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Abstract: To achieve important properties of wireless mesh networks (WMNs) 
such as coverage and reliability, the placement of mesh nodes plays an 
important role. The impact of the mesh node placement on the performance of 
WMNs has been carried out in the past years. To improve such properties, we 
propose a novel scheme for mesh node placement in WMNs. We have 
developed a multi-objective optimisation model for node placement where the 
coverage, reliability and the total installation cost in terms of nodes to be 
deployed are the three objectives to optimise simultaneously. We first applied 
the two well-known evolutionary algorithms, namely the non-dominated 
sorting genetic algorithm-II (NSGA-II) and multi-objective genetic algorithm 
(MOGA) to generate the number and positions of the communication nodes. 
Subsequently, we developed algorithms that determine the cluster formation, 
gateway selection and relay nodes selection. The results showed satisfactory 
performance. 
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1 Introduction 

The use of wireless networks continues to grow, driven by the growth in the number of 
wireless connection devices. Estimates by the Wifi alliance (Biswas et al., 2015) have 
shown that more than 10 billion Wifi devices were sold in total in 2015 and that more 
than 4.5 billion of these devices are in use today. Wireless technology enables these 
electronic devices to be able to connect to the network, including the concept of all 
connected objects or the internet of things. Expand the use of wireless radio 
communication means whatever the environment is essential nowadays. Several types of 
wireless networks have been developed, including wireless mesh networks (WMNs). 

WMNs (Akyildiz and Wang, 2009) are known as multi hop communication networks 
and hierarchically organised. It consist of mesh clients and mesh routers, where the mesh 
routers form a wireless infrastructure/backbone and interwork with the wired networks to 
provide multihop wireless connectivity to the mesh clients (Hossain et al., 2008). Mesh 
clients can be typically cell phone, PDA users, laptops, tablets and others wireless 
devices and mesh routers basically are the combination of access points, mesh relays and 
gateways. These three main components constitute the core of the networks. The path 
redundancy is a robust feature of mesh topology and makes WMN very reliable networks 
to potential node failures. Potential application scenarios for WMNs include backhaul 
support for cellular networks, home networks, enterprise networks, community networks, 
internet access, public safety, building automation, electric utility automation, 
information sharing and intelligent transport system networks (Akyildiz and Wang, 
2009). Figure 1 (in Appendix A) illustrates WMN architecture. 

The development of wireless networks has created new challenges that require 
improving connectivity and network scale strategies. Different optimisation problems 
have been studied in WMNs, in order to optimise its performance. These include 
coverage, reliability, quality of service in terms of throughput and delay, interference, etc. 
The first service a network must provide is access and generally a global coverage of the 
area of interest is required to provide that access. Coverage is therefore an essential 
objective and it is either to be maximised or expressed as a constraint to be met in order 
to ensure quality of service. We also note that the guarantee of coverage and the 
reliability of the network are linked. In fact, the access nodes are mostly fixed and make 
them possible to convey the data of the users from one point to another. A path must 
therefore be set up in the wireless distribution system between each end user and at least 
one gateway in order to guarantee connectivity constraint in the event of failure of a node 
or path. To efficiently provide network connectivity, optimised positions and 
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configurations of mesh routers are required. The different solutions proposed depend 
heavily on the choice of the positions or locations of the infrastructures of the network 
and their number. 

Nodes are strategically placed to achieve the desired hops and to avoid forming long 
hops in the backbone. Nodes placement problem in the literature (Xhafa et al., 2015) is 
closely related to facility location problem, which in a general setting seeks an optimal 
placement of a number of facilities that give service to a certain number of clients. The 
similarity with mesh routers node placement in WMNs is straightforward by considering 
mesh routers as facilities, which give service, i.e. Internet connectivity, to mesh client’s 
nodes. Basic facility location models related to discrete network location models is 
presented in (Current et al., 2001) and even the most basic location models are classified 
as NP-hard (Garey and Johnson, 1979). Realistic planning is usually to optimise several 
often conflicting objectives; such that the simultaneous optimisation of radio coverage 
and minimising interference or trade-off between the minimisation of the cost of 
deployment and the maximisation of network performance. Therefore, a multicriteria 
optimisation approach is the best one that reflects this problem. Such a problem is called 
multiobjective optimisation problem (Coello et al., 2007). The multiobjective 
optimisation approach produces several non-dominated solutions. It is proven in 
(Mountassir et al., 2013) that WMN planning optimisation problem is NP-Hard. In this 
work we use non-dominated sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002) 
and multi-objective genetic algorithm (MOGA) (Fonseca and Fleming, 1993) methods 
for solving nodes placement problem, consisting in the maximisation of the network 
reliability (connectivity), coverage maximisation and cost minimisation. These 
multiobjective genetic algorithms (GA) have the main task of generating the initial 
positions of the nodes and their number. Thereafter, we propose a three step approach to 
guarantee reliability of the network through clustering the nodes based on these two 
multiobjective metaheuristics. 

The rest of the paper is organised as follows. In Section 2 we review some 
optimisation problems related to node placement problems in WMNs. We describe and 
formulate the optimisation problems in Section 3. In Section 4, we present NSGA-II and 
MOGA methods that we have used for solving node placement problems. We also 
present a three step approach to guarantee reliability of the network through clustering 
the nodes. Section 5 presents the numerical results. In Section 6, the conclusions and 
perspectives are outlined. 

