
IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 1

Exploratory Undersampling for
Class-Imbalance Learning

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou,Senior Member, IEEE

Abstract—Under-sampling is a popular method in deal-
ing with class-imbalance problems, which uses only a
subset of the majority class and thus is very efficient.
The main deficiency is that many majority class examples
are ignored. We propose two algorithms to overcome this
deficiency. EasyEnsemble samples several subsets from
the majority class, trains a learner using each of them, and
combines the outputs of those learners.BalanceCascade
trains the learners sequentially, where in each step the
majority class examples which are correctly classified by
the current trained learners are removed from further
consideration. Experimental results show that both meth-
ods have higher AUC, F-measure and G-mean values
than many existing class-imbalance learning methods.
Moreover, they have approximately the same training time
as that of under-sampling when the same number of weak
classifiers are used, which is significantly faster than other
methods.

Index Terms—Data mining, machine learning, class-
imbalance learning, under-sampling, ensemble learning.

I. I NTRODUCTION

I N many real-world problems, the data sets are typi-
cally imbalanced, i.e., some classes have much more

instances than others. The level of imbalance (ratio
of size of the majority class to minority class) can
be as huge as106 [41]. It is noteworthy that class-
imbalance is emerging as an important issue in designing
classifiers [11], [23], [37].

Imbalance has a serious impact on the performance
of classifiers. Learning algorithms that do not consider
class-imbalance tend to be overwhelmed by the majority
class and ignore the minority class [10]. For example, in
a problem with imbalance level 99, a learning algorithm
that minimizes error rate could decide to classify all
examples as the majority class in order to achieve a low
error rate of 1%. However, all minority class examples

Manuscript received October 26, 2007; revised June 24, 2008, and
accepted October 5, 2008.

X.-Y. Liu and Z.-H. Zhou are with National Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210093,
China email:{liuxy, zhouzh}@lamda.nju.edu.cn

J. Wu is with School of Interactive Computing, College of Com-
puting, Georgia Institute of Technology, Atlanta, GA 30332 email:
wujx@cc.gatech.edu

will be wrongly classified in this case. In problems where
the imbalance level is huge, class-imbalance must be
carefully handled to build a good classifier.

Class-imbalance is also closely related to cost-
sensitive learning, another important issue in machine
learning. Misclassifying a minority class instance is
usually more serious than misclassifying a majority class
one. For example, approving a fraudulent credit card
application is more costly than declining a credible
one. Breiman et al. [7] pointed out that training set
size, class priors, cost of errors in different classes, and
placement of decision boundaries are all closely con-
nected. In fact, many existing methods for dealing with
class-imbalance rely on connections among these four
components. Sampling methods handle class-imbalance
by varying the minority and majority class sizes in the
training set. Cost-sensitive learning deals with class-
imbalance by incurring different costs for the two classes
and is considered as an important class of methods to
handle class-imbalance [37]. More details about class-
imbalance learning methods are presented in Section II.

In this paper we examine only binary classification
problems by ensembling classifiers built from multiple
under-sampled training sets. Under-sampling is an effi-
cient method for class-imbalance learning. This method
uses a subset of the majority class to train the classifier.
Since many majority class examples are ignored, the
training set becomes more balanced and the training
process becomes faster. However, the main drawback
of under-sampling is that potentially useful information
contained in these ignored examples is neglected. The
intuition of our proposed methods is then to wisely ex-
plore these ignored data, while keeping the fast training
speed of under-sampling.

We propose two ways to use these data. One straight-
forward way is to sample several subsets independently
from N (the majority class), use these subsets to train
classifiers separately, and combine the trained classifiers.
Another method is to use trained classifiers to guide
the sampling process for subsequent classifiers. After we
have trainedn classifiers, examples correctly classified
by them will be removed fromN . Experiments on 16
UCI data sets [3] show that both methods have higher

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 2

AUC, F-measure and G-mean values than many existing
class-imbalance learning methods.

The rest of this paper is organized as follows. Sec-
tion II reviews related methods. Section III presents
EasyEnsemble and BalanceCascade . Section IV
reports the experiments. Finally, Section V concludes
this paper.

II. RELATED WORK

As mentioned in the previous section, many existing
class-imbalance learning methods manipulate the follow-
ing four components: training set size, class prior, cost
matrix, and placement of decision boundary. Here we
pay special attention to two classes of methods that are
most widely used: sampling and cost-sensitive learning.
For other methods, we refer the readers to [37] for a
more complete and detailed review.

Sampling is a class of methods that alters the size of
training sets. Under-sampling and over-sampling change
the training sets by sampling a smaller majority training
set and repeating instances in the minority training set,
respectively [15]. The level of imbalance is reduced
in both methods, with the hope that a more balanced
training set can give better results. Both sampling meth-
ods are easy to implement and have been shown to
be helpful in imbalanced problems [37], [47]. Under-
sampling requires shorter training time, at the cost of
ignoring potentially useful data. Over-sampling increases
the training set size, and thus requires longer training
time. Furthermore, it tends to lead to overfitting since
it repeats minority class examples [9], [15]. Besides
the basic under-sampling and over-sampling methods,
there are also methods that sample in more complex
ways. SMOTE [9] added new synthetic minority class
examples by randomly interpolating pairs of closest
neighbors in the minority class. The one-sided selection
procedures [25] tried to find a representative subset of
majority class examples by only removing ‘borderline’
and ‘noisy’ majority examples. Some other methods
combine different sampling strategies to achieve further
improvement [1]. Also, researchers have studied the
effect of varying the level of imbalance and how to find
the best ratio when a C4.5 tree classifier was used [38].

Cost-sensitive learning [14], [16] is another important
class of class-imbalance learning methods. Although
many learning algorithms have been adapted to ac-
commodate class-imbalance and cost-sensitive problems,
variants of AdaBoost appear to be the most popular
ones. Many cost-sensitive boosting algorithms have been
proposed [31]. A common strategy of these variants
was to intentionally increase the weights of examples

with higher misclassification cost in the boosting pro-
cess. In [30] the initial weights of high cost exam-
ples were increased. It was reported that, however,
the weight differences between examples in different
classes disappear quickly when the boosting process
proceeds [33]. Thus, many algorithms raised high cost
examples’ weights in every iteration of the boosting
process, for example, AsymBoost [33], AdaCost [17],
CSB [31], DataBoost [21], AdaUBoost [24], just to name
a few. Another way to adapt a boosting algorithm to
cost-sensitive problems is to change the weights of the
weak classifiers in forming the final ensemble classifier,
such as BMPM [22] and LAC [41]. Unlike the heuristic
methods mentioned above, Asymmetric Boosting [28]
directly minimized a cost-sensitive loss function in the
statistical interpretation of boosting.

SMOTEBoost [12] is designed for class-imbalance
learning, which is very similar to AsymBoost. Both
methods alter the distribution for the minority class and
majority class in separate ways. The only difference
is how these distributions are altered. AsymBoost di-
rectly updates instance weights for the majority class
and minority class differently in each iteration, while
SMOTEBoost alters distribution by first updating in-
stance weights for majority class and minority class
equally and then using SMOTE to get new minority class
instances.

Chan and Stolfo [8] introduced an approach to explore
majority class examples. They split the majority class
into several non-overlapping subsets, with each subset
having approximately the same number of examples
as the minority class. One classifier was trained from
each of these subsets and the minority class. The final
classifier ensembled these classifiers using stacking [40].
However, when a data set is highly imbalanced, this
approach requires a much longer training time than
under-sampling. Also, since the minority class examples
are used by every classifier, stacking these classifiers
will have a high probability of suffering from overfitting
when the number of minority class examples is limited.

III. EA S YEN S E M B L E& BA L A N C ECA S C A D E

As was shown by [15], under-sampling is an effi-
cient strategy to deal with class-imbalance. However,
the drawback of under-sampling is that it throws away
many potentially useful data. In this section, we pro-
pose two strategies to explore the majority class exam-
ples ignored by under-sampling:EasyEnsemble and
BalanceCascade .

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 3

A. EasyEnsemble

Given the minority training setP and the majority
training setN , the under-sampling method randomly
samples a subsetN ′ fromN , where|N ′| < |N |. Usually
we choose|N ′| = |P|, and therefore have|N ′| � |N |
for highly imbalanced problems.

EasyEnsemble is probably the most straightforward
way to further exploit the majority class examples ig-
nored by under-sampling, i.e. examples inN

⋂
N ′. In

this method, we independently sample several subsets
N1,N2, . . . ,NT from N . For each subsetNi (1 ≤
i ≤ T), a classifierHi is trained usingNi and all of
P. All generated classifiers are combined for the final
decision. AdaBoost [29] is used to train the classifier
Hi. The pseudo-code forEasyEnsemble is shown in
Algorithm 1.

Algorithm 1 The EasyEnsemble algorithm.
1: {Input: A set of minority class examplesP, a set of

majority class examplesN , |P| < |N |, the number of
subsetsT to sample fromN , and si, the number of
iterations to train an AdaBoost ensembleHi}

2: i ⇐ 0
3: repeat
4: i ⇐ i + 1
5: Randomly sample a subsetNi from N , |Ni| = |P|.
6: LearnHi usingP andNi. Hi is an AdaBoost ensemble

with si weak classifiershi,j and corresponding weights
αi,j . The ensemble’s threshold isθi, i.e.

Hi(x) = sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

7: until i = T
8: Output: An ensemble:

H(x) = sgn
(∑T

i=1

∑si

j=1 αi,jhi,j(x)−
∑T

i=1 θi

)
.

The idea behindEasyEnsemble is simple. Similar
to the balanced Random Forests [13],EasyEnsemble
generatesT balanced sub-problems. The output of the
ith sub-problem is AdaBoost classifierHi, an ensemble
with si weak classifiers{hi,j}. An alternative view of
hi,j is to treat it as a feature that is extracted by the
ensemble learning method and can only take binary
values [41].Hi, in this viewpoint, is simply a linear
classifier built on these features. Features extracted from
different subsetsNi thus contain information of different
aspects of the original majority training setN . Finally,
instead of counting votes from{Hi}i=1...T , we collect
all the featureshi,j (i = 1, 2, . . . , T , j = 1, 2, . . . , si),
and form an ensemble classifier from them.

The output ofEasyEnsemble is a single ensem-
ble, but it looks like an ‘ensemble of ensembles’. It
is known that, Boosting mainly reduces bias while
Bagging mainly reduces variance. Several works [19],

[35], [36], [42] combine different ensemble strategies
to achieve stronger generalization. MultiBoosting [35],
[36] combines boosting with bagging/wagging [2] by
using boosted ensembles as base learners. Stochastic
Gradient Boosting [19] and Cocktail Ensemble [42] also
combine different ensemble strategies. It is evident that
EasyEnsemble has benefited from the combination of
boosting and a bagging-like strategy with balanced class
distribution.

Both EasyEnsemble and Balanced Random Forests
try to use balanced bootstrap samples, however, the
former uses the samples to generate boosted ensembles
while the latter uses the samples to train decision trees
randomly. Costing [43] also uses multiple samples of the
original training set. Costing was initially proposed as a
cost-sensitive learning method, whileEasyEnsemble
is proposed to deal with class-imbalance directly. Be-
sides, the working style ofEasyEnsemble is quite
different from Costing. For example, the Costing method
samples the examples with probability in proportion
to their costs (Rejection Sampling). Since this is a
probability-based sampling method, no positive exam-
ple will definitely appear in all the samples (in fact,
the probability of a positive example appearing in all
the samples is small). While inEasyEnsemble , all
the positive examples will definitely appear in all the
samples. When the size of minority class is very small,
it is important to utilize every minority class example.

B. BalanceCascade

EasyEnsemble is an unsupervised strategy
to explore N since it uses independent random
sampling with replacement. Our second algorithm,
BalanceCascade , explores N in a supervised
manner. The idea is as follows. AfterH1 is trained,
if an examplex1 ∈ N is correctly classified to be in
the majority class byH1, it is reasonable to conjecture
that x1 is somewhat redundant inN , given that we
already haveH1. Thus, we can remove some correctly
classified majority class examples fromN . As in
EasyEnsemble , we use AdaBoost in this method.
The pseudo-code ofBalanceCascade is described
in Algorithm 2.

This method is calledBalanceCascade since it
is somewhat similar to the cascade classifier in [34].
The majority training setN is shrunk after everyHi

is trained, and every nodeHi is dealing with a balanced
sub-problem (|Ni| = |P|). However, the final classifier
is different. A cascade classifier is the conjunction of all
{Hi}i=1...T , i.e. H(x) predicts positive if and only if all
Hi(x) (i = 1, 2, . . . , T) predict positive. Viola and Jones

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 4

Algorithm 2 The BalanceCascade algorithm.
1: {Input: A set of minority class examplesP, a set of

majority class examplesN , |P| < |N |, the number of
subsetsT to sample fromN , and si, the number of
iterations to train an AdaBoost ensembleHi}

2: i ⇐ 0, f ⇐ T−1

√
|P|
|N| , f is the false positive rate (the

error rate of misclassifying a majority class example to
the minority class) thatHi should achieve.

3: repeat
4: i ⇐ i + 1
5: Randomly sample a subsetNi from N , |Ni| = |P|.
6: LearnHi usingP andNi. Hi is an AdaBoost ensemble

with si weak classifiershi,j and corresponding weights
αi,j . The ensemble’s threshold isθi i.e.

Hi(x) = sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

7: Adjust θi such thatHi’s false positive rate isf .
8: Remove fromN all examples that are correctly classi-

fied by Hi.
9: until i = T

10: Output: A single ensemble:
H(x) = sgn

(∑T
i=1

∑si

j=1 αi,jhi,j(x)−
∑T

i=1 θi

)
.

[34] used the cascade classifier mainly to achieve fast
testing speed. While inBalanceCascade , sequential
dependency between classifiers is mainly exploited for
reducing the redundant information in the majority class.
This sampling strategy leads to a restricted sample space
for the following under-sampling process, to explore as
much useful information as possible.

BalanceCascade is similar to EasyEnsemble
in their structures. The main difference between them
is the line III-B and III-B of Algorithm 2. Line III-B
removes the true majority class examples fromN , and
line III-B specifies how many majority class examples
can be removed. At the beginning of theT -th iteration,
N has been shrunkT −1 times, and therefore its current
size is |N | · fT−1 = |P|. Thus, afterHT is trained and
N is shrunk again, the size ofN is smaller than|P|.
We can stop the training process at this time.

There are other ways to combine weak classifiers in
EasyEnsemble and BalanceCascade . A popular
one is stacking [40]. It takes the outputs of other classi-
fiers as input to train a generalizer. However, Ting [32]
stated that, the use of class probabilities is crucial for
the successful application of stacked generalization in
classification tasks. Furthermore, since minority class
examples are used to train each weak classifier, stacking
these classifiers is likely to suffer from overfitting when
the number of minority class examples is limited. To
verify this, stacking is compared with the ensemble
strategy used in the proposed methods in section IV-E.

Chan and Stolfo’s method [8] (abbreviated as

Chan) is closely related toEasyEnsemble and
BalanceCascade . It splits the majority class into
several non-overlapping subsets, with each subset having
similar size to the the minority class. Classifiers trained
from each majority class subset and the minority class
are combined by stacking. The differences between
Chan and the proposed methods are obvious: (1)Chan
uses all majority class examples, whileEasyEnsemble
and BalanceCascade use only part of them. When
a data set is highly imbalanced,Chan requires a much
longer training time than the proposed methods. How-
ever, the experimental results reveal that it is not nec-
essary to use all majority class examples to achieve
good performances. (2)Chan uses stacking to combine
classifiers trained from each subset. As stated above,
since the minority class is used repeatedly, stacking is
likely to suffer from overfitting when the number of
minority class examples is limited.

Both EasyEnsemble and BalanceCascade are
very efficient. Their training time is roughly the same as
that of under-sampling when the same number of weak
classifiers are used. Detailed analysis of training time and
empirical running time are presented in section IV-C.

IV. EXPERIMENTS

A. Evaluation Criteria

It is now well-known that error rate is not an appropri-
ate evaluation criterion when there are class-imbalance
or unequal costs. In this paper, we use F-measure, G-
mean, and AUC (Area Under the ROC Curve) [4]
as performance evaluation measures. F-measure and G-
mean are functions of the confusion matrix as shown
in Table I. F-measure and G-mean are then defined as
follows. Here, we take minority class as positive class.

False Positive Rate (fpr) = FP
FP+TN

True Positive Rate (Acc+) = TP
TP+FN

True Negative Rate (Acc−) = TN
TN+FP

G−mean =
√

Acc+ ×Acc−
Precision = TP

TP+FP

Recall = TP
TP+FN = Acc+

F−measure = 2×Precision×Recall
Precision+Recall

(1)
AUC has proved to be a reliable performance measure

for imbalanced and cost-sensitive problems [18]. Given
a binary classification problem, an ROC curve depicts
the performance of a method using the (fpr,tpr) pairs, as
illustrated in Figure 1.fpr is the false positive rate of the
classifier, andtpr is the true positive rate (Acc+). AUC
is the area below the curve (shaded region in Fig. 1). It
integrates performance of the classification method over

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 5

TABLE I
CONFUSION MATRIX.

Predicted Positive Class Predicted Negative Class
Actual Positive Class TP (True Positives) FN (False Negatives)
Actual Negative Class FP (False Positives) TN (True Negatives)

all possible values offpr and is proved to be a reliable
performance measure for imbalanced and cost-sensitive
problems [18].

0

0.2

0.4

0.6

0.8

1

0 0.1 0.4 0.7 1
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Fig. 1. Example of an ROC curve.

In our experiments, for ensemble classifiers in the
form H(x) = sgn(

∑T
i=1 αihi(x)−θ), we alter the value

of θ from −∞ to ∞. In this way we get a full range of
(fpr,tpr) pairs and build an ROC curve from these data.
We then use the Algorithm 3 in [18] to calculate the
AUC score. Details of AUC can be found in [18].

B. Experimental Settings

We tested the proposed methods on 16 UCI data
sets [3]. Information about these data sets is summarized
in Table II.

TABLE II
BASIC INFORMATION OF DATA SETS. SizeIS NUMBER OF

EXAMPLES. Target IS USED AS MINORITY CLASS, AND ALL

OTHERS ARE USED AS MAJORITY CLASS. IN Attribute, B: BINARY,
N: NOMINAL , C: CONTINUOUS. #min/#maj IS THE SIZE OF

MINORITY AND MAJORITY CLASS, AND Ratio IS THE SIZE OF

MAJORITY CLASS DIVIDED BY THAT OF MINORITY CLASS.

Dataset Size Attribute Target #min/#maj Ratio

abalone 4177 1N,7C Ring=7 391/3786 9.7
balance 625 4C Balance 49/576 11.8
car 1728 6N acc 384/1344 3.5
cmc 1473 3B,4N,2C class 2 333/1140 3.4
haberman 306 1N,2C class 2 81/225 2.8
housing 506 1B,12C [20, 23] 106/400 3.8
ionosphere 351 33C bad 126/225 1.8
letter 20000 16C A 789/19211 24.3
mf-morph 2000 6C class 10 200/1800 9.0
mf-zernike 2000 47C class 10 200/1800 9.0
phoneme 5404 5C class 1 1586/3818 2.4
pima 768 8C class 1 268/500 1.9
satimage 6435 36C class 4 626/5809 9.3
vehicle 846 18C opel 212/634 3.0
wdbc 569 30C malignant 212/357 1.7
wpbc 198 33C recur 47/151 3.2

For every data set, we perform a 10-fold stratified
cross validation. Within each fold, the classification
method is repeated 10 times considering that the sam-
pling of subsets introduces randomness. The AUC, F-
measure and G-mean of this cross validation process are
averaged from these 10 runs. The whole cross validation
process is repeated for 5 times, and the final values from
this method are the averages of these 5 cross validation
runs.

We compared the performance of 15 methods, includ-
ing:

• CART. Classification and regression trees [7]. It
uses the entire data set (P andN) to train a single
classifier.

• Bagging (abbreviated asBagg): Bagging [5] uses
the entire data set (P andN). CART is used to train
weak classifiers. The number of iterations is 40.

• AdaBoost (abbreviated asAda). AdaBoost uses the
entire data set (P andN). CART is used to train
weak classifiers. The number of iterations is 40.

• AsymBoost (abbreviated asAsym). AsymBoost is a
typical cost-sensitive variant of AdaBoost1. Let r =
|N |/|P| be the imbalance level. At each iteration,
the weight of every positive example is multiplied
by T

√
r, whereT is the number of iterations [33].

AsymBoost uses the entire data set (P and N).
CART is used to train weak classifiers. The number
of iterations is 40.

• SMOTEBoost (abbreviated asSMB). SMOTE adds
synthetic minority class examples [9]. For data
sets having nominal attributes, we use SMOTE-NC.
Details for implementing SMOTE and SMOTE-NC
can be found in [9]. SMOTEBoost uses SMOTE to
get new minority class examples in each iteration.
CART is used to train weak classifiers. The number
of iterations is 40. Thek nearest neighbor parameter
of SMOTE is 5. The amount of new data generated
using SMOTE in each iteration is|P|.

• Under-sampling + AdaBoost (abbreviated as
Under). A subset N ′ is sampled (without
replacement) fromN , |N ′| = |P|. Then, AdaBoost
is used to train a classifier usingP and N ′,
since the problem is balanced after under-sampling.

1It is also equivalent to the CSB2 algorithm in [31].

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 6

CART is used to train weak classifiers. The number
of iterations is 40.

• Over-sampling + AdaBoost (abbreviated asOver).
A new minority training set is sampled (with re-
placement) from the original minority class,|P ′| =
|N |. Then, AdaBoost is used to train a classifier
using P ′ and N . CART is used to train weak
classifiers. The number of iterations is 40.

• SMOTE + AdaBoost (abbreviated asSMOTE).
In our experiments, we first generateP ′ using
SMOTE, a set of synthetic minority class examples
with |P ′| = |P|. We sample a new majority training
setN ′ with |N ′| = 2|P| when |N | > 2|P|, and
let N ′ = N otherwise. Then we use AdaBoost to
train a classifier withP, P ′, andN ′. CART is used
to train weak classifiers. The number of iterations
is 40. The settings of SMOTE are the same as
SMOTEBoost (k = 5).

• Chan & Stolfo’s method + AdaBoost. (abbrevi-
ated asChan). It splits N into b|N |/|P|c non-
overlapping subsets. An AdaBoost classifier was
trained from each of these subsets andP. Fisher
Discriminant Analysis [20] is used as the stacking
method. CART is used to train weak classifiers.
AdaBoost classifiers are trained ford40|P |/|N |e
iterations whenb|N |/|P |c < 40, otherwise, only
one iteration is allowed.

• BalanceCascade (abbreviated asCascade).
CART is used to train weak classifiers. Number of
subsetsT = 4, number of rounds in each AdaBoost
ensemblesi = 10.

• EasyEnsemble (abbreviated asEasy). CART is
used to train weak classifiers. Number of subsets
T = 4, number of rounds in each AdaBoost
ensemblesi = 10.

• Random Forests (abbreviated asRF). Random
Forests [6] uses bootstrap samples of training data
to generate random trees and then form an ensem-
ble. Here, we use RandomForest in WEKA [39],
in which a random tree is a variant of REPTree,
using random feature selection in the tree induction
process, and not pruned.RF uses the entire data set
(P andN). The number of iterations is 40.

• Under-sampling + Random Forests (abbreviated as
Under-RF). A subsetN ′ is sampled (without
replacement) fromN , |N ′| = |P|. Then, Random
Forests is used to train a classifier usingP andN ′,
The number of iterations is 40.

• Over-sampling + Random Forests (abbreviated as
Over-RF). A new minority training set is sampled
(with replacement) from the original minority class,
|P ′| = |N |. Then, Random Forests is used to train a

classifier usingP ′ andN . The number of iterations
is 40.

• Balanced Random Forests (abbreviated asBRF).
Balanced Random Forests is different from Random
Forests in that it uses balanced bootstrap samples
of training data. It is different from under-sampling
+ Random Forests, because the latter preprocesses
the training data and then learns a Random Forests
classifier. Here, we use RandomTree in WEKA
to train weak classifiers, which is the same weak
classifier learning method used by RandomForest
in WEKA. The number of iterations is 40.

The settings of CART are the same. In CART, pruning
is used, and impure nodes must have at least 10 examples
to be split. CART andAda are baseline methods. All
other classifiers have 40 weak classifiers. InChan, the
amount of classifiers is also 40 since the imbalance levels
of data sets in Table II are all lower than 40.

C. Analysis of Training Time

Random Forests series (RF, Under-RF , Over-RF ,
and BRF) use random decision trees, which train much
faster than CART. Moreover, they are implemented in
Java code, while the other methods are in Matlab code.
Therefore, it is not fair to compare the running time of
them directly. Here, we only analyze the training time
of CART based methods.

Since all methods use the same weak learner and have
the same amount of weak classifiers, the training time of
these methods mainly depends on the number of training
examples.

From the descriptions in section IV-B,Under uses
the smallest number (2|P|) of examples and is the fastest
among all methods. The proposed methods (Cascade
andEasy) andChan use the same number of weak clas-
sifiers asUnder , and use the same number of examples
asUnder to train every weak classifier2. These methods
require additional time to sample or split subsets ofN .
However, this time is negligible. Thus, the proposed
methods andChan have approximately the same training
time asUnder . Note that, the imbalance level of data
sets used in the experiment happens to be lower than
40, so the number of weak classifiers inChan can be
the same withCascade andEasy . However, when the
data set is highly imbalanced (say the imbalance level
is 1000), Chan will require extremely more training
time than the proposed methods. Furthermore,Easy has
a potential computational advantage since each under-
sampling process can be executed in parallel.

2Although different subsets ofN are used in the training process,
the number of active training examples is always2|P| at all times.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 7

TABLE III
RUNNING TIMES (IN SECONDS). THE ROW A V G. SHOWS THE AVERAGE RUNNING TIME OF EACH METHOD.

CART Bagg Ada Asym SMB Under Over SMOTE Chan Easy Casc

abalone 0.21 8.39 18.06 18.04 35.51 3.47 39.11 7.78 4.83 3.72 6.22
balance 0.03 0.96 2.16 2.20 2.72 0.53 3.41 0.99 0.97 0.65 0.85
car 0.09 2.50 6.42 5.71 9.70 3.18 9.10 5.14 4.20 3.10 4.79
cmc 0.25 6.64 8.64 9.01 11.54 4.42 11.44 7.85 6.06 4.51 7.33
haberman 0.03 0.71 1.35 1.15 1.32 0.84 1.26 1.11 1.26 0.80 0.86
ionosphere 0.09 2.11 2.30 2.19 2.77 1.75 2.30 2.87 2.46 1.70 2.83
letter 0.41 19.70 153.47 138.11 1120.99 3.92 549.73 9.72 5.19 3.87 5.62
phoneme 0.34 9.72 23.20 22.87 150.09 12.03 38.78 30.18 16.67 11.64 20.12
pima 0.07 2.51 3.42 3.58 4.91 2.51 3.97 4.22 4.24 2.37 2.38
sat 0.78 27.74 54.83 53.29 102.84 9.62 116.83 21.24 11.66 10.08 13.96
wdbc 0.06 2.05 2.53 2.42 3.44 1.70 2.62 3.03 2.47 1.93 2.63
wpbc 0.06 1.97 2.04 1.85 2.26 1.00 2.29 2.01 1.17 1.27 1.50
vehicle 0.13 4.54 5.82 5.67 7.63 2.90 6.58 5.90 4.28 3.17 3.69
housing 0.08 2.17 2.66 2.92 3.84 1.32 3.35 2.42 1.89 1.15 0.77
mf-morph 0.06 2.06 5.69 5.78 11.62 1.08 11.22 2.34 1.60 1.17 2.57
mf-zernike 0.50 17.47 24.74 23.28 35.65 5.01 37.47 10.26 5.39 4.91 11.81
avg. 0.20 6.95 19.83 18.63 94.18 3.45 52.47 7.31 4.65 3.50 5.50

Both Ada and Asym use |P| + |N | examples. Since
|N | > |P|, these methods are slower thanUnder . When
the imbalance level is high, these methods have much
longer training time than that ofUnder and the proposed
methods.

In our experiments,SMOTEuses either4|P| or 2|P|+
|N | examples.SMB uses 2|P| + |N | examples. And
both of them require to compute the distance between
minority class examples. Thus they are much slower than
Under and the proposed methods.

Over uses 2|N | examples, which has the largest
training set.SMBandOver are the most expensive ones.
For data sets with a large number of examples, e.g.
letter, the time to train a over-sampled or SMOTEBoost
classifier is too long to be practical.

CART uses|P| + |N | examples. CART trains only
one classifier, so it indicates the time baseline.

Running times of these methods are recorded in Table
III, on a computer with a 3.0GHz Intel Xeon CPU. It
shows thatChan, Easy and Cascade are as efficient
asUnder . The most expensive ones areSMBandOver ,
followed by Ada andAsym, and then bySMOTE.

D. Results and Analyses

The average AUC of the compared methods are sum-
marized in Table IV and Table V. Oncar, ionosphere,
letter, phoneme, sat and wdbc, Ada achieves very high
AUC values, which are all greater than 0.95. Applying
class-imbalance learning methods on these data sets is
not necessarily beneficial. On the other 10 data sets,
Ada’s AUC values are not high and these data sets
seem suffer from class-imbalance problem. Therefore,
we divide the 16 data sets into two groups. The first
group contains 6 ‘easy’ tasks, on which the AUC values
of Ada are greater than 0.95. The second group contains

10 ‘hard’ tasks, on which the AUC values ofAda are
lower than 0.95. The AUC results are shown separately
in Table IV and V3. The results oft-test (significance
level 0.05) of AUC are also shown separately in the
upper and lower triangles in Table VI. The average F-
measure of the compared methods are summarized in
Table VII and VIII, and thet-test result is shown in Table
IX. The average G-mean of the compared methods are
summarized in Table X and XI, and thet-test result is
shown in Table XII.

The results show that on ‘easy’ tasks, all class-
imbalance learning methods have lower AUC and F-
measure thanAda, except thatAsym has similar AUC
and F-measure to it. While on ‘hard’ tasks, class-
imbalance learning methods generally have higher AUC
and F-measure thanAda, including SMOTE, Chan,
Cascade andEasy . We argue that for tasks on which
ordinary methods can achieve high AUC (e.g.≥ 0.95),
class-imbalance learning is generally not helpful with
AUC and F-measure. However,Easy andCascade can
be used to reduce the training time, while their average
AUC are close to that ofAda andAsym.

We are more interested in the results on ‘hard’ tasks,
where class-imbalance learning really helps. Compared
with the results on ‘easy’ tasks, they reveal more proper-
ties of class-imbalance learning and the proposed meth-
ods.

Under is not performing well with AUC and F-
measure. Its AUC and F-measure are lower thanAda
and Asym on all ‘easy’ tasks, and lower than many
other class-imbalance learning methods on ‘hard’ tasks.
Our conjecture is that this is due to the information

3Note that the performance ofOver andSMBon the data sets in
the former group has not been obtained due to its large training time
costs. CART gives discrete outputs, so its AUC is not available.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 8

TABLE IV
AUC OF THE COMPARED METHODS(PART 1). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICHADABOOST’ S AUC IS HIGHER

THAN 0.95. FOR EACH METHOD AND EACH DATA SET, THE AVERAGE AUC IS FOLLOWED BY A STANDARD DEVIATION. THE COLUMN

A V G. SHOWS THE AVERAGEAUC OF EACH METHOD.

AUC car ionosphere letter phoneme sat wdbc avg.
Bagg .995± .000 .962± .004 .997± .001 .955± .001 .946± .001 .987± .001 .974± .020
Ada .998± .000 .978± .003 1.000± .000 .965± .000 .953± .001 .994± .001 .981± .018

Asym .998± .000 .979± .002 1.000± .000 .965± .001 .953± .001 .994± .000 .982± .018
Under .989± .001 .973± .002 1.000± .000 .953± .001 .941± .001 .993± .001 .975± .021

SMOTE .995± .000 .978± .002 1.000± .000 .964± .000 .946± .001 .994± .001 .979± .019
Chan .996± .000 .979± .002 1.000± .000 .960± .000 .955± .000 .993± .000 .980± .018

Cascade .996± .000 .976± .002 1.000± .000 .962± .000 .949± .001 .994± .000 .979± .019
Easy .994± .000 .974± .002 1.000± .000 .958± .000 .947± .000 .993± .000 .978± .020

RF .784± .003 .981± .004 1.000± .000 .965± .001 .961± .002 .991± .000 .947± .074
BRF .749± .004 .969± .003 .999± .000 .960± .001 .952± .001 .990± .001 .937± .085

Under-RF .786± .001 .976± .002 1.000± .000 .952± .001 .953± .000 .991± .001 .943± .072
Over-RF .785± .002 .981± .001 1.000± .000 .964± .001 .962± .001 .991± .001 .947± .074

TABLE V
AUC OF THE COMPARED METHODS(PART 2). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICHADABOOST’ S AUC IS LOWER

THAN 0.95.

AUC abalone balance cmc haberman housing
Bagg .824± .002 .439± .018 .705± .004 .669± .014 .825± .011
Ada .811± .001 .616± .009 .675± .008 .641± .015 .815± .010

Asym .812± .003 .619± .012 .675± .010 .639± .015 .815± .010
SMB .818± .002 .599± .010 .687± .011 .646± .006 .824± .014

Under .830± .002 .617± .011 .671± .007 .646± .010 .805± .007
Over .817± .002 .540± .010 .675± .008 .637± .017 .821± .010

SMOTE .831± .001 .617± .015 .680± .008 .647± .017 .816± .008
Chan .850± .001 .652± .011 .696± .006 .638± .008 .811± .010

Cascade .828± .002 .637± .011 .686± .007 .653± .012 .808± .008
Easy .847± .002 .633± .008 .704± .008 .668± .011 .825± .008

RF .827± .004 .435± .029 .669± .007 .645± .021 .828± .015
BRF .853± .001 .558± .013 .683± .003 .677± .013 .798± .018

Under-RF .842± .002 .593± .014 .676± .002 .643± .009 .820± .010
Over-RF .823± .001 .458± .014 .660± .005 .641± .014 .826± .014

AUC mf-morph mf-zernike pima vehicle wpbc avg.
Bagg .887± .004 .855± .002 .821± .003 .859± .003 .688± .009 .757± .129
Ada .888± .002 .795± .003 .788± .006 .854± .003 .716± .009 .760± .088

Asym .888± .001 .801± .005 .788± .005 .853± .002 .721± .012 .761± .088
SMB .897± .002 .788± .007 .790± .003 .864± .003 .720± .013 .763± .092

Under .916± .001 .881± .003 .789± .002 .846± .003 .694± .010 .769± .100
Over .889± .002 .779± .007 .791± .004 .855± .003 .711± .010 .751± .103

SMOTE .912± .001 .862± .004 .792± .003 .858± .004 .709± .004 .772± .097
Chan .912± .002 .903± .002 .786± .007 .856± .002 .706± .009 .781± .097

Cascade .905± .001 .891± .001 .799± .005 .856± .002 .712± .011 .778± .093
Easy .918± .002 .904± .001 .809± .004 .859± .004 .707± .009 .787± .096

RF .880± .007 .840± .008 .821± .004 .869± .008 .677± .030 .749± .133
BRF .901± .002 .866± .009 .809± .003 .850± .002 .646± .014 .764± .109

Under-RF .919± .003 .889± .002 .818± .004 .855± .002 .661± .008 .772± .110
Over-RF .881± .004 .854± .003 .819± .004 .866± .003 .670± .010 .750± .130

TABLE VI
SUMMARY OF t-TEST OFAUC WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF6 ‘EASY’ TASKS

AND THE LOWER TRIANGLE SHOWS THE RESULT OF10 ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE OF A

METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
Bagg – 0-0-6 0-0-6 NA 3-0-3 NA 0-2-4 0-0-6 0-0-6 1-1-4 1-0-5 1-0-5 2-0-4 1-0-5
Ada 2-1-7 – 0-5-1 NA 6-0-0 NA 4-2-0 4-0-2 5-1-0 5-1-0 3-2-1 5-1-0 5-1-0 3-1-2

Asym 2-1-7 1-9-0 – NA 6-0-0 NA 4-2-0 4-1-1 5-1-0 5-1-0 3-2-1 6-0-0 6-0-0 3-1-2
SMB 4-1-5 5-3-2 5-3-2 – NA NA NA NA NA NA NA NA NA NA

Under 5-0-5 3-4-3 3-3-4 4-2-4 – NA 0-0-6 1-1-4 0-0-6 0-2-4 2-0-4 4-0-2 3-1-2 2-0-4
Over 2-1-7 3-5-2 4-4-2 0-5-5 4-2-4 – NA NA NA NA NA NA NA NA

SMOTE 5-1-4 6-4-0 6-4-0 3-5-2 4-4-2 5-5-0 – 3-1-2 2-1-3 4-1-1 2-2-2 5-0-1 5-0-1 2-1-3
Chan 5-1-4 5-4-1 6-2-2 5-0-5 6-2-2 5-3-2 4-5-1 – 3-0-3 4-1-1 2-1-3 5-1-0 5-0-1 2-1-3

Cascade 5-1-4 7-2-1 8-1-1 5-3-2 7-2-1 7-2-1 4-3-3 2-3-5 – 6-0-0 2-0-4 5-0-1 4-1-1 2-0-4
Easy 5-4-1 9-1-0 8-2-0 7-2-1 9-1-0 8-2-0 8-2-0 6-2-2 8-2-0 – 2-0-4 4-0-2 4-0-2 2-0-4

RF 1-5-4 5-2-3 5-1-4 3-3-4 3-3-4 5-1-4 3-3-4 3-2-5 3-2-5 2-2-6 – 5-1-0 4-2-0 1-3-2
BRF 5-0-5 6-0-4 6-0-4 5-1-4 5-1-4 7-0-3 3-2-5 3-0-7 3-2-5 2-1-7 6-0-4 – 1-2-3 0-1-5

Under-RF 4-0-6 5-3-2 5-3-2 4-3-3 6-1-3 5-4-1 4-4-2 4-1-5 4-1-5 1-1-8 5-3-2 6-1-3 – 0-2-4
Over-RF 2-3-5 5-1-4 5-1-4 3-3-4 3-1-6 5-1-4 3-1-6 3-1-6 3-0-7 2-1-7 1-7-2 4-0-6 2-3-5 –

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 9

TABLE VII
F-MEASURE OF THE COMPARED METHODS ON‘ EASY’ TASKS (PART 1).

F Measure car ionosphere letter phoneme sat wdbc avg.
CART .857± .011 .831± .024 .945± .005 .773± .007 .546± .014 .895± .004 .808± .128
Bagg .933± .004 .883± .005 .962± .003 .834± .002 .641± .007 .938± .004 .865± .109
Ada .967± .002 .907± .004 .988± .002 .850± .002 .664± .006 .956± .003 .889± .110

Asym .966± .002 .910± .004 .987± .001 .852± .002 .668± .004 .956± .003 .890± .109
Under .884± .001 .900± .004 .903± .002 .819± .001 .546± .002 .952± .002 .834± .134

SMOTE .930± .004 .907± .003 .954± .002 .847± .002 .610± .003 .957± .003 .867± .121
Chan .916± .003 .910± .006 .905± .001 .837± .002 .607± .001 .954± .002 .855± .116

Cascade .917± .002 .905± .003 .976± .002 .839± .002 .619± .002 .957± .002 .869± .120
Easy .880± .002 .901± .005 .910± .002 .821± .002 .554± .001 .951± .004 .836± .132

RF .307± .013 .906± .005 .979± .003 .850± .004 .666± .008 .954± .002 .777± .234
BRF .521± .001 .887± .004 .889± .016 .821± .003 .553± .001 .945± .005 .769± .168

Under-RF .513± .001 .895± .005 .895± .003 .813± .001 .557± .001 .948± .002 .770± .171
Over-RF .518± .001 .904± .004 .986± .001 .851± .002 .689± .004 .955± .003 .817± .164

TABLE VIII
F-MEASURE OF THE COMPARED METHODS ON‘ HARD’ TASKS (PART 2).

F Measure abalone balance cmc haberman housing
CART .232± .018 .000± .000 .356± .009 .335± .046 .420± .031
Bagg .170± .010 .000± .000 .362± .011 .334± .030 .419± .029
Ada .210± .008 .000± .000 .388± .009 .348± .022 .475± .022

Asym .222± .006 .000± .001 .400± .011 .360± .020 .485± .015
SMB .286± .008 .001± .001 .393± .013 .377± .024 .530± .016

Under .367± .001 .175± .009 .429± .007 .442± .017 .529± .006
Over .195± .005 .000± .000 .383± .011 .338± .024 .470± .016

SMOTE .379± .005 .149± .011 .421± .007 .405± .016 .532± .017
Chan .400± .002 .156± .005 .437± .007 .380± .018 .523± .010

Cascade .384± .002 .194± .011 .436± .009 .438± .014 .529± .008
Easy .382± .003 .184± .007 .454± .008 .466± .013 .543± .007

RF .189± .015 .000± .000 .347± .017 .321± .027 .445± .035
BRF .382± .002 .167± .006 .441± .004 .468± .015 .515± .018

Under-RF .375± .002 .168± .007 .435± .003 .445± .011 .537± .006
Over-RF .253± .004 .000± .000 .408± .008 .348± .015 .490± .025

F Measure mf-morph mf-zernike pima vehicle wpbc avg.
CART .251± .022 .216± .015 .584± .029 .523± .019 .373± .023 .329± .158
Bagg .263± .016 .183± .014 .644± .007 .526± .011 .410± .019 .331± .177
Ada .321± .014 .188± .017 .611± .007 .545± .010 .432± .014 .352± .173

Asym .344± .015 .191± .010 .613± .011 .561± .008 .444± .015 .362± .175
SMB .351± .013 .295± .018 .641± .006 .606± .012 .452± .011 .393± .175

Under .579± .004 .538± .004 .644± .002 .623± .005 .449± .008 .477± .132
Over .319± .012 .166± .011 .609± .009 .539± .017 .427± .010 .345± .175

SMOTE .560± .005 .538± .007 .627± .004 .615± .006 .459± .009 .468± .134
Chan .635± .001 .577± .002 .618± .006 .608± .003 .448± .018 .478± .140

Cascade .596± .006 .549± .004 .649± .007 .623± .012 .454± .007 .485± .128
Easy .624± .002 .564± .002 .660± .005 .638± .007 .452± .014 .497± .136

RF .261± .023 .144± .034 .641± .013 .544± .024 .393± .027 .328± .181
BRF .627± .003 .500± .013 .663± .005 .633± .007 .401± .006 .480± .140

Under-RF .602± .004 .530± .004 .668± .006 .633± .007 .419± .008 .481± .140
Over-RF .349± .014 .292± .012 .656± .005 .564± .015 .397± .019 .376± .171

TABLE IX
SUMMARY OF t-TEST OFF-MEASURE WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF6 ‘EASY’

TASKS AND THE LOWER TRIANGLE SHOWS THE RESULT OF10 ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE

OF A METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

Cart Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
CART – 0-0-6 0-0-6 0-0-6 NA 1-1-4 NA 0-0-6 1-0-5 0-0-6 1-1-4 1-0-5 2-1-3 2-1-3 1-0-5
Bagg 2-6-2 – 0-0-6 0-0-6 NA 4-0-2 NA 3-0-3 3-0-3 2-0-4 4-0-2 1-0-5 4-1-1 4-0-2 1-0-5
Ada 6-2-2 7-2-1 – 0-4-2 NA 6-0-0 NA 4-2-0 4-2-0 5-1-0 6-0-0 2-4-0 6-0-0 6-0-0 3-2-1

Asym 5-4-1 7-2-1 5-5-0 – NA 6-0-0 NA 4-2-0 5-1-0 5-1-0 6-0-0 2-4-0 6-0-0 6-0-0 3-2-1
SMB 9-1-0 8-2-0 8-2-0 7-3-0 – NA NA NA NA NA NA NA NA NA NA

Under 10-0-0 9-1-0 10-0-0 9-1-0 7-3-0 – NA 0-0-6 0-1-5 0-0-6 1-2-3 1-2-3 3-2-1 5-0-1 1-0-5
Over 4-4-2 5-3-2 0-6-4 0-2-8 0-1-9 0-0-10 – NA NA NA NA NA NA NA NA

SMOTE 10-0-0 9-0-1 10-0-0 9-1-0 7-2-1 1-3-6 10-0-0 – 5-1-0 2-2-2 6-0-0 2-2-2 6-0-0 6-0-0 1-2-3
Chan 10-0-0 9-0-1 9-1-0 9-1-0 5-4-1 4-1-5 10-0-0 4-2-4 – 1-2-3 4-1-1 1-2-3 6-0-0 6-0-0 2-1-3

Cascade 10-0-0 9-1-0 10-0-0 9-1-0 8-2-0 5-5-0 10-0-0 8-2-0 4-3-3 – 6-0-0 1-2-3 6-0-0 6-0-0 2-1-3
Easy 10-0-0 10-0-0 10-0-0 9-1-0 9-1-0 9-1-0 10-0-0 8-2-0 6-1-3 7-2-1 – 1-2-3 3-3-0 4-1-1 1-0-5

RF 1-7-2 3-6-1 1-2-7 1-2-7 0-2-8 0-1-9 1-5-4 1-0-9 1-0-9 0-1-9 0-0-10 – 5-0-1 5-0-1 0-3-3
BRF 10-0-0 9-1-0 9-0-1 9-0-1 8-0-2 6-1-3 9-0-1 6-1-3 4-2-4 4-1-5 0-5-5 9-1-0 – 2-2-2 1-0-5

Under-RF 10-0-0 9-1-0 9-0-1 9-0-1 8-1-1 6-2-2 9-1-0 6-2-2 5-1-4 5-1-4 1-0-9 10-0-0 3-3-4 – 0-0-6
Over-RF 7-3-0 7-3-0 7-2-1 5-3-2 2-3-5 1-0-9 7-2-1 1-0-9 1-0-9 1-0-9 0-0-10 8-2-0 0-1-9 0-1-9 –

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 10

TABLE X
G-MEAN OF THE COMPARED METHODS ON‘ EASY’ TASKS (PART 1). THE ROW A V G. SHOWS THE AVERAGEG-MEAN OF EACH METHOD.

G-mean car ionosphere letter phoneme sat wdbc avg.
CART .910± .011 .867± .021 .968± .003 .836± .006 .716± .009 .918± .004 .869± .080
Bagg .964± .002 .906± .003 .972± .002 .880± .001 .729± .005 .950± .003 .900± .083
Ada .980± .001 .920± .003 .989± .002 .890± .001 .754± .005 .963± .003 .916± .080

Asym .981± .001 .922± .003 .988± .001 .892± .002 .761± .003 .963± .002 .918± .078
Under .956± .001 .918± .003 .994± .000 .889± .001 .871± .002 .963± .001 .932± .043

SMOTE .969± .002 .922± .002 .995± .001 .899± .001 .862± .003 .964± .003 .935± .046
Chan .970± .001 .923± .005 .992± .001 .897± .001 .881± .001 .962± .002 .937± .040

Cascade .969± .001 .921± .002 .996± .001 .897± .001 .867± .002 .967± .002 .936± .045
Easy .958± .001 .919± .003 .995± .000 .892± .001 .876± .001 .962± .003 .934± .042

RF .452± .013 .918± .005 .980± .002 .892± .003 .744± .006 .962± .003 .825± .183
BRF .693± .001 .911± .004 .989± .002 .893± .002 .881± .001 .957± .004 .887± .095

Under-RF .687± .001 .916± .003 .993± .001 .887± .001 .883± .000 .960± .002 .888± .098
Over-RF .690± .001 .918± .002 .987± .001 .897± .001 .782± .003 .963± .003 .873± .104

TABLE XI
G-MEAN OF THE COMPARED METHODS ON‘ HARD’ TASKS (PART 2).

G-mean abalone balance cmc haberman housing
CART .453± .021 .000± .000 .525± .008 .483± .045 .586± .026
Bagg .337± .011 .000± .000 .509± .010 .476± .036 .553± .032
Ada .396± .008 .001± .002 .561± .007 .502± .025 .615± .017

Asym .412± .007 .002± .004 .577± .010 .515± .023 .627± .011
SMB .511± .010 .002± .004 .560± .011 .536± .022 .686± .013

Under .765± .003 .560± .020 .623± .007 .592± .018 .725± .005
Over .372± .005 .000± .000 .555± .009 .491± .028 .607± .010

SMOTE .742± .006 .465± .027 .605± .006 .562± .016 .710± .014
Chan .778± .001 .465± .011 .622± .006 .536± .020 .698± .007

Cascade .755± .001 .595± .021 .628± .008 .591± .013 .721± .007
Easy .785± .004 .577± .015 .646± .007 .615± .012 .739± .006

RF .363± .016 .000± .000 .516± .015 .476± .028 .580± .031
BRF .790± .003 .548± .012 .634± .004 .618± .014 .718± .018

Under-RF .778± .002 .548± .015 .627± .003 .593± .011 .735± .005
Over-RF .457± .004 .000± .000 .587± .006 .504± .016 .638± .019

G-mean mf-morph mf-zernike pima vehicle wpbc avg.
CART .473± .022 .428± .020 .673± .024 .658± .013 .513± .032 .479± .178
Bagg .483± .016 .378± .021 .720± .006 .642± .008 .510± .032 .461± .187
Ada .560± .012 .386± .020 .694± .006 .664± .008 .537± .025 .492± .189

Asym .594± .014 .392± .013 .696± .009 .679± .007 .549± .028 .504± .193
SMB .605± .013 .524± .019 .719± .006 .728± .009 .584± .021 .545± .196

Under .873± .003 .848± .004 .719± .001 .768± .004 .617± .008 .709± .102
Over .559± .012 .358± .015 .692± .007 .657± .013 .527± .013 .482± .191

SMOTE .841± .006 .813± .007 .708± .003 .743± .005 .610± .009 .680± .111
Chan .920± .001 .854± .002 .700± .005 .738± .004 .585± .021 .690± .134

Cascade .874± .006 .820± .003 .725± .005 .760± .011 .623± .007 .709± .092
Easy .914± .001 .869± .003 .734± .004 .781± .005 .623± .014 .728± .107

RF .479± .022 .326± .049 .717± .010 .659± .018 .477± .019 .459± .190
BRF .918± .002 .831± .007 .735± .004 .780± .007 .567± .007 .714± .114

Under-RF .888± .005 .844± .002 .740± .005 .779± .006 .588± .011 .712± .111
Over-RF .597± .013 .519± .016 .731± .004 .689± .013 .494± .022 .522± .193

TABLE XII
SUMMARY OF t-TEST OFG-MEAN WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OF6 ‘EASY’ TASKS

AND THE LOWER TRIANGLE SHOWS THE RESULT OF10 ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE OF A

METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

CART Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
CART – 0-0-6 0-0-6 0-0-6 NA 0-0-6 NA 0-0-6 0-0-6 0-0-6 0-0-6 1-0-5 1-0-5 1-0-5 1-0-5
Bagg 1-7-2 – 0-0-6 0-0-6 NA 1-0-5 NA 0-0-6 0-0-6 0-0-6 1-0-5 1-0-5 1-1-4 1-0-5 1-0-5
Ada 5-3-2 7-2-1 – 0-3-3 NA 2-2-2 NA 1-2-3 1-2-3 1-1-4 1-2-3 3-3-0 3-1-2 4-0-2 3-1-2

Asym 6-2-2 7-2-1 6-4-0 – NA 3-1-2 NA 1-1-4 1-2-3 1-1-4 2-2-2 3-3-0 3-1-2 4-0-2 3-1-2
SMB 9-1-0 8-2-0 8-2-0 8-1-1 – NA NA NA NA NA NA NA NA NA NA

Under 10-0-0 9-1-0 10-0-0 10-0-0 9-1-0 – NA 1-2-3 1-1-4 1-0-5 0-3-3 3-2-1 4-0-2 5-0-1 3-2-1
Over 3-5-2 5-3-2 0-5-5 0-2-8 0-2-8 0-0-10 – NA NA NA NA NA NA NA NA

SMOTE 10-0-0 9-0-1 10-0-0 10-0-0 9-0-1 0-1-9 10-0-0 – 3-2-1 1-3-2 2-3-1 5-1-0 5-0-1 5-0-1 5-1-0
Chan 10-0-0 9-0-1 10-0-0 10-0-0 7-2-1 3-1-6 10-0-0 4-1-5 – 1-3-2 4-1-1 4-2-0 5-1-0 4-1-1 4-2-0

Cascade 10-0-0 9-1-0 10-0-0 10-0-0 10-0-0 2-5-3 10-0-0 10-0-0 7-0-3 – 4-1-1 5-1-0 5-0-1 5-0-1 5-1-0
Easy 10-0-0 10-0-0 10-0-0 10-0-0 10-0-0 9-1-0 10-0-0 10-0-0 9-0-1 8-2-0 – 3-3-0 3-1-2 4-1-1 3-2-1

RF 1-6-3 2-6-2 1-2-7 1-1-8 0-2-8 0-1-9 1-5-4 1-0-9 1-0-9 0-0-10 0-0-10 – 2-1-3 1-2-3 0-2-4
BRF 10-0-0 10-0-0 10-0-0 9-1-0 9-1-0 6-2-2 10-0-0 9-0-1 7-1-2 6-2-2 2-3-5 10-0-0 – 2-1-3 2-1-3

Under-RF 10-0-0 10-0-0 10-0-0 10-0-0 9-1-0 5-3-2 10-0-0 9-0-1 6-2-2 6-2-2 1-1-8 10-0-0 3-3-4 – 2-2-2
Over-RF 6-4-0 8-2-0 7-2-1 6-3-1 2-2-6 1-0-9 7-2-1 1-0-9 1-0-9 1-0-9 0-0-10 8-2-0 0-1-9 0-0-10 –

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 11

contained in the majority class which is ignored by
Under . Both our proposed methods can improve upon
Under , no matter on ‘easy’ tasks or ‘hard’ tasks. This
result supports our argument thatEasy and Cascade
can effectively explore the majority class examples.

Chan uses all the majority class examples, and it
generally has higher AUC and F-measure thanUnder .
But the results show that on ‘hard’ tasks, its AUC, F-
measure and G-mean are comparable to or slightly lower
thanCascade , and they are lower thanEasy on most
of the data sets. This implies that using all majority class
examples is not necessary. In particular, when the data
set is highly imbalanced,Chan will consume a lot of
time.

Both Easy andCascade attain higher average AUC,
F-measure and G-mean than almost all the other methods
on ‘hard’ tasks, except thatCascade is comparable
to Chan with AUC and F-measure, and slightly worse
thanBRF andUnder-RF with G-mean. ButChan has
much lower G-mean, and,BRF & Under-RF have
much lower AUC and F-measure than many other class-
imbalance learning methods. While bothEasy and
Cascade are very robust with different performance
measures.

Easy andCascade can not only improve the AUC
scores, but also reduce the training time. They require
approximately the same training time asUnder , and are
faster than other methods. Considering both classification
performance and training time, they are better than all
other compared methods.

The results on ‘hard’ tasks show thatCascade is
inferior to Easy . The way Cascade explores the
majority class examples might be responsible for this
observation. InCascade , the majority training set of
Hi+1 is produced byHi. Such a supervised, cascading
way of sampling might suffer from overfitting. In other
words, the correctly predicted majority class examples
that have been filtered out may be useful [27]. In
particular, some examples that are deemed redundant and
discarded in earlier rounds may be helpful in some later
rounds, after some other examples have been discarded.
Note that there are also situations in whichCascade is
preferred. From the results on “easy” tasks we can see
thatCascade has higher AUC, F-measure and G-mean
than Easy on almost all data sets. This suggests that
Cascade can focus on more useful data. In addition,
note thatCascade is more favorable thanEasy on data
setbalanceandwpbc. Both of these data sets have a very
small minority class. In fact, if the number of examples
in a class is very small, there is a significant chance that
the examples will scatter around broadly. It is difficult
to get a representative subset by using under-sampling

alone. Focusing on more informative examples may be
particularly helpful in this case. Also,Cascade is more
suitable for highly imbalanced problems. For example,
in the face detection problem described in [41], there are
5000 positive examples and 2284 million negative ones.
The independent random sampling strategy ofEasy
requiresT , the number of subsets, to be very large in
order to catch all the information inN . Furthermore,
the number of subsets is hard to decide since no prior
information is available. Thus,Easy is computationally
infeasible for this problem. But forCascade , it is much
easier to set the iteration number since it is reasonable
to setfp rate around 0.5. So,T = 20 is sufficient for the
face detection problem, sincelog2(2.284×109/5000) ≈
19 (assuming a false positive rate of 0.5).

E. Analysis of the Ensemble Strategy

As stated above, since minority class examples are
used to train each weak classifier in the proposed
method, stacking these classifiers may cause overfitting
when the number of minority class examples is limited.
To verify this, the 16 data sets in Table II were used
to compare stacking with the ensemble strategy used in
Easy andCascade .

The AUC values are summarized in Table XIII.
Similar to the experiments in the previous subsection,
the 16 data sets are divided into groups based on the
performance of AdaBoost. WhenCascade is used on
‘easy’ tasks, stacking is inferior to the original ensemble
strategy on 3 out of 6 data sets, while it is superior on
only one data set. However, the difference between the
two strategies is small. The same observation holds for
Easy . On ‘hard’ tasks, the performance ofCascade
dominates that of stacking on all data sets. As forEasy ,
there is only one data set on which stacking is bet-
ter. Generally speaking, there are significant differences
between the performance of stacking and the current
ensemble strategy used in our proposed methods.

Therefore, stacking is not very suitable for the case
when minority class examples are used in each weak
classifier. In such a case, stacking may cause overfitting.
This is probably a major reason forChan to be inferior
to Easy .

F. Additional Remarks

We have the following remarks regarding the results in
AUC, F-measure and G-mean on both ‘easy’ and ‘hard’
tasks:

• The proposed methodsEasyEnsemble and
BalanceCascade are more robust than many
other class-imbalance learning methods. When

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 12

TABLE XIII
COMPARISON OFSTACKING WITH ENSEMBLE STRATEGY IN BA L A N C ECA S C A D EAND EA S YEN S E M B L E. THIS TABLE SHOWSAUC’ S OF

THE COMPARED METHODS. THE FIRST GROUP DATA SETS IS‘ EASY’ TASKS, AND THE SECOND GROUP IS‘ HARD’ TASKS. THE ROW avg1.
SHOWS THE AVERAGEAUC OF EACH METHOD ON ‘ EASY’ TASKS. THE ROW avg2.SHOWS THE AVERAGEAUC ON ‘ HARD’ TASKS. THE

ROW avg.SHOWS THE OVERALL AVERAGEAUC. TABULAR IN BOLD DENOTES THE SUPERIOR ENSEMBLE STRATEGY BETWEEN THE

ORIGINAL ONE AND STACKING.

BalanceCascade EasyEnsembleData Set
original stacking original stacking

car 0.996± 0.000 0.997± 0.000 0.994± 0.000 0.995± 0.000
letter 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
ionosphere 0.976± 0.002 0.976± 0.002 0.974± 0.002 0.974± 0.002
phoneme 0.962± 0.000 0.960± 0.000 0.958± 0.000 0.957± 0.000
sat 0.949± 0.001 0.944± 0.001 0.947± 0.000 0.946± 0.001
wdbc 0.994± 0.000 0.992± 0.001 0.993± 0.000 0.992± 0.001
avg1. 0.979± 0.018 0.978± 0.019 0.978± 0.018 0.977± 0.019

abalone 0.828± 0.002 0.802± 0.002 0.847± 0.002 0.844± 0.002
balance 0.637± 0.011 0.631± 0.008 0.633± 0.008 0.640± 0.012
cmc 0.686± 0.007 0.679± 0.006 0.704± 0.008 0.698± 0.009
haberman 0.653± 0.012 0.637± 0.013 0.668± 0.011 0.647± 0.011
housing 0.809± 0.008 0.800± 0.009 0.827± 0.005 0.811± 0.013
mf-morph 0.904± 0.002 0.903± 0.002 0.917± 0.001 0.916± 0.002
mf-zernike 0.890± 0.002 0.864± 0.003 0.904± 0.002 0.901± 0.001
pima 0.799± 0.005 0.792± 0.005 0.809± 0.004 0.802± 0.004
vehicle 0.856± 0.002 0.848± 0.002 0.860± 0.001 0.857± 0.004
wpbc 0.712± 0.011 0.707± 0.009 0.707± 0.009 0.705± 0.012
avg2. 0.778± 0.089 0.766± 0.087 0.788± 0.092 0.782± 0.092

avg. 0.853± 0.119 0.846± 0.122 0.859± 0.116 0.855± 0.119

class-imbalance is not harmful, they don’t cause
serious degeneration of performance. When class-
imbalance is indeed harmful, they are better than
almost all other methods we have compared with.

• Class-imbalance is not harmful for some tasks and
applying class-imbalance learning methods in such
cases may lead to performance degeneration. A con-
sequence of this observation is that, class-imbalance
learning methods should only be applied to tasks
which suffer from class imbalance. For this purpose,
we need to develop some methods to judge whether
a task suffers from class imbalance or not, before
applying class-imbalance learning methods to it.

• We observed that, on tasks which do not suffer
from class-imbalance, AdaBoost and Bagging can
improve the performance of decision trees signif-
icantly; while on tasks which suffer from class-
imbalance, they could not help and sometimes even
deteriorate the performance. This might give us
some clues on judging whether a task suffers from
class imbalance or not, which will be studied in the
future.

V. CONCLUSION

This paper extends our preliminary work [26]
which proposed two algorithmsEasyEnsemble and
BalanceCascade for class-imbalance learning. Both
algorithms are designed to utilize the majority class
examples ignored by under-sampling, while at the same
time keeping its fast training speed. Both algorithms

sample multiple subsets of the majority class, train an
ensemble from each of these subsets, and combine all
weak classifiers in these ensembles into a final output.
Both algorithms make better use of the majority class
than under-sampling, since multiple subsets contain more
information than a single one. The main difference is that
EasyEnsemble samples independent subsets, while
BalanceCascade uses trained classifiers to guide
the sampling process for subsequent classifiers. Both
algorithms have approximately the same training time as
that of under-sampling when the same number of weak
classifiers are used.

Empirical results suggest that for problems on which
ordinary methods achieve high AUC (e.g.≥ 0.95), class-
imbalance learning is not helpful. However, the pro-
posed methods can be used to reduce training time. For
problems where class-imbalance learning methods really
help, both EasyEnsemble and BalanceCascade
have higher AUC, F-measure and G-mean than almost all
other compared methods and the former is superior than
the latter. However, sinceBalanceCascade removes
correctly classified majority class examples in each it-
eration, it will be more efficient on highly imbalanced
data sets. In addition, the comparison ofChan and our
proposed methods reveals that, it is not necessary to use
all examples in the majority class.

In the current version of the proposed methods, we use
the αi,j returned by the weak learner directly. Further
improvements are possible by learningαi,j , as shown
in [22], [41]. Note that bothEasyEnsemble and

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 13

BalanceCascade are ensemble methods. So, while
they provide strong generalization ability, they also in-
herit the weaknesses of ensemble methods. An apparent
weakness is the lack of comprehensibility. Even when the
base classifiers are comprehensible symbolic learners,
ensembles are still black-boxes. There are some research
on this problem [44]–[46] and it is possible to use those
research outputs to enhance the comprehensibility of
EasyEnsemble andBalanceCascade .

ACKNOWLEDGMENT

The authors want to thank the anonymous review-
ers and the associate editor for helpful comments
and suggestions. This research was partially sup-
ported by the National Science Foundation of China
(60635030, 60721002), the Jiangsu Science Founda-
tion (BK2008018) and the National High Technol-
ogy Research and Development Program of China
(2007AA01Z169).

REFERENCES

[1] G. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning
training data,”ACM SIGKDD Explorations, vol. 6, no. 1, pp.
20–29, 2004.

[2] E. Bauer and R. Kohavi, “An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants,”Ma-
chine Learning, vol. 36, no. 1-2, pp. 105–139, 1999.

[3] C. Blake, E. Keogh, and C. J. Merz, “UCI
repository of machine learning databases,”
[http://www.ics.uci.edu/∼mlearn/MLRepository.html],
Department of Information and Computer Science, University
of California, Irvine, CA.

[4] A. P. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,”Pattern
Recognition, vol. 30, no. 6, pp. 1145–1159, 1997.

[5] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24,
pp. 123–140, 1996.

[6] ——, “Random forest,”Machine Learning, vol. 45, pp. 5–32,
2001.

[7] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. CRC Press, 1984.

[8] P. K. Chan and S. J. Stolfo, “Toward scalable learning with
non-uniform class and cost distributions: A case study in credit
card fraud detection,” inProceedings of the 4th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, New York, NY, 1998, pp. 164–168.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,”Jour-
nal of Artificial Intelligence Research, vol. 16, pp. 321–357,
2002.

[10] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special
issue on learning from imbalanced data sets,”ACM SIGKDD
Explorations, vol. 6, no. 1, pp. 1–6, 2004.

[11] N. V. Chawla, N. Japkowicz, and A. Kotcz, Eds.,ICML’2003
Workshop on Learning from Imbalanced Data Sets, 2003.

[12] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: Improving prediction of the minority class in
boosting,” in Proceedings of the 7th European Conference on
Principles and Practice of Knowledge Discovery in Databases,
Cavtat-Dubrovnik, Croatia, 2003, pp. 107–119.

[13] C. Chen, A. Liaw, and L. Breiman, “Using random forest to
learn imbalanced data,” Deptarment of Statistics, UC Berkeley,
Tech. Rep. 666, 2004.

[14] P. Domingos, “MetaCost: A general method for making classi-
fiers cost-sensitive,” inProceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, 1999, pp. 155–164.

[15] C. Drummond and R. C. Holte, “C4.5, class imbalance, and
cost sensitivity: Why under-sampling beats over-sampling,” in
Working Notes of the ICML’03 Workshop on Learning from
Imbalanced Data Sets, Washington, DC, 2003.

[16] C. Elkan, “The foundations of cost-senstive learning,” inPro-
ceedings of the 17th International Joint Conference on Artificial
Intelligence, Seattle, WA, 2001, pp. 973–978.

[17] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost:
Misclassification cost-sensitive boosting,” inProceedings of the
16th International Confernece on Machine Learning, Bled,
Slovenia, 1999, pp. 97–105.

[18] T. Fawcett, “ROC graphs: Notes and practical considerations
for researchers,” HP Labs, Tech. Rep. HPL-2003-4, 2003.

[19] J. H. Friedman, “Stochastic gradient boosting,”Computational
Statistics and Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[20] K. Fukunaga,Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

[21] H. Guo and H. L. Viktor, “Learning from imbalanced data
sets with boosting and data generation: The DataBoost-IM
approach,”ACM SIGKDD Explorations, vol. 6, no. 1, pp. 30–
39, 2004.

[22] K. Huang, H. Yang, I. King, and M. R. Lyu, “Learning classi-
fiers from imbalanced data based on biased minimax probability
machine,” inProceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, Washington,
DC, 2004, pp. 558–563.

[23] N. Japkowicz, Ed.,AAAI’2000 Workshop on Learning from
Imbalanced Data Sets, 2000.

[24] G. J. Karakoulas and J. Shawe-Taylor, “Optimizing classifiers
for imbalanced training sets,” inAdvances in Neural Informa-
tion Processing Systems 11. Cambridge, MA: MIT Press, 1999,
pp. 253–259.

[25] M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: One-sided selection,” inProceedings of the 14th
International Conference on Machine Learning, Nashville, TN,
1997, pp. 179–186.

[26] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling
for class-imbalance learning,” inProceedings of the 6th IEEE
International Conference on Data Mining, Hong Kong, 2006,
pp. 965–969.

[27] F.-Z. Marcos, “On the usefulness of almost-redundant infor-
mation for pattern recognition,” inSummer School on Neural
Networks, 2004, pp. 357–364.

[28] H. Masnadi-Shirazi and N. Vasconcelos, “Asymmetric boost-
ing,” in Proceedings of the 24th International Confernece on
Machine Learning, Corvallis, OR, 2007.

[29] R. E. Schapire, “A brief introduction to Boosting,” inProceed-
ings of the 16th International Joint Conference on Artificial
Intelligence, Stockholm, Sweden, 1999, pp. 1401–1406.

[30] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and
rocchio applied to text filtering,” inProceedings of the 4th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1998, pp. 215–223.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART B 14

[31] K. M. Ting, “An empirical study of MetaCost using boosting
algorithms,” in Proceedings of the 11th European Conference
on Machine Learning, Barcelona, Spain, 2000, pp. 413–425.

[32] K. M. Ting and I. H. Witten, “Issues in stacked generalization,”
Journal of Artificial Intelligence Research, vol. 10, pp. 271–289,
1999.

[33] P. Viola and M. Jones, “Fast and robust classification using
asymmetric AdaBoost and a detector cascade,” inAdvances in
Neural Information Processing Systems 14, T. G. Dietterich,
S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT
Press, 2002, pp. 1311–1318.

[34] ——, “Robust real-time face detection,”International Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[35] G. I. Webb, “MultiBoosting: A technique for combining boost-
ing and wagging,”Machine Learning, vol. 40, pp. 159–196,
2000.

[36] G. I. Webb and Z. Zheng, “Multistrategy ensemble learning: Re-
ducing error by combining ensemble learning techniques,”IEEE
Transactions on Knowledge and Data Engineering, vol. 16,
no. 8, pp. 980–991, 2004.

[37] G. M. Weiss, “Mining with rarity: A unifying framework,”ACM
SIGKDD Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[38] G. M. Weiss and F. Provost, “Learning when training data
are costly: The effect of class distributions on tree induction,”
Journal of Artificial Intelligence Research, vol. 19, pp. 315–354,
2003.

[39] I. H. Witten and E. Frank,Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[40] D. H. Wolpert, “Stacked generalization,”Neural Networks,
vol. 5, no. 2, pp. 241–260, 1992.

[41] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast
asymmetric learning for cascade face detection,”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 3, pp. 369–382, 2008.

[42] Y. Yu, Z.-H. Zhou, and K. M. Ting., “Cocktail ensemble
for regression,” inProceedings of the 7th IEEE International
Conference on Data Mining, Omeha, NE, 2007, pp. 721–726.

[43] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning
by cost-proportionate example weighting,” inProceedings of
the 3rd IEEE International Conference on Data Mining, Mel-
bourne, FL, 2003, pp. 435–442.

[44] Z.-H. Zhou and Y. Jiang, “Medical diagnosis with C4.5 rule
preceded by artificial neural network ensemble,”IEEE Trans-
actions on Information Technology in Biomedicine, vol. 7, no. 1,
pp. 37–42, 2003.

[45] ——, “NeC4.5: Neural ensemble based C4.5,”IEEE Transac-
tions on Knowledge and Data Engineering, vol. 16, no. 6, pp.
770–773, 2004.

[46] Z.-H. Zhou, Y. Jiang, and S.-F. Chen, “Extracting symbolic rules
from trained neural network ensembles,”AI Communications,
vol. 16, no. 1, pp. 3–15, 2003.

[47] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural
networks with methods addressing the class imbalance prob-
lem,” IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 1, pp. 63–77, 2006.

Xu-Ying Liu received her BSc and MSc de-
gree in computer science from Nanjing Univer-
sity of Aeronautics and Astronautics, China in
2003 and Nanjing University, China in 2006,
respectively. Currently she is a PhD candidate
in Nanjing University and is a member of the
LAMDA Group. Her research interests are in
machine learning and data mining, especially
in cost-sensitive and class imbalance learning.

Jianxin Wu received the BS degree and MSc
degree in computer science, both from Nan-
jing University, China. He is currently a PhD
candidate in Georgia Institute of Technology
under the supervision of Dr. James M. Rehg.
His research interests are computer vision,
machine learning, and robotics.

Zhi-Hua Zhou (S’00-M’01-SM’06) received
the BSