528 0.9567/0.9092/0.8445
N 1–33 1–69
Imax
n (n) 400(1, 2), 250(3–5, 18–20, 22–29), 150(6–17, 21, 30–37) 400(1–9), 300(46–50, 53–65), 200(10–45, 51, 52, 66–73)

Table 2
Design parameters for test distribution systems.

Parameter Value Parameter Value

Qb (kVAr) 300 Peak load (%) 160
Pd (kW) 1 Hj (light/nominal/peak) 2000/5260/1500
DQ/DP (kVAr/kW) 100/1 Ke (US $/kW h) 0.10

KP (US $/kW) 42.6QSC,min/QSC,max (MVAr) 0/1.2
KS (US $/kVA) 19.8PDG,min/PDG,max (MW) 0/2
KSC (US $/kVAr) 3.0Vmin (p.u.) 0.95
KDG (US $/kW) 300Vmax (p.u.) 1.05
Loc 3VminS (p.u.) 0.90
NL 3Light load (%) 50
d (%) 8Nominal load (%) 100
Y (years) 20

Fig. 2. Percentage change in the power flow pattern for perturbations of test (a) SC and (b) DG.
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An illustration to determine NPLs using proposed GSA for the
33-bus system is briefly presented here. Fig. 2(a) shows the per-
centage change in reactive power flow among distribution feeders
when the perturbations of test SC are employed. The figure shows
that some prominent areas of DN have more sensitivity for reactive
power injection. Similarly, it can be observed from the Fig. 2(b)
that some prominent areas of DN have more sensitivity for active
power injection. However, it is more important that by what
amount the grid power transactions are being affected by the per-
turbations of small capacity of DERs. Fig. 3 shows the proposed
node sensitivity indices for all system nodes. The nodes can be
arranged in the descending order of proposed sensitivity index to
generate NPLs for SCs and DGs. The NPLs obtained for 33-bus test
distribution system are shown in Table 3. An important conclusion
can be drawn by comparing Fig. 3(a) and (b) that the priority of
nodes are different for SCs and DGs, thus a node which is more
Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
Appl Energy (2016), http://dx.doi.org/10.1016/j.apenergy.2016.01.093
suitable for SC may not be so for DG allocation. Similarly, NPLs
are determined for 69-bus system as shown in Table 3.

The control parameters selected for IPSO are obtained after
usual trade-off and are presented in Table 4. The proposed IPSO
has been developed using MATLAB� 7.10 and simulations have
been carried on a personal computer of Intel i5, 3.2 GHz, and
4 GB RAM.

4.1. 33-bus system

The simulation results obtained for this system using proposed
method are presented in Table 5. The table shows the optimal sites
and sizing of DERs. It is interesting to note that the optimal sites
obtained are different for SCs and DGs. The table also shows opti-
mal dispatches of DERs at each load level and the corresponding
optimal network configurations obtained after placing these
distributed energy resource using improved particle swarm optimization.
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Fig. 3. Node sensitivity index for (a) SC and (b) DG.

Table 4
Control parameters for PSO and IPSO.

Parameter P itrmax c1 c2 wmin wmax

Value 50 100 2.0 2.0 0.1 0.9

Table 6
Network performance using proposed method.

Particular Load level

Light Nominal Peak

Ploss (kW) 5.48 25.73 110.05
DPloss (%) 88.36 87.29 80.87
Vmin (p.u.) 0.9940 0.9860 0.9633
Energy loss (kW h) 10957.59 135332.96 165078.01
Annual energy loss reduction (%) 84.60
Sub-station capacity release (%) 37.95

Fig. 4. Comparison of node voltage profiles at all load levels.

Table 3
NPL for SCs and DGs.

Test system NPL (SC) NPL (DG)

33-bus system 33, 32, 31, 30, 29, 18, 17, 16, 15, 14, 13, 28, 12, 11, 10, 9, 8, 7, 27, 26,
6, 5, 25, 24, 4, 23, 3, 22, 21, 20, 19, 2, 1, . . .