2 Related works 

We review in this section some techniques provided in the literature about mesh node 
placement. Clustering technique is widely used for mesh backbone formation in 
designing a WMN to achieve user coverage and ensure network’s reliability. 

Bejerano (2004) has started to develop the way of WMN design using clustering 
technique. He breaks the problem into two sub-problems: 

1 finding the minimal number of disjoint connected clusters that contain all the nodes 
and satisfying the delay constraint 

2 dividing the clusters that violate the cluster size constraint. 
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But by splitting a cluster without considering re-assigning those wireless mesh routers to 
existing clusters may create some unnecessary clusters and therefore increase 
significantly the number of clusters. Aoun et al. (2006) tried to minimise the 
disadvantages of Bejerano’s technique by combining the two sub-problems, where the 
spanning tree and cluster coverage evolve in parallel subject to satisfy the quality of 
service constraints. It recursively computes minimum dominating sets of the graph 
resulting from the previous iteration in each recursive iteration. The algorithm first 
produces an adjacency matrix. Then, greedy selection is used to select a node that covers 
as many un-selected nodes as possible and builds the spanning tree. They also proposed 
to increase throughput by introducing multiple gateways. But placement of multiple 
gateways throughout the mesh does not always result in more throughput as proved by 
Pandey et al. (2012). A novel method for clustering the nodes and load sharing amongst 
the clusters based on graph partitioning approach has been presented in Pandey et al. 
(2012). Seyedzadegan et al. (2013) elaborated the importance of nodes degree and 
clustering for the efficient operation of backbone WMNs. A novel zero-degree algorithm 
is proposed for clustering the backbone WMN based on degree/number of wireless 
routers’ connections, while ensuring delay, relay load and cluster size constraints. 

Nodes placement problem has been also formulated as an optimisation problem and 
several heuristics and metaheuristics approaches have been proposed. In fact, the 
different versions of the problem can be obtained depending on the types of nodes to be 
deployed as well as the objectives to be optimised. 

Amaldi et al. (2008) have proposed an optimisation models for planning WMNs, 
where the objective is to minimise the network installation cost while providing full 
coverage to wireless mesh clients. They have proposed and evaluated a relaxation-based 
heuristic to solve a mixed integer linear programming (ILP) models that allow to select 
the number and positions of mesh routers and access points, while accurately taking into 
account traffic routing, interference, rate adaptation and channel assignment. But they 
have considered only cost as objective to optimise rather than multiobjective optimisation 
model. De Marco (2009) presented an evolutionary algorithm, for node placement 
problem in WMN, which optimises the graph topology by minimising the node degree 
and maximising the user coverage percentage, while allowing cycles in the graphs, i.e., 
by allowing non-minimum spanning tree (MST) graphs. A generic multiobjective 
optimisation framework of a WMNs planning problem was devised by Benyamina et al. 
(2012). The goal is to minimise the cost and maximise the overall network performance 
prior to its deployment. They proposed three multiobjective models for WMN problem, 
namely load-balanced model, Interference model and flow-capacity model. They used 
ILP optimisation approach and devised an evolutionary swarm based algorithm that is a 
hybrid combination of multi-objective particle swarm optimisation (MOPSO) and GA to 
solve the three models. 

Mountassir et al. (2013) proposed a mutliobjective model for WMNs planning by 
optimising four objective functions simultaneously including: cost minimisation, 
coverage maximisation, links congestion minimisation and gateways congestion 
minimisation subject to a set of constraints to take into account namely interference, 
robustness and load balancing. They used the MOPSO method to provide interesting 
results and let the network planner decide which solution responds to his requirements. In 
Chung-Chen (2013) particle swarm optimisation (PSO) based model has been proposed 
to solve mesh routers placement in dynamic network. Model considers the mobility of 
both mesh routers and clients so that mesh clients can change the network access to on or 
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off. The model aimed to maximise the network connectivity and users’ coverage based on 
mathematical formulation. However, the performance of the PSO based algorithm has 
been evaluated by discussing the influences of the different parameters on the network 
design to present the convergence in the PSO toward the solution. 

The work done by Abdelkhalek et al. (2015) presented a novel multiobjective node 
placement problem that optimises concurrently four objectives: maximising 
communication coverage, minimising the active structures’ costs, maximising the total 
capacity bandwidth and minimising the noise level in the network. They have applied a 
multiobjective variable-length genetic algorithm (VLGA) that simultaneously searches 
for the optimal number, positions and nature of heterogeneous nodes and communication 
devices. Fendji et al. (2015) have presented an approach based on metropolis algorithm to 
solve the problem of mesh nodes placement in rural WMN. The goal is to determine an 
optimal number and positions of mesh router nodes while maximising the coverage of 
areas of interest, minimising the coverage of optional areas and ensuring connectivity of 
all mesh router nodes. In the study of Xhafa et al. (2015), they presented the 
implementation and evaluation of Tabu search (TS) for the problem of mesh router node 
placement in WMNs. Given a number of router nodes to deploy, a deployment area and 
positions of client nodes in the area, an optimisation problem was formulated aiming to 
find the placement of router nodes so as to maximise network connectivity and user 
coverage. The experimental evaluation showed the efficiency of TS in solving a 
benchmark of instances. Wang et al. (2015) have formulated the relay placement problem 
for content-centric WMNs as an integer linear program in order to maximise the network 
throughput. A near-optimal approximation algorithm based on linear programming 
relaxation has been developed to optimally solve the problem. 

The problem addressed in this paper has characteristics that are similar to those of the 
problems reviewed above. However, we consider that mesh clients do not act as routers 
or as a gateway, i.e., mesh clients must go through mesh routers to communicate with 
other nodes. 

3 Problem description and formulation 

3.1 Problem description 

Let N be the number of nodes to be deployed on a geographical surface S where each 
point is identified by its coordinates. Initially, we model the WMN by a non-oriented 
graph G = (V, E), where the set of vertices V represents the wireless nodes and the set of 
edges E represents the communications links between the nodes of the network. The set 
of vertices of the graph is decomposed into three subsets V = Vap ∪ Vrr ∪ Vgw, where Vap 
represents the set of access points (used to collect traffic from the demand points to 
backhaul), Vrr is the set of relays (used to extend communication coverage and relay 
traffic from access points to / from gateways) and Vgw represents the set of gateways that 
are connected to the internet or to a wired network. Each node nj ∈ V has several radio 
interfaces R corresponding to the number of links that this node can establish with its 
neighbours. The set of neighbours of nj denoted by ,jnK V∈  is the set of nodes that are 
within the transmission range of nj. The arc (nj, nk) ∈ E represents the wireless link 
between the node nj and the node nk. A link can be established between two nodes nj and 
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nk only when the distance d(nj, nk) which separates them is less than the transmission 
range of each node and each node is assumed to have same radio coverage. Hops are built 
over wireless links between mesh client and a gateway. The restriction is that the number 
of wireless hops must be limited to an upper bound as proved in Andrade et al. (2015). 
We consider that, only relay node can be served by the gateway because of their 
proximity. 

Reliability of the network can be measured by the value of the clustering coefficient 
(CC) in order to improve robustness to failure (Watts and Strogatz, 1998). The CC 
measures the degree of how strongly nodes are clustered in a network. As defined in 
Brust et al. (2012) the local CC (CCnj of a node nj with jnK  neighbors is 

( )
( )1

j

j
j j

n
n

n n

E L
CC

K K
=

−
 

where | ( ) |jnE L  is the number of links in the neighbourhood of nj and ( 1)j jn nK K −  is the 
total number of possible links in the neighbourhood of nj. The local CC determines the 
degree of the connectedness of the node’s neighbours. And the global CC of a graph  

G = (V, E) is the average of all local CCs in the network denoted as 1
j

j
nn

CC CC
N

= ∑  

where N is the number of nodes in G denoted as N = |V| (Brust et al., 2012). A high CC 
value means that the network consists of a high number of locally clustered nodes, i.e., 
CC reflects the probability that a randomly chosen pair of nodes n1, n2 ∈ V that are 
connected,  
(n1, n2) ∈ E have a mutual neighbour n3 ∈ V with (n1, n2) ∈ E and (n2, n3) ∈ E. 

The objective is to create disjoint clusters such that the trade-off between number of 
deployed nodes, the user coverage and reliability of the network be the best possible. Our 
graph is based on geographic information of the area of deployment and takes into 
consideration maximum coverage range of nodes. In many studies user coverage mainly 
depends on how the users were distributed on the specific area. Since the distribution of 
real mesh clients can not be predicted, we assume that the locations of mesh clients are 
fixed in the deployment area by uniform distribution. 

3.2 Formulation 

As cited earlier let a graph G = (V, E), where |V| = N is the set of wireless nodes and E 
describes the set of links between pair of routers nodes. The sets of access points, relays 
and gateways are referred as Vap, Vrr, Vgw respectively with V = Vap ∪ Vrr ∪ Vgw. Each 
node has R radio interfaces. Let a set P = {p1, p2, p3, …, pn} represents the n candidates 
locations or position where nodes can be installed and U = {u1, u2, u3, …, um} the set of m 
positions where users or clients are distributed. We stated that j = 1, 2, 3, …, n and i = 1, 
2, 3, …, m. We define the following notation: 

N number of wireless nodes 

n number of candidates location 

m number of clients positions 
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R number of radio interface per node 

apvC  access point installation cost 

rrvC  relay router installation cost 

gwvC  gateway installation cost 

hj maximum number of wireless hops to gateway j 

,
i
j kZ  hop associated of arc (j, k) in level l to hj 

Ca node’s radio interface capacity for access communication 

Cb node’s radio interface capacity for backbone forwarding 

Ci,j cost associated if the assignment of the user location i to node j is done 

Aj installation of an access point at location j 

Mj installation of mesh relay at location j 

Gj installation of a gateway at j 

kg set of wireless links of a gateway 

kh,j k- hop neighbours of node j 

Δj number of nodes supported by a gateway j 

rj reliability of node j 

xi,j assignment of the user location i to node j 

Covi,j coverage of location i by node j 

Ti: traffic generated by users in i position 

Tj flow outgoing through gateway i 

Tj,k flow between node j and node k through arc (j, k) 

Consider the following decision variables: 

1 if a router relay is installed at j
.

0 otherwisejA ⎧
= ⎨
⎩

 

1 if a router relay is installed at j
.

0 otherwisejM ⎧
= ⎨
⎩

 

1 if a gateway relay is installed at j
.

0 otherwisejG ⎧
= ⎨
⎩

 

,
1 f location i is covered by node j

.
0 otherwisei j

i
Cov ⎧

= ⎨
⎩
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,
1 f location i is assigned to node j

.
0 otherwisei j

i
x ⎧

= ⎨
⎩

 

,
1 if arc (j, k) is in level l to gateway

.
0 otherwise

l
j kZ ⎧

= ⎨
⎩

 

Setting as an objective the minimisation of the cost, the maximisation of user coverage 
and the maximisation of the reliability, the mathematical model can be formulated as 
follows: 

( )( ), ,1 1
min ap rr gw

n m
V j V j V j i j i jj j

C A C M C G C X
= =

+ + +∑ ∑  (1) 

, ,1 1
max

n m
i j i jj i

Cov x
= =∑ ∑  (2) 

( )max j j j jj J
A M G r

∈
+ +∑  (3) 

Subject to 

,1
1, 1, ,

m
i j ji

x A j n
=

≥ =∑ …  (4) 

j j jj P
A M G N

∈
+ + ≤∑  (5) 

,0
1, ( , ) , ,jh l

ap rr gwj kl
Z j l E j V k V V

=
≤ ∀ ∈ ∈ ∈ ∪∑  (6) 

,j jh j j h ap rrk G k V V≤ Δ ∈ ∪∑  (7) 

1j jA G+ ≤  (8) 

,i j jx A≤  (9) 

g jk RG ′≤∑  (10) 

i a jT C A≤  (11) 

, ,1

jh l
j k bj kl

T Z C
=

≤∑  (12) 

( ), , ,,
0i i j j k k j ji U j k P

T x T T T
∈ ∈

+ − − =∑ ∑  (13) 

, ,, , , , {0, 1} , , ,l
j j j i j jj kA M G Cov Z i U j k P l h∈ ∀ ∈ ∈ ∈  (14) 

The function objective (1) minimises the total installation cost and exploitation of the 
network. Term (2) is the maximisation of user coverage and Term (3) is the maximisation 
of the reliability. Constraint (4) assigns a position i to at least one access point Aj. 
Constraint (5) limits the number of deployed nodes. Constraint (6) limits an arc to be in 
more than one level. Constraint (7) requires that if a gateway is installed, it should have a 
number of supported nodes Δj. Constraint (8) an access point and a gateway should not be 
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deployed close to each other. Constraint (9) ensure that a position i can only be assigned 
to a node if the node is installed at location j. Constraint (10) states that the number of 
links emanating from a gateway is limited by the number of its radio interfaces. 
Constraints (11) and (12) ensure that access points and node-to-node capacities are 
respected. Constraint (13) defines the flow balance. 

4 Resolution approach 

Node placement problems are known to be computationally hard to solve to optimality in 
their general formulations and thus evolutionary algorithms have proven to be useful 
approach to cope in practice for their resolution (Barolli et al. 2011; Benyamina et al., 
2012; Abdelkhalek et al., 2015). We make a brief introduction to evolutionary algorithms 
with special emphasis on methods used in our study, including multiobjective 
optimisation methods NSGA-II and MOGA. 

NSGA-II proposed by Deb et al. (2002) is a popular and efficient multiobjective 
genetic algorithm for solving real world engineering problems. A brief description of 
NSGA-II is given bellow and we refer to Deb et al. (2002) for more details. NSGA-II 
starts with a set of acceptable solutions (population of parents Pt of size N) and by 
applying the typical genetic operators namely selection, crossover and mutation a new 
population (population of children Qt of size N) is obtained. Population of parent Pt and 
population of children Qt are assembled to form population Rt of size 2N. The population 
of Rt are sorted according to their rank, i.e., solutions (individuals) are classified into 
Pareto fronts and the best solutions are chosen to create a new relative population (Pt+1). 
This new relative population is formed by adding classified fronts as long as they do not 
exceed N. In the case of having to select some solutions with the same rank, a density 
estimation based on measuring the crowding distance to the surrounding solutions 
belonging to the same rank is used to get the most promising solutions. Once the 
solutions in the population Pt+1 are identified, a new child population (Qt+1) is created by 
selection, crossover and mutation. The process is repeated until a stopping criterion is 
met. 

MOGA was proposed by Fonseca and Fleming (1993). MOGA is a method in which 
each individual (solution) is checked for its domination in the population of size N. Then, 
the algorithm uses a performance calculation function for taking into account the rank of 
the individual and non-dominated solutions are assigned a rank equal to 1 and the 
maximum rank cannot be larger than the size of the population N. Since no solution 
would dominate a non-dominated solution in a population, all individuals of the same 
rank have the same performance. In order to maintain the diversity among non-dominated 
solutions, niching among solutions of each rank are introduced. This method provides a 
disadvantage risk of premature convergence because of the great pressure exerted by the 
selection for represented solutions in any rank. To avoid this problem, the authors 
introduced a performance share function to better distribute the solutions along the Pareto 
frontier. This procedure is continued until all ranks are processed. Selection, crossover 
and mutation operators are applied to create a new population. 

We describe in this section the algorithms we have developed. 
Some work presented in Benyamina (2010) proposed to fix the number of nodes to be 

installed in search algorithms during deployment. But when the number of nodes is 
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overestimated, the configuration of the nodes obtained leads to an operation sometimes 
degraded by interference between channels. Hence the need to find the optimal number of 
nodes to be deployed. Initially, the NSGA-II and MOGA algorithms generate on the grid 
a graph formed only of isolated vertices (N nodes) on the different coordinates of the 
cells of the grid. We then design a clustering algorithm, according to Algorithm 1, that is 
to say a graph composed of several connected components that are not linked together. 
This algorithm iteratively identifies a group by dividing the graph into clusters. We then 
select, with Algorithm 2, a gateway in each cluster. Afterwards the relay nodes are 
chosen, according to Algorithm 3 based on the algorithm of Prim (1975) to leverage the 
reliability issues. To account for quality of service, we limit the number of hops between 
each user node and the nearest gateway. We consider following notation: 

G = (V, E) Graph G 

N the set of nodes with avec N = {n1, n2, …, np} 

Ci cluster i 

nj node j inside cluster Ci 

n(Ci) number of nodes in a cluster (n(Ci)Σnj ) 

dmax maximum distance between two nodes 

dj,k distance matrix d(nj, nk) of 1, , and 1, ,G j p k p∀ = =… …  

clustNb set of r disjoint clusters in the network (|clsutNb| = Ci where i = 1, …, r) 

Sj,k  cost of connexion between node j and node k 

TC(nj) total cost when all nodes are linked through nj 

Gwj  cluster gateway 

mj,k  adjacency matrix (mj,k if (nj, nk) ∈ E and mj,k otherwise) 

hk number of arc at the node nk 

Algorithm 1 Formation of clusters 

1 Input: N, n(Ci), dmax, dj,k 
2 Output: clsutNb 
3 clustNb ← Ø 
4 Ci ← Ø 
5  if N > 0 then 
6   for i = 1 to r 
7    Create a new cluster Ci 
8   while Ci ≤ n(Ci) 
9  find any two nodes (nj, nk)such as dj,k ≤ dmax // 1, , and 1, ,j p k p∀ = =… …  

10   Ci ← Ci + {nj, nk} 
11  if (Ci ≥ n(Ci) OR dj,k > dmax) then 
12  Ci ← n(Ci) 
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13  end if 
14   end while 
15  N ← N – n(Ci) 
16 clsutNb ← clsutNb + i 
17   end for 
18  clustNb ← the set of r clusters 
19  end if 

As input of the algorithm, we have the set of nodes N and the distance matrix dj,k between 
nodes. The first step of algorithm is to verify there are not empty nodes, after that clusters 
are iteratively identified. A new cluster is created on the basis of an analysis of the 
distance matrix from the coordinates of potential locations of nodes. The position of the 
nodes is determined by its coordinates on the grid. The selection of a subset of nodes 
(which the distance between them should be less than dmax) among a discrete set N is 
performed and any cluster must satisfy the constraints imposed by the cluster’ size 
(n(Ci)). At the end of the algorithm, we obtain a set of clusters (clsutNb). The aim of the 
cluster’ formation is to minimise hop boundary from each node and to create an effective 
topology. 
Algorithm 2 Selecting gateway in a cluster 

1 Input: r, n(Ci), dj,k, Sj,k, nj, TC(nj) 
2 Output: Gwj 
3 for c = 1 to r do // for each cluster Ci 
4   for nj = 1 to n(Ci) do // for each node nj of cluster Ci 
5  Connect all others nodes of the cluster Ci to the node nj 
6 Evaluate the cost of connecting all the other nodes through the node nj 
  ( ) ( )

, ,
2

in C
j j k j k

k
TC n S d

=
← ⋅∑  

7 end for 
8 Return min TC(nj) 
9 Gwj ← nj 
10 if not all clusters were visited then  
  Increase c and go to step 3 
11 end if  
12 end for 
13 Return the Gwj of each cluster Ci 

Assuming that the location of the gateway is potentially equivalent to the location of any 
node inside the cluster, the selection of a node nj as a gateway (Gwj) of a cluster Ci is 
based on the cost (TC(nj)) of all possible links or connection centred in that node nj. The 
Algorithm 2 is based on a sequential search of all clusters of the Algorithm 1 with a 
gateway in a given node (nj). The initial data is a list of: r clusters, the number of nodes 
(n(Ci)) in each cluster, the distance matrix dj,k and the cost of single connection between 
two nodes Sj,k. Sequentially search through all possible variants of minimum value of 
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(TC(nj)) is performed and the variant with the least cost value (TC(nj)) is chosen from all 
options. The aim is to minimise the number of gateways as well as reduce the number of 
supported node. Thereafter, we assume that a connected graph is built, in which every 
vertex (nj ∈ Ci is equipped with at least two radio interfaces. By using two interfaces, a 
node can simultaneously send and receive frames in both directions, i.e., uplink and 
downlink. WMNs performance can be optimised by limiting the number of connected 
nodes associated with the same gateway. The maximum possible mesh routers must be 
connected to the gateways to create an effective topology. To do this, we have 
implemented the Algorithm 3 based on Prim’s algorithm for the selection of relay nodes 
to associate with a gateway. 
Algorithm 3 Tree covering in a cluster 

1 Input: n(Ci), Ci, r, hk, mj,k, Gwj, nj, nk 
2 Output: T ← Tree covering in each cluster Ci 
3  for c = 1 to r do  // for each cluster Ci 
4  , mj,k ← 0, Gwj ← nj, T ← Gwj 
  While (nk ≤ n(Ci)) do  // ( )[1], 2.. ij k n C⎡ ⎤∀ = = ⎣ ⎦  

5 if (dj,k = = min dj,k) then 
6 T ← T ∪ {nk} 
7 mj,k ← 1 
8  n(Ci) ← n(Ci) – {nk} 
9 end if 
10 if (n(Ci) ≠ Ø) then 
11  k ← k + 1 
12 end if 
13  end while 
14 end for 
15 Come out tree T 
16  if hk ≥ 3 then // hk ∈ T 
17 Choose the node nk as a relay  
18  else 
19 Do not consider nk as a relay 
20  end if 

The number of nodes in each cluster (n(Ci), distance matrix (dj,k), adjacency matrix (mj,k), 
gateway (Gwj) and r clusters are collected as the input information of the algorithm. We 
referred to Prim algorithm (Prim, 1975) for finding the minimum weight tree. This 
algorithm starts with a completely disconnected graph, i.e., with an empty network, 
without communication links. We highlight the tree’s concentration point and we choose 
a node nk which have up to hk incidents arc as the relay’s nodes. 



 
   

 
   

   

 

   

    Mesh node placement in wireless mesh network 243    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5 Used parameters and results 

We describe the methodology we followed for our experiments. 
We consider the area of deployment as a grid that should be covered by a set of nodes 

N (where N = {n1, n2, …, np}). Each cell of this grid represents a candidate placement of a 
node nj. We assume that a point in the cell can be covered by a node nj ∈ N, if the 
distance between the node nj and this point is less than transmission range of nj 
(minimum distance of 100 meters has been fixed in our simulation). 

The first step of an evolutionary algorithm is the initialisation of the population, 
allowing creating a starting set to optimisation. We represent the grid by a chromosome 
vector modelled as a binary string (with a size equal to W × H where W represents the 
width and H the length of the deployment area) corresponding to the number of positions 
in the grid. Each element of the chromosome is a Boolean representing the presence of a 
node nj deployed in the corresponding position i. That is to say at each position i of the 
grid is allocated a binary decision variable, corresponding to the presence or not of a node 
deployed on position i and a cell can contain only one node at the same time. We thus 
generate a set of chromosomes which will constitute the initial population for the two 
algorithms NSGA-II and MOGA. Both algorithms are initialised with a population size 
of 100. Each chromosome is evaluated according to the dominance rule by the 
performance functions. The second step consists in applying the selection, crossing and 
mutation operators in order to carry out a simulation of the natural evolution. We have 
used the binary tournament for the selection of individuals, with the single-point 
recombination and bit-flip mutation operators. Then, the obtained sets of solutions are 
used to assess the performance of our proposed algorithms. Table 1 (in Appendix B) 
resumes the parameters of configuration for NSGA-II and MOGA algorithms. 

We describe the setup of the computational experiments performed to analyse the 
presented algorithms. We vary the size of the grid by 7, 14 and 30 km2 with respectively 
150, 300 and 500 distribution of test points and we set the range of each node to 100 m. 
Our proposed algorithms try to maximise the reliability objective in addition with these 
solutions found by NSGA-II and MOGA to satisfy cost and coverage objectives. Table 2 
(in Appendix C), Table 3 (in Appendix D) and Table 4 (in Appendix E) show the 
obtained potential solutions for respectively instance 7 km2, 14 km2 and 30 km2 to which 
are associated the cost (in term of number of nodes), coverage and reliability. The results 
are obtained after averaging the performances obtained by each of the algorithms 
following 20 independent simulations. 

We plotted in Figures 2–4 (in Appendix F–G) the set of Pareto front approximations 
found by NSGA-II and MOGA, together with the results provided by our proposed 
algorithms for different area size. We observe that the solutions reported are 
characterised by the number of nodes to deploy in order to cover all the area of interest 
and also constrained by the reliability value of the network. Both NSGA-II and MOGA 
algorithms try to minimise the number of deployed nodes to satisfy coverage constraint 
and cost. We can argue that the number of nodes and the size of area have an impact 
effect on the quality of the solution. The more area size we have to cover, the more 
expense is the cost of deployment (in term of number of nodes). However more nodes we 
have, the more covered is the area of deployment. It can be seen that these solutions give 
a coverage rate between (92% and 96%) and a reliability rate between (0.7744 and 
0.8839). 
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Figure 2 (in Appendix F) shows the Pareto 3D fronts found by the NSGA-II and 
MOGA algorithms for the area size of 7 km2. These figures show the different solutions 
obtained i.e. the compromise between the coverage rate and the reliability of the network 
with the number of nodes. The results show a better coverage rate obtained by the 
MOGA algorithm compared to the NSGA-II algorithm, with a margin of more than 4% 
average (88% to 98% for MOGA compared with 65% to 96% for NSGA-II). But  
NSGA-II generates a better rate characterising the network reliability of the order of 0.5 
to 0.89 compared with the order of 0.2 to 0.86 for MOGA. 

Figure 3 (in Appendix F) shows the 3D Pareto fronts obtained for the area size of  
14 km2. This instance proposes a network coverage rate between 84% and 98% for both 
NSGA-II and MOGA algorithms and on the other hand, the reliability rate of NSGA-II is 
better than 3% for MOGA. It should also be noted that the two algorithms obtained an 
equal number of non-dominated solutions for the generation of the Pareto front. 

The Pareto 3D fronts obtained for the area size of 30 km2 instance are shown in figure 
4 (in Appendix G). The results show a high coverage rate (> 90% average) obtained by 
the NSGA-II algorithm compared to the MOGA algorithm (between 85% and 98%). It is 
also observed that the reliability rate obtained with NSGA-II is significantly higher than 
that obtained with MOGA. It can be seen logically in Figure 5 (in Appendix G) that as 
the nodes increase the cost increases. 

5.1 Performance indicators for multi-objective algorithms 

The major difficulty of multiobjective optimisation assessment is that the output of the 
optimisation process is not a single solution but a set of solutions representing an 
approximation of the Pareto front. To evaluate the performances of different 
multiobjective metaheuristics, one needs to compare sets of solutions forming  
non-dominated sets. Several performance indicators are used in the literature. To evaluate 
the performance of the different metaheuristics, we have adopted, in our experiments, the 
generational distance for the convergence measure, the Spread indicator as the diversity 
indicator and the hypervolume as the hybrid indicator. 

5.1.1 Generational distance 
The generational distance IGD computes the average distance between the approximated 
set A and a reference set R (Veldhuizen et al., 2000). The reference set is generally 
represented by the exact Pareto front *.FP  At a given iteration t, the distance between 
the two sets is averaged over the pair wise minimum distances: 

( )1/22min ( ) ( )
( , ) .

| |
v Ru A

GD

F u F v
I A R

R

∈∈
−

=
∑

 

The generational distance measures how far the compromise surface is a set of solutions. 
Where the distance represents the Euclidean distance in the objective space. If the 
approximated front A is included in the reference set R, the generational distance will be 
equal to 0. 
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5.1.2 Spread 
The spread indicator Is combines the distribution and cardinality to measure the 
dispersion of the approximated set A (Zitzler et al., 2000): 

{ }: ( ) ( )

| | 1
u A

s

u A F u F u σ
I

A
∈

′ ′∈ − >
=

−
∑  

where σ > 0 is a neighbourhood parameter. The closer is the measure to 1 the better is the 
spread of the approximated set A. 

5.1.3 Hypervolume 
The indicator of the hypervolume (IH) measuring the volume of the portion weakly 
dominated by a set of point A, in the objective space (Zitzler and Thiele, 1999). The 
calculation of this volume requires the designation of a reference point, which is 
preferably dominated by all the points of the set A. The indicator of the hypervolume is 
often calculated relative to a reference set R, this indicator is noted HI −  and defined as 
follows (Zitzler and Thiele, 1999): 

( ) ( ) ( )H H HI A I R I A− = −  

where higher values of HI −  is smaller, the quality is better. The indicator of the 
hypervolume can take into account both the convergence of the algorithm and the variety 
of solutions found. However, the computational cost is high; the complexity is 
exponentially proportional to the number of objectives. 

The results of these indicators are summarised in Table 5 (in Appendix H) and we 
have chosen on all three instances the coverage rate between 85% and 98% and an 
average reliability rate of 0.7. We can see in Table 5 (in Appendix H) that MOGA 
surpasses NSGA-II in all instances according to the generational distance metric. 
According to the spreading metric NSGA-II and MOGA are close on instances 14 km2 
and 30 km2 with the exception of the instance 7 km2 where NSGA-II surpasses MOGA. 
We notice that NSGA-II in all three cases, obtained the best results for hypervolume 
indicators. However the three instances give MOGA results as close as those of NSGA-II 
for hypervolume indicators. 

6 Conclusions and perspectives 

We have developed in this paper, a multi-objective optimisation model for node 
placement in WMNs, where the coverage, reliability and the total installation cost in 
terms of nodes to be deployed are the three objectives to optimise simultaneously. We 
applied two well-known evolutionary algorithms, namely the NSGA-II and MOGA to 
generate the number and positions of the communication nodes. Subsequently, we 
developed algorithms that determine the cluster formation, gateway selection and relay 
nodes selection. The results showed satisfactory performance. Knowing that multi-
criteria optimisation depends mostly on the decision of the decision maker, some criteria 
may be included to improve the solutions presented here. Results show that the mesh 
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node placements are able to efficiently improve some performance metrics as coverage, 
reliability when designing or planning WMNs. 

In our future work, we intend to use the simulation based system to study the different 
network configurations for WMNs performance and also to compare our proposed 
algorithms with some existing one in the literature as an alternative to the mathematical 
modelling. 
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Appendix A 

Figure 1 WMN’s architecture (see online version for colours) 

Internet

Access point Mesh relay Gateway
 

Appendix B 

Table 1 NSGA-II and MOGA used parameters 

 NSGA-II MOGA 
Number of iterations 4,000 500 
Population size 100 100 
Crossover probability (single point) 0.9 0.9 
Mutation probability (bit flip) 0.06 0.1 
Selection Binary tournament Binary tournament 
Number of independent runs 20 20 
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Appendix C 

Instance details 

Table 2 Experimental results for area 7 km2 

Area size 
(km2) 

Number 
of run 

Distribution 
of tests points 

Number 
of nodes 

Number of 
clusters 

Average relay 
by cluster Coverage Reliability 

7 1 150 43 4 2 90% 0.9375 
2 45 3 2 91% 0.6337 
3 43 3 2 96% 0.9733 
4 41 3 2 93% 0.7744 
5 48 3 2 91% 0.7518 
6 42 4 2 95% 0.6349 
7 44 5 2 98% 0.8628 
8 42 4 2 97% 0.9733 
9 41 5 2 95% 0.7744 
10 46 3 2 96% 0.7518 
11 47 2 2 96% 0.6349 
12 45 3 2 98% 0.8628 
13 44 4 2 97% 0.8628 
14 40 3 2 98% 0.8628 
15 42 3 2 98% 0.9733 
16 45 3 2 99% 0.9733 
17 41 3 2 98% 0.9733 
18 48 4 2 98% 0.7744 
19 47 4 2 97% 0.8628 
20 43 4 2 99% 0.8628 

Notes: Average node N = 43, average coverage = 96%, average reliability = 0.7744. 
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Appendix D 

Instance details 

Table 3 Experimental results for area 14 km2 

Area size 
(km2) 

Number 
of run 

Distribution 
of tests points

Number 
of nodes 

Number of 
clusters 

Average relay 
by cluster Coverage Reliability 

14 1 300 73 5 3 82% 0.8971 
2 72 5 3 96% 0.8132 
3 81 5 2 89% 0.8403 
4 81 4 3 96% 0.9244 
5 75 5 2 98% 0.9239 
6 83 4 3 96% 0.9646 
7 78 4 3 89% 0.8132 
8 88 4 2 89% 0.8403 
9 79 4 2 87% 0.8971 

10 88 4 2 96% 0.8971 
11 78 4 3 98% 0.8971 
12 92 4 3 97% 0.8971 
13 90 3 3 99% 0.8971 
14 96 3 3 86% 0.8971 
15 89 3 2 89% 0.8971 
16 89 4 2 89% 0.8971 
17 79 5 2 98% 0.8403 
18 78 3 1 98% 0.8403 
19 79 4 3 98% 0.8403 
20 78 4 3 97% 0.9646 

Notes: Average node N = 83, average coverage = 93%, average reliability = 0.8839. 

 

 

 

 

 

 

 



   
 

   

   

 

   

    Mesh node placement in wireless mesh network 251    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Appendix E 

Instance details 

Table 4 Experimental results for area 30 km2 

Area size 
(km2) 

Number 
of run 

Distribution of 
tests points 

Number 
of nodes 

Number 
of clusters

average relay 
by cluster Coverage Reliability 

30 1 500 114 10 3 97% 0.8412 
2 113 8 4 98% 0.8451 
3 112 8 4 94% 0.7745 
4 122 9 4 90% 0.8884 
5 122 6 4 91% 0.9181 
6 124 7 4 92% 0.9514 
7 100 8 4 95% 0.8821 
8 111 8 4 96% 0.7821 
9 120 9 4 88% 0.7945 
10 114 11 3 94% 0.8212 
11 108 9 3 89% 0.9532 
12 112 8 4 92% 0.8933 
13 115 8 2 97% 0.9456 
14 123 8 3 93% 0.7466 
15 126 9 3 95% 0.9222 
16 115 9 3 93% 0.8872 
17 116 7 3 89% 0.9113 
18 120 7 3 91% 0.9025 
19 119 6 3 93% 0.786 
20 117 8 3 97% 0.7677 

Notes: Average node N = 116, average coverage = 92%, average reliability = 0.8512. 
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Appendix F 

The set of Pareto front approximations found by NSGA-II and MOGA 

Figure 2 Pareto fronts for area 7 km2 found by (a) NSGA-II (b) MOGA 

  
(a)     (b) 

Figure 3 Pareto fronts for area 14 km2 found by (a) NSGA-II (b) MOGA (see online version  
for colours) 

  
(a)     (b) 
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Appendix G 

The set of Pareto front approximations found by NSGA-II and MOGA 

Figure 4 Pareto fronts for area 30 km2 found by (a) NSGA-II (b) MOGA (see online version  
for colours) 

  
(a)     (b) 

Figure 5 Cost of deployment vs. numbers of nodes (see online version for colours) 
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Appendix H 

Performance indicators for multi-objective algorithms 

Table 5 Performance indicator for NSGA II and MOGA 

Indicator metrics Area size NSGA II MOGA 
Generational distance 7 km2 7.73e–02 8.67e–01 

14 km2 1.68e–01 1.02e–01 
30 km2 1.32e+01 2.68e+00 

Spread 7 km2 0.57592 0.65014 
14 km2 0.79073 0.74075 
30 km2 0.89007 0.64013 

Hypervolume 7 km2 0.063652 0.101285 
14 km2 0.110741 0.128813 
30 km2 0.050469 0.069648 

 


