
Future Generation Computer Systems 80 (2018) 409–416
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Reprint of ‘‘LBBSRT: An efficient SDN load balancing scheme based on
server response time’’✩

Hong Zhong, Yaming Fang, Jie Cui ∗
School of Computer Science and Technology, Anhui University, Hefei, 230039, China

a r t i c l e i n f o

Article history:
Available online 13 November 2017

Keywords:
SDN
OpenFlow
Load balancing
Server response time

a b s t r a c t

The response time is the most important factor determining user experiences in the service provision
model involving server clusters. However, traditional server cluster load balancing scheme are limited by
the hardware conditions, and cannot completely exploit the server response times for load balancing. In
order to effectively resolve the traditional load balancing schemes, we propose a load balancing scheme
based on server response times by using the advantage of SDN flexibility, named LBBSRT. Using the real-
time response time of each servermeasured by the controller for load balancing, we process user requests
by obtaining an evenly balanced server loads. Simulation experiments show that our scheme exhibits
a better load balancing effect and process requests with a minimum average server response times. In
addition, our scheme is easy to implement, and exhibits good scalability and low cost characteristics.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Achieving optimum load balancing is of significant importance
whilst combating network overhead issues in any distributed pro-
cessing architectures. Service availability is paramount in measur-
ing end user satisfaction [1], which is heavily impacted by the level
of achievable load balancing among the process clusters. In gen-
eral, a well-balanced load in the network helps to optimize the
utilization of the available resource by the ways of maximizing
the throughput, minimizing the response time, and avoiding over-
loading resources in the network [2]. For the purposes of allevi-
ating heavy-traffic network flux and reducing the risk of single
server becoming the main overhead contributor, many datacen-
tres adopt dedicated hardware resources to achieve load balanc-
ing whilst supporting a large number of users [3]. However, the
increasing costs and technical complications in the deployment of
such hardware systems often require human intervention to en-
sure consistent functioning of such strategies [4].

DOI of original article: http://dx.doi.org/10.1016/j.future.2016.10.001.
✩ This article is a reprint of a previously published article. A publishers’ error

resulted in this article appearing in the wrong issue. The article is reprinted here
for the reader’s convenience and for the continuity of the special issue. For citation
purposes, please use the original publication details; H. Zhong et al. / Future
Generation Computer Systems 68 (2017) 183–190.
∗ Corresponding author.

E-mail address: cuijie@mail.ustc.edu.cn (J. Cui).

http://dx.doi.org/10.1016/j.future.2017.11.012
0167-739X/© 2017 Elsevier B.V. All rights reserved.
Software-Defined networking (SDN) is one of the notable forms
of computer networking [5,6], facilitating a simple and conve-
niently maneuverable network flow control method requiring
minimal investment costs whilst availing maximum benefits for
a massive number of users. SDN controls the data transportation
by deploying the network switches as a software implementation,
whereby a flow table lookup operation will be carried out when-
ever a data flow arrives at the switches. Flow tables [7] ([Header:
Counters: Actions]) are widely used in SDN. The headers and coun-
ters of the flow table are updated accordingly whenever actions
relevant to flow changes are imposed. During this update process,
the header information is usually recorded onto the database and
the OpenFlow switches process the data flow in accordance with
the header records. Based on the SDN model with a centralized
controller, an OpenFlow switch [8] is designed with different rules
to control the network traffic using the header records. Balancing
the network load at the software tier is now practically realizable
using the SDN facilitated flow control system. To this end, Hand-
igol [9] proposed plug, a load balancingmodel based on SDN. Based
on the Openflow environment, Kaur [10] achieved network load
balancing using polling algorithm. Further, Zhang [11] achieved the
minimum number of connections in the network using the polling
algorithm of load balancing under the SDN framework. Shang [12]
incorporated amiddleboxbased on the SDNarchitecture to achieve
load balancing by collecting the server information. Despite the
existing implementations of SDN to resolve high cost andpoor flex-
ibility issues in achieving effective load balancing, notable draw-
backs are still prevalent in the aforementioned schemes. To add

http://dx.doi.org/10.1016/j.future.2017.11.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.11.012&domain=pdf
http://dx.doi.org/10.1016/j.future.2016.10.001
mailto:cuijie@mail.ustc.edu.cn
http://dx.doi.org/10.1016/j.future.2017.11.012