18, 17, 16, 15, 14, 13, 33, 32, 31, 12, 11, 30, 10, 29, 9, 28, 8, 27, 7,
26, 6, 5, 25, 24, 4, 23, 3, 22, 21, 20, 19, 2, 1, . . .

69-bus system 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 27, 26, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 55, 13, 69, 68, 12, 54, 67, 66, 11, 10, 53, 9, 52, 51, 8,
7, 50, 49, 6, 48, 46, 45, 44, 43, 42, 41, 5, 35, 40, 39, 34, 38, 33, 37, 32,
47, 31, 30, 4, 29, 36, 28, 3, 2, 1, . . .

65, 64, 63, 62, 61, 60, 59, 58, 57, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 56, 13, 55, 69, 68, 12, 67, 66, 11, 54, 10, 53, 9, 52, 51, 8, 7, 6, 50,
49, 46, 45, 44, 43, 35, 42, 34, 41, 5, 48, 33, 32, 40, 39, 38, 31, 30, 37, 47, 4,
29, 36, 28, 3, 2, 1, . . .
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capacities of DERs in the distribution network. It can be seen that
the optimal network topology is affected by the presence of DERs.
The performance of the network after applying the integrated solu-
tion is presented in Table 6. The table shows a significant power
loss reduction at each load level. The minimum node voltage at
all load levels are found to be well above permissible limits. The
table also shows that an annual energy loss, sub-station capacity
release and peak power loss reduction of about 85%, 38% and
81%, respectively are achieved using proposed method.

The improvement in node voltage profiles using proposed
method is shown in Fig. 4. The significant improvements are
observed at all load levels, and all node voltages lie within permis-
sible limits. This shows the effectiveness of the penalty function
proposed to check maximum node voltage deviations. Thus, the
desired objectives for DERs allocation have been achieved using
proposed method.

4.2. 69-bus system

The optimal sites and sizing of SCs and DGs obtained for this
system are presented in Table 7. The table shows that the installed
capacities for SCs and DGs are 1800 kVAr and 1898 kW, respec-
tively. The table also shows optimal dispatches of these DERs at
each load level. After placing these DERs, the optimal configuration
Table 5
Optimal solution and optimal dispatches of DERs, and optimal network configuration.

DER Optimal sites (optimal sizing) Load level Op

SC (kVAr)/DG (kW) 14(600), 25(300), 30(1200)/10(219),
17(462), 31(935)

Light 14
Nominal 14
Peak 14

Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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of the distribution network is obtained which is also shown in the
table. Once again it has been observed that the optimal network
configuration changes for each load level. The performance of the
timal dispatches of DERs Network configuration

(200), 25(200), 30(500)/10(219), 17(228), 31(497) 7, 27, 32, 34, 35
(400), 25(300), 30(1000)/10(219), 17(462), 31(935) 7, 9, 28, 35, 36
(600), 25(300), 30(1200)/10(219), 17(462), 31(935) 7, 8, 10, 29, 37

distributed energy resource using improved particle swarm optimization.
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Table 7
Optimal solution and optimal dispatches of DERs, and optimal network configuration.

DER Optimal sites (optimal sizing) Load level Optimal allocation of DERs Network configuration

SC (kVAr)/DG (kW) 18(300), 61(900), 64(600)/22(195),
61(1220), 64(483)

Light 18(200), 61(500), 64(100)/22(195), 61(735), 64(142) 10, 11, 13, 55, 72
Nominal 18(300), 61(900), 64(300)/22(195), 61(1220), 64(483) 10, 12, 14, 22, 72
Peak 18(300), 61(900), 64(600)/22(195), 61(1220), 64(483) 12, 56, 64, 69, 70

Table 8
Network performance using proposed method.

Particular Load level

Light Nominal Peak

Ploss (kW) 1.49 8.11 53.77
DPloss (%) 97.11 96.39 91.76
Vmin (p.u.) 0.9960 0.9894 0.9656
Energy loss (kW h) 2984.96 42667.30 80661.51
Annual energy loss reduction (%) 94.42
Sub-station capacity release (%) 38.80

Fig. 5. Comparison of node voltage profiles at all load levels.

Table 9
Grid power transactions.

Test system Load
level

GP
(MW)

GQ
(MVAr)

Reduction GP
(%)

Reduction GQ
(%)

33-bus system Light 0.9190 0.2539 51.75 78.51
Nominal 2.1247 0.6185 45.75 74.59
Peak 4.4379 1.6588 31.93 59.19

69-bus system Light 0.8298 0.5490 57.49 59.94
Nominal 1.9108 1.2052 52.51 56.88
Peak 4.2368 2.5775 37.08 44.01

Table 10
Cost-benefit appraisal.

Particular (US$) 33-bus system 69-bus system

Annual investment on DERs 50,020 58,545
Annual cost of energy loss reduction 171,103 213,878
Annual cost of peak power loss reduction 2019 2598
Annual cost of sub-station capacity release 5939 6448
Total annual savings 129,041 164,379
Benefit/cost ratio 2.58 2.81
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network after applying this integrated solution is presented in
Table 8. The table shows a significant improvement in the perfor-
mance of the network in terms of power loss reduction and node
voltage profile enhancement. The annual energy loss reduction
obtained for this system is about 94%, which is quite substantial.
The table also shows that the sub-station capacity release and peak
power loss reduction of about 39% and 92%, respectively are
achieved using proposed method.

The improvement in node voltage profiles using proposed
method is shown in Fig. 5. The significant improvement in node
voltage profiles at all load levels is shown in figure. It can also be
observed from the figure that all node voltages are within permis-
sible voltage limits. This shows consistency of the proposed pen-
alty function. Thus integrated solution to distribution network
are very useful for DNOs.
5. Discussion

5.1. Technical aspects

The simulation results obtained for both case studies are
impressive. A remarkable reduction in annual energy losses, espe-
cially during peak load hours could reflect as fruitful impact on the
annual profits of DNOs, feeder congestion management, useful life
of system components, carbon credits earned, reliability of electric
supply, etc. This however occurs by installing DERs which is about
one third capacity of the peak demand of the system and regulat-
ing their power generations with varying load conditions. More-
over, only few DERs are nicely controlling the distribution
Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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network which is important from their installation, maintenance
and operation point of view. The results presented are based on
the best solution obtained for DER allocation using proposed
method. However, many other close solutions are also provided
by the proposed method which may be utilized under certain situ-
ations, say when the optimal DG location is not feasible due to
non-availability of land, densely populated area, political reasons,
etc.

The grid power transactions of the distribution network using
proposed method are shown in Table 9. In the table, GP and GQ rep-
resent the import of active and reactive powers from the grid,
respectively, i.e. the power flows through the feeder 1 of the distri-
bution network. The table also shows percentage reduction of
active and reactive power import from the grid at all load levels.
It can be observed from the table that a significant reduction in grid
power import has been achieved using proposed method. The
reduced grid power transactions during peak load level reflect in
substation kVA capacity release which helps utilities to stagger
their future expansion plans against upcoming peak demand on
the sub-station.

The node voltage enhancement obtained using proposed
method may cause increased power intake by all static loads (volt-
age dependent loads) connected to the distribution network. So
feeder power losses will be somewhat more to that presented in
this study where all loads are assumed to be constant power type.
Similarly, the results obtained may also deviate due to system
unbalance operation and line current harmonics on account of
the presence of non-linear loads. These issues have been kept out-
side the scope of this work but should be seen at length in future
study.
5.2. Financial aspects

For simplified analysis, the time value of money is ignored thus
net present value is not calculated for DER allocation project. As a
distributed energy resource using improved particle swarm optimization.
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Fig. 6. Comparison of convergence characteristics of PSO and IPSO for (a) 33-bus system and (b) 69-bus system.

Table 11
Comparison of solution quality.

Particular 33-bus system 69-bus system

PSO IPSO PSO IPSO

Best 109710.93 112081.58 135343.18 144360.69
Mean 102977.06 107185.97 127479.21 139281.95
Worst 92404.77 102582.8 116724.79 129414.8
SD 2799.58 1625.84 4144.13 3293.49
COV 2.72 1.51 3.25 2.36
CPU time (s) 139.31 120.36 467.04 429.21
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prima facie, the benefit to cost ratio is considered for the given dis-
count rate and planning horizon to check the feasibility of DER
allocation project. The benefit to cost ratio is an indicator that
attempts to summarize the overall value for money of a project
or proposal. The ratio takes into account the aggregate amount of
monetary gain realized by performing a project versus the amount
it costs to execute the project. Higher the ratio, better will be the
investment. In case, the ratio is more than unity, the project may
be said to have a good investment. The cost-benefit appraisal for
the DER allocation project is presented in Table 10. Various cost
and investment terms presented in the table are calculated using
various cost coefficients as mentioned in Table 2 and Eq. (1).
Table 10 reveals that a good benefit to cost ratio has been achieved
for both test systems. It can also observed from the table that the
cost of energy loss savings are significant and plays major role to
decide the benefit to cost ratio of the DER allocation project.

5.3. Optimization algorithm aspects

The convergence characteristic of IPSO is compared with PSO in
Fig. 6. The figure shows that IPSO has better convergence than the
standard PSO. In IPSO, suggested GSA provides dedicated search as
Fig. 7. Spread of sampled solutions using variants of P

Please cite this article in press as: Kanwar N et al. Simultaneous allocation of
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it not only initializes algorithm with better fit particles but also
maintains sufficient diversity to explore new solution points in
the problem search space. Therefore, the swarm approaches to
the promising region very early and then exploit it meticulously.
Further, the local random walk provided to the best particle in
LEA enhances exploitation of the promising region to avoid possi-
ble local optima. Thus, a proper balance is maintained in the
exploitation and exploration of the search space.

In order to show the superiority of the proposed IPSO over PSO,
the solution quality obtained for both test systems after 100 runs is
presented in Table 11. It can be observed from the table that the
best, mean and worst fitnesses of the sampled solutions are better
for IPSO. Moreover, the statistical quality indices such as, standard
deviation (SD), coefficient of variation (COV) are also found better
with IPSO. Further, IPSO is taking less CPU time than PSO. Thus
IPSO consistently performs better than the standard PSO.

Finally, the spread of sampled solutions (arranged in the
descending order of fitness) obtained for these two test systems
using PSO and IPSO are shown in Fig. 7. The figure clearly indicates
the superiority of IPSO over PSO as all solutions obtained using
IPSO are better than those obtained using PSO. This indicates that
the proposed IPSO method is very efficient to handle large-scale
optimization problems.
6. Conclusions

The optimal allocation of SCs and DGs is now becoming an
important aspect in the planning and operation of modern distri-
bution systems. While formulating the optimal allocation problem
of these devices, their co-existence should be considered along
with practical operational strategy of network reconfiguration.
This paper addresses a coordinated strategy for the simultaneous
allocation of DERs and NR in distribution systems by proposing
SO for (a) 33-bus system and (b) 69-bus system.

distributed energy resource using improved particle swarm optimization.
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IPSO method. The proposed integrated approach provides a signif-
icant improvement in the desired objectives related to energy loss
reduction and substation capacity release at minimal DER penetra-
tion. It has been observed that energy losses during peak and off-
peak hours can be effectively controlled by only few optimally
placed DERs. Therefore, the proposed integrated approach can be
very useful for electric utilities to enhance their margins of profits
and also to stagger their future expansion plans. A high value of
benefit to cost ratio for DER allocation project implies the suitabil-
ity of proposed method for DNOs. The performance of the proposed
IPSO is improved by suggesting LEA and GSA. LEA utilizes inherent
inability of PSO to deal with continuous decision variables and thus
avoids several local trappings, whereas GSA virtually squeezes the
problem search space though it maintains adequate diversity. The
application results obtained on two standard test distribution sys-
tems show that the proposed IPSO performs better than its stan-
dard model. The proposed method can be extended with other
types of non-dispatchable DGs operating at non-unity power fac-
tor, and also by considering uncertainty associated with their
power generations along with the stochastic variation in load
demand.
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