410 H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416
a few, Kaur and Zhang [10,11] applied traditional load balancing
algorithms to the SDN architecture, and so the two schemes can-
not effectively reduce the server response time. Though Shang [12]
can effectively reduce the server response time, this scheme relies
on the server information which increases the complexities of the
server architecture.

This paper proposes a new method of load balancing in SDN
networks with the motivation of enhancing the load balancing
effect by reducing the server response time. In this paper, the
server response time is defined by the interval that begins from
accepting user requests to responding to user requests for server.
If servers in a server cluster have several similar performances
and provide the same service, then for each server, the higher
the load is, the longer the response time is. Correspondingly, the
longer the response time is, the higher the corresponding load is.
Therefore we propose a load balancing scheme based upon server
response time. It can solve the problem of the load balancing in
the server cluster based on the server response time. Our proposed
approach effectively overcomes the drawbacks of the traditional
methods, including high cost, low reliability and poor extensibility.
The contributions of the paper include:

• An effective load balancing scheme based on SDN architecture,
using the real-time response time of each server measured by
an SDN controller.

• Realizing the potential implementation of our scheme by
incorporating a floodlight controller module in the scheme.

• Proving the effectiveness of our proposed scheme by evaluating
the response time and resource utilization metrics against the
traditional schemes.

The rest of the paper is organized as follows: Section 2 reviews
the existing traditional load balancing schemes and introduces the
background of SDN. Section 3 details the design of our proposed
scheme, LBBSRT (Load Balancing by Server Response Time). The
performance evaluation of LBBSRT is presented in Section 4.
Section 5 concludes the paper.

2. Related works

2.1. The traditional load balancing scheme

The traditional load balancing schemes are categorized into four
major types [12] such as based on the client, based on the middle
layer, based on the DNS, and based on the transport layer.

In the load balancing scheme based on the client side, clients
primarily collect every server running parameters from the server
clusters either periodically or non-periodically, and send a request
to different servers to achieve load balancing. Although this
method can achieve a certain degree of load balancing, it loses
grip in large-scale server clusters due to a high degree of coupling
between client and the server.

The most common method of load balancing based on the
middle layer uses the reverse proxy server. This proxy server
requests the back-end servers to balance the load in the server
clusters, and also sends the cached data directly back to the clients.
In some sense, this acceleration mode accelerates the access speed
of the static pages. The reverse proxy server can combine the
load balancing technologywith the caching technology to enhance
the performance. However, developing a reverse proxy for each
service is often a substantial demand. Usually reverse proxy servers
should maintain two connections: one connects to the client, and
another connects to server clusters. With the increasing number of
concurrent connections, the reverse proxy server itselfwill become
the bottleneck of the system.

Load balancing scheme [13] based on DNS configures a single
domain for multiple IP addresses in the server clusters. When a
client requests a domain name service, the domain name server
uses themethod of polling to allocate different servers for different
clients, so as to achieve the goal of load balancing. Load balancing
based on DNS is simple and convenient, but susceptible of several
issues. For instance, DNS server is not aware of the difference
among the servers, and so cannot reflect the current state of the
servers. But it is possible to send a lightweight access to the
idle servers while there is an increasing server load on currently
utilized servers.

The load balancing scheme based on transport layer sends
the client’s requests directly to the load balancing server. The
load balancing server will then forward the requests to the back-
end servers according to policies such as LVS [14], VS/NAT, etc.
Although this approach balances the server load, it often demands
additional hardware resources and thus proven costly.

Due to such hardware limitations, the load balancing among
the server clusters is not only complex but also expensive, and is
susceptible of poor scalability. The emergence of SDN architecture
facilitates effective strategies to counteract such load balancing
issues.

2.2. The SDN architecture

SDN encompasses a decoupling layered architecturewhich seg-
regates the data level access from the control level access [15]. The
control level includes the network operating system and applica-
tions, while the data level incorporates standard protocol supports
for the network hardware equipment. The SDN process architec-
ture can be categorized into a three-layer system structure [16]
including application, control and data. Rather than a simple ex-
tension of the traditional network architecture, this three-layer
structure of SDN is a disruptive innovation [17]. The centralized
network control of SDN is effective in resolving the susceptible is-
sues of the traditional network devices. Moreover, SDN supports
independent programming of the network control system in the
management mode, and instantaneous upgrading of which can
also be achieved by the network application interface. The appli-
cation layer of the SDN architecture provides users with a rich
variety of API interfaces, which can be used to develop our own
developmentmodulewith desired functionalities [18] based on in-
dividual business needs. OpenFlow, one of the SDN mainstream
southbound interface protocol [19], is one of the fundamental
elements required for building SDN solutions. OpenFlow is the
first standard communication protocol defined between the con-
trol layer and the infrastructure layer in SDN architecture [20,21].
OpenFlow uses the concept of flows to identify network traffic
based onmatching rules that can either be statically or dynamically
programmed by the SDN control software. Switches are responsi-
ble for applying appropriate actions on the arriving packets and
update every action on their flow table entry. Using such entries in
the flow tables, switches simple forward packetswithout consider-
ing to construct or modify the flow tables. The SDN controller will
create and install a rule in the flow tables for the necessary pack-
ets. Also, the SDN controller can manage the flow tables of all the
switches simultaneously. OpenFlow-based SDN architectures pro-
vide extremely granular control privileges, by the way of enabling
the network to react to real-time changes of both the applica-
tion and the service users [22]. OpenFlow-based SDN technologies
can enhance the network bandwidth capabilities, can effectively
handle the dynamicity of the applications and can significantly
reduce the operation and management complexity [23]. The dis-
tinctive and innovative features of SDN support the development
and testing of novel forwarding strategies and network proto-
cols effectively. There are three types of message in OpenFlow:
Controller-to-Switch, Asynchronous and Symmetric. Eachmessage
has multiple sub message types, and two kinds of them are used

H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416 411
in this paper which are Packet_out and Packet_in respectively.
Packet_out is the message that the controller sends to the switch.
In many cases, the controller needs to send packets to data plane.
These packets it can be sent to the switch in thewayof being encap-
sulated as the Packet_out message. Packet_in is an important mes-
sage type in OpenFlow. If the data packet received by the switch is
notmatchedwith the flow table or the controller is given as a spec-
ified port in the term of matched flow table as forwarding action,
the switch will encapsulate Packet_in message and send this data
packet to the controller [24].

2.3. The SDN controller

The controller or network operating system is the heart of the
SDN, which is responsible for controlling and managing all the
OpenFlow switches [25]. Some of the SDN controllers used widely
in academia and industry [26] are summarized as follows:

NOX is the first SDN controller, which is developed by
Nicira [27]. It is the foundation for many research projects during
early SDN era.

Floodlight is created by Big Switch Network switches, and it is
based on Beacon controller.

Ryu is originated from NTT in Japan. Ryu is based python and it
is simple and easy to use.

OpenContrail is an open source controller written in C++ with a
REST NBI, and it offers integration plug-ins for cloud services such
as Amazon, Openstack, and Cloudstack.

OpenDaylight and floodlight is based JAVA and has two major
technical characteristics. One is the use of OSGi architecture and
the other is the introduction of SAL.

We deployed the Floodlight SDN controller in our scheme.

3. The design and implementation of LBBSRT

Usually, obtaining the response times of each server from a
pool of servers is a tedious process using the traditional network
equipment. Such traditional schemes do not incorporate the server
response times whilst balancing the server loads. Instead, they
simply ping the servers for obtaining their reply time. Such strate-
gies may not obtain the actual reply time of the server and so are
often not accurate. The segregation of the control plane and data
plane in the SDN facilitates obtaining the server response times
accurately and effectively. Now, the traffic load can be balanced
among the servers utilizing the data obtained from the control
plane. In this paper, we propose a novel approach of realizing ef-
fective load balancing using the server response times under the
SDN architecture.

3.1. System model

We develop our system model in the OpenFlow environment,
as shown in Fig. 1. The system is composed of three major parts
described as follows. (1) Terminal equipment: server and client.
Client is the user’smachine, usually of a large quantity. Anynumber
of servers belonging to a single server pool will be hosted on
a single virtual IP address. For instance, there different servers
in the same server pool with IP addresses 10.0.0.1, 10.0.0.2 and
10.0.0.3 respectively, will be referred with a common IP address
as 10.0.0.1 for service provision. Users can obtain all the services
provided by the server pool by accessing the IP 10.0.0.1, controlled
by the control plane. All such control operations are transparent
to the users. (2) Service network, which consists of OpenFlow
switches (used to connect users with the server) along with the
other common switches. Switches that connect to the server
and the controller must support the OpenFlow protocol, which
is not required for the datacentre switches and other external
Fig. 1. System model.

network switches and routers. (3) Decision platform contains the
SDN controller, including several modules for facilitating different
functionalities. Decision platform includes the control plane of
SDN, mainly composed one or more SDN controllers depending
on the number of active switches. Some of the SDN controllers
used in practice today include NOX, POX Floodlight, etc. Some
of them are open source and some are commercial, the choice
of the SDN controller is usually based on the server pools and
the configuration switches. In this paper, we use the floodlight
controller which is open source.

3.2. Scheme description

Traditional load balancing schemes mainly used Random,
Round Robin, and Least Connections due to the limitations of the
hardware equipment. Such load balancing algorithms can only be
used in simple scenarios, and are not effective in a heterogeneous
pool of servers. With the control plane and the data plane being
separated in the OpenFlow environment, software configurations
can be customized through the controller to achieve effective load
balancing. Such strategy can be applied to existing types of servers
for a better load balancing effect. In this paper, we design a load
balancing algorithm in the OpenFlow environment, in which use
the controller to obtain the real-time response times of each server,
which is then utilized to choose the server with minimum or most
stable response time. Because the server response time directly
reflects the server load capability, selecting server based on the
response times helps to send user requests to the servers operating
underminimumserver load to extractmaximumperformance. The
concrete implementation process is explained as follows.

3.2.1. Real-time measurement of server response time
This section describes our strategy of obtaining the server

response time.
Step 1: Send Packet_out message to the switches. Once the

system is initiated, the controller sends multiple Packet_out
messages to the switches with time interval t and records the
transmission time. The number of messages sent out is the same
as the number of servers in the resource pool. Each Packet_out
message carries data packets whose source addresses are the
controller IP address, while destination address is assigned with
each server IP.

Step 2: Switches handles the Packet_out message. When the
OpenFlow switch receives the Packet_out message sent by the
controller, the switch will parse the data packets and sends these
data packets to each server.

Step 3: The server sends the reply message, from which the
controller obtains the server response time. After receiving the
data packets sent from the controller, each server runs a simulation

412 H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416
Fig. 2. The server’s response time in the first case.
of the client request and then sends a data packet with the source
address assigned as the server IP and the destination address
assigned as the controller IP. Since this is a new event in the flow
table, the switch needs to send Packet_inmessage to the controller.
Now the controller obtains the arrival time of each server data
packet by parsing the Packet_inmessage. As a result, the controller
obtains the response time of each server, and updates the database
accordingly.

Step 4: Repeat Step 1, step 2, and step 3.
The algorithm is described as follows (see Algorithm1):
Once the server response time is obtained by the controller, user

requests are processed by balancing the serer load, as described in
the following sections.

3.2.2. The process of user request
This section explains our strategy of load balancing using the

server response time.
Step 1: The controller handles the ARP messages. Users will

send ARP_broadcast message to the switches upon the first access
since the switches do not contain flow tables for processing ARP in
order to send Packet_in message to the controller. The controller
will then construct a virtual MAC address, based onwhich, it sends
a Packet_out message to the switches, and the switch sends the
ARP reply packet to the user terminal.

Step 2: The controller handles the user request. After users
receiving an ARP reply packet, they initiate a service request to the
server, and the request process is similar to Step 1. The controller
will also receive this user’s request service packet, and select
the server with minimum or stable response time according to
obtained server data. The selection process is explained as follows.

① Using formula (1) and (2), we obtain the maximum value
Tmax and minimum value Tmin of the server response times for the
current server cluster.
Tmax = Max{T1,0, T2,0, T3,0, . . . , Tn,0} (1)

Tmin = Min{T1,0, T2,0, T3,0, . . . , Tn,0} (2)
where, Ti,j is the response time of the ith server in the j time interval
before the current time where each interval is t , and Ti,0 is the
current response time of the ith server.

② According to the obtained Tmin and Tmax, we calculate |Tmin −

Tmax|. If |Tmin − Tmax| < λ, execute, ③ otherwise execute. ④ λ
represents that the servers are of similar loads when the response
time difference is in the range of λ.

③ Now we obtain the standard deviation of each server’s
response time by calculating the standard deviation ofm historical
data of each server’s response time using formula 3. Then, we
will select the server with minimum standard deviation Smin, then
execute⑤

Si =

(Ti,0 − T̄)2 + (Ti,1 − T̄)2 + · · · + (Ti,m−1 − T̄)2 (3)
where, T̄ represents the average value of m historical data and
Si represents the standard deviation of historical data for the ith
server.

④ Now, we select the server with Tmin.
⑤ The controller will send the flow table to the switches

according to the selected server, then user requests will be sent
to selected server.

The algorithm is described as follows (see Algorithm2):

4. Experiment result and performance analysis

In our experimental setup, the virtual switch is created by Open
vSwitch. The floodlight is chosen as the SDN controller. Due to
the floodlight is a free open source, and add and delete modules
can be arbitrary used, so it provides much more convenience for
our test. Three virtual machines with identical configurations are
assigned as servers to provide web services. In this experiment,
we let 30 clients to access to the server. Moreover, the access
frequencies of different clients are usually not the same in the
real world. So we set up two different access frequencies. One is
that each client sends a continuous HTTP request to the server,
and another is that each client sends a request every two seconds.
WordPress is used to build a blog on three servers. And then in
the following three cases, we start these clients in 2min randomly.
On another virtual machine, we use 30 clients to access the server
under three different situations: (1) 12 clients send a service
request to the server continuously, while 18 clients send a request
discontinuously; (2) 15 clients send a service request to the server
continuously, while 15 clients send a request discontinuously; (3)
18 clients send a service request to the server continuously, while
12 clients send a request discontinuously. In the controller, we add
two modules, one is used to measure the server response time,
and another is used to process the user requests and set flow
table. Figs. 2, 3, 4 illustrate the server’s response time for a period
after the concurrent accesses reach the maximum value under the
three situations respectively. There are a lot of servers in a server
resource pool, in our experiment, we select the average response
time of the servers as overall response time. The main purpose
of load balancing is to avoid significant system load deviation in
the long time of running so as to enhance the system efficiency
and achieve a better user experience. Obviously, the effect of load
balancing depends on the load and response time of the server. So
we choose these two parameters to compare with other schemes.
In this paper, we first evaluate the efficiency of our LBBSRT scheme
against the traditional round-robin and random schemes.

In this case, the average server’s response time of the three
schemes, Round Robin, Random and LBBSRT are 0.831 s, 0.857 s,
and 0.791 s respectively.

H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416 413
The average server’s response time of the three schemes, Round
Robin, Random and LBBSRT are 0.954 s, 0.996 s and 0.892 s
respectively.

The average server’s response time of the three schemes, Round
Robin, Random and LBBSRT are 1.236 s, 1.366 s and 1.119 s
respectively. It is evident that the average server response times
of the server in LBBSRT is the minimum among the three schemes
under the above three scenarios. Also the polylines fluctuation
of our LBBSRT scheme is stable and minimum, as shown in
Figs. 2–4. This is because our scheme always chooses the server
characterized with minimum response time in order to provide
services to the users.Moreover, round robin algorithm and random
algorithm does not consider the real-time status of the servers. As
a result, the load among all the server is balanced evenly and the
server response time is reduced to minimum.
LBBSRT has significant advantages compared to other schemes
in terms of the overall response times. In order to achieve a more
prominent load balancing effect in LBBSRT, we also extract the
CPU and memory utilization rates of each server when the system
reaches the maximum number of concurrent access. Figs. 5, 6
presents the CPU and memory usage graphs of the three servers
named h1, h2, h3 under Robin Round, Random and LBBSRT
schemes.

From Figs. 5, 6, we observe a slight difference in memory
utilization and CPU utilization at 50% and 75% for the three
servers respectively. The reason is that in our scheme, we can use
controller get the real-time response time of each server, and it
is more difficult to achieve in the traditional scheme. Our scheme
always choose the serverwithminimal or themost stable response
time. The response time of the server is smaller or more stable, the

414 H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416
Fig. 3. The server’s response time in the second case.
Fig. 4. The server’s response time in the third case.
Fig. 5. CPU utilization.
corresponding server load is lower or more stable. In comparison
with the Round Robin and Random schemes, our scheme exploits
the server resources completely and thus achieves a much better
effect of load balancing. After comparing with the static load
balancing scheme, we further add an experimental contrast with
zhang [11] based on the second cases. The experimental results are
shown below.

From Fig. 7, the average value of the server response time of
zhang [11] is 0.936 s which is lower than the Round Robin and
Random scheme. But compared to LBBSRT, it is still high. From
Figs. 5, 6 and 8, we can also find that the load balancing effect of
LBBSRT is better than zhang [11].

5. Conclusions and future work

The emergence of SDN architecture provides us with a new
train of novel prospects for solving the prevailing issues in
the traditional load balancing network. In order to solve the
problems of lower efficiency and higher deployments costs of

H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416 415
Fig. 6. Memory utilization.
Fig. 7. The server’s response time.
Fig. 8. Resource utilization of least-connections.
load balancing in the traditional networks, this paper proposes
a dynamic load balancing scheme under the SDN architecture,
using the controller to obtain the real response time of each server
ultimately to select a server with minimum or the most stable
response time. Our proposed scheme exploits the server resources
and achieves a much better load balancing effect in comparison
with the traditional Round Robin and Random schemes. Also, our
schemes is cost effective than the traditional schemes, since we
reduce the requirements of hardware equipment by the way of
software customizing approach. Although our scheme solves the
load balancing problem efficiently, there are still some limitations.
We do not take into account the issue of energy saving in the load
balancing on the server. Accordingly, we will further study how to
save energy when achieve a balanced load so as to make a lot of
more sense in the future.

Acknowledgments

The work was supported by the National Natural Science
Foundation of China (No. 61572001, No. 61502008), the Re-
search Fund for the Doctoral Program of Higher Education (No.
20133401110004), the Educational Commission of Anhui Province,

416 H. Zhong et al. / Future Generation Computer Systems 80 (2018) 409–416
China (No. KJ2013A017), the Natural Science Foundation of An-
hui Province (No. 1508085QF132), the Tender Project of the Co-
Innovation Center for Information Supply & Assurance Technol-
ogy of Anhui University (No. ADXXBZ2014-7), and the Doctoral Re-
search Start-up Funds Project of Anhui University (No. J01001903).
The authors are very grateful to the anonymous referees for their
detailed comments and suggestions regarding this paper.

References

[1] Z. Huang, J. Liu, Q. Shen, et al., A threshold-based multi-traffic load balance
mechanism in LTE-A networks, in:Wireless Communications and Networking
Conference (WCNC), 2015 IEEE, IEEE, 2015, pp. 1273–1278.

[2] J. Zha, J. Wang, R. Han, et al., Research on load balance of service capability
interaction management, in: 2010 3rd IEEE International Conference on
Broadband Network and Multimedia Technology, (IC-BNMT), IEEE, 2010,
pp. 212–217.

[3] W. Tian, M. Xu, Y. Chen, et al., Prepartition: A new paradigm for the load bal-
ance of virtual machine reservations in data centers, in: 2014 IEEE Interna-
tional Conference on Communications, (ICC), IEEE, 2014, pp. 4017–4022.

[4] E. Musoll, Hardware-based load balancing formassivemulticore architectures
implementing power gating, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 29 (1) (2010) 493–497.

[5] F.A. Lopes, M. Santos, R. Fidalgo, et al., A software engineering perspective on
SDN programmability, IEEE Commun. Surv. Tutor. 18 (2) (2016) 1255–1272.

[6] F. Hu, Q. Hao, K. Bao, A survey on software-defined network and openFlow:
from concept to implementation, IEEE Commun. Surv. Tutor. 16 (4) (2014)
2181–2206.

[7] P. Bosshart, G. Gibb, H.S. Kim, et al., Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN, ACM SIGCOMM
Comput. Commun. Rev. 43 (4) (2013) 99–110. ACM.

[8] J. Naous, D. Erickson, G.A. Covington, et al., Implementing an OpenFlow switch
on the NetFPGA platform, in: Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ACM, 2008,
pp. 1–9.

[9] N. Handigol, S. Seetharaman, M. Flajslik, et al., Plug-n-Serve: Load-balancing
web traffic using OpenFlow, ACM Sigcomm Demo 4 (5) (2009) 6.

[10] S. Kaur, J. Singh, K. Kumar, et al., Round-robin based load balancing in Software
Defined Networking, in: 2015 2nd International Conference on Computing for
Sustainable Global Development, (INDIACom), IEEE, 2015, pp. 2136–2139.

[11] H. Zhang, X. Guo, SDN-based load balancing strategy for server cluster, in: 2014
IEEE 3rd International Conference on Cloud Computing and Intelligence
Systems, (CCIS), IEEE, 2014, pp. 662–667.

[12] Z. Shang, W. Chen, Q. Ma, et al., Design and implementation of server cluster
dynamic load balancing based on OpenFlow, in: 2013 International Joint
Conference on Awareness Science and Technology and Ubi-Media Computing,
(iCAST-UMEDIA), IEEE, 2013, pp. 691–697.

[13] Z. Xu, R. Huang, L.N. Bhuyan, Load balancing of dns-based distributed
web server systems with page caching, in: Proceedings. Tenth International
Conference on Parallel and Distributed Systems, 2004. ICPADS 2004, IEEE,
2004, pp. 587–594.

[14] R. Tong, X. Zhu, A load balancing strategy based on the combination of static
and dynamic, in: 2010 2nd International Workshop on Database Technology
and Applications, (DBTA), IEEE, 2010, pp. 1–4.

[15] S. Yu, IEEE approves new ieee 802.1 aqTMshortest path bridging stan-
dard[EB/OL]. [2012-05-08] https://www.techpowerup.com/165594/ieee-
approves-new-ieee-802-1aq-shortest-path-bridging-standard.

[16] M.K. Shin, K.H. Nam, H.J. Kim, Software-defined networking (SDN): A
reference architecture and open APIs, in: 2012 International Conference on
ICT Convergence, (ICTC), IEEE, 2012, pp. 360–361.

[17] A. Malishevskiy, D. Gurkan, L. Dane, et al., OpenFlow-Based Network
Management with Visualization of Managed Elements, in: Research and
Educational Experiment Workshop (GREE), 2014 Third GENI, IEEE, 2014,
pp. 73–74.
[18] S. Huang, J. Griffioen, K.L. Calvert, Network Hypervisors: Enhancing SDN
Infrastructure, Comput. Commun. 46 (2014) 87–96.

[19] A. Lara, A. Kolasani, B. Ramamurthy, Network innovation using openflow: A
survey, IEEE Commun. Surv. Tutor. 16 (1) (2014) 493–512.

[20] N. McKeown, T. Anderson, H. Balakrishnan, et al., OpenFlow: enabling
innovation in campus networks, ACM SIGCOMM Comput. Commun. Rev. 38
(2) (2008) 69–74.

[21] C. Rotsos, N. Sarrar, S. Uhlig, et al., OFLOPS: An open framework for OpenFlow
switch evaluation, in: Passive and Active Measurement, Springer, Berlin,
Heidelberg, 2012, pp. 85–95.

[22] M. Kobayashi, S. Seetharaman, G. Parulkar, et al., Maturing of OpenFlow and
Software-definedNetworking throughdeployments, Comput. Netw. 61 (2014)
151–175.

[23] H. Yin, T. Zou, H. Xie, Defining data flow paths in software-defined
networks with application-layer traffic optimization: U.S. Patent Application
13/915,410[P]. 2013–6-11.

[24] F. Pakzad, M. Portmann, W.L. Tan, et al., Efficient topology discovery in
OpenFlow-based Software Defined Networks, Comput. Commun. 77 (2016)
52–61.

[25] S. Scott-Hayward, Design and deployment of secure, robust, and resilient
SDN Controllers, in: 2015 1st IEEE Conference on Network Softwarization,
(NetSoft), IEEE, 2015, pp. 1–5.

[26] D.B. Hoang, M. Pham, On software-defined networking and the design of
SDN controllers, in: 2015 6th International Conference on the Network of the
Future, (NOF), IEEE, 2015, pp. 1–3.

[27] N. Gude, T. Koponen, J. Pettit, et al., NOX: towards an operating system for
networks, ACM SIGCOMM Comput. Commun. Rev. 38 (1) (2008) 105–110.

Hong Zhong is a Professor (from 2009) and Executive
Dean of the School of Computer Science and Technology,
Anhui University, China. She received Ph.D. degree in
University of Science and Technology of China in 2005. Her
research interests cover network and information security.

Yaming Fang is now a research student in the School of
Computer Science and Technology, Anhui University. His
research interest is Software Defined Networking.

Jie Cui is now an Associate Professor in the School
of Computer Science and Technology, Anhui University.
He received Ph.D. degree in University of Science and
Technology of China in 2012. He has published over
30 papers. His research interests include network and
information security.

http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref1
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref2
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref3
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref4
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref5
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref6
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref7
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref8
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref9
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref10
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref11
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref12
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref13
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref14
https://www.techpowerup.com/165594/ieee-approves-new-ieee-802-1aq-shortest-path-bridging-standard
https://www.techpowerup.com/165594/ieee-approves-new-ieee-802-1aq-shortest-path-bridging-standard
https://www.techpowerup.com/165594/ieee-approves-new-ieee-802-1aq-shortest-path-bridging-standard
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref16
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref17
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref18
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref19
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref20
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref21
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref22
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref24
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref25
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref26
http://refhub.elsevier.com/S0167-739X(17)32547-5/sbref27

	Reprint of ``LBBSRT: An efficient SDN load balancing scheme based on server response time''
	Introduction
	Related works
	The traditional load balancing scheme
	The SDN architecture
	The SDN controller

	The design and implementation of LBBSRT
	System model
	Scheme description
	Real-time measurement of server response time
	The process of user request

	Experiment result and performance analysis
	Conclusions and future work
	Acknowledgments
	References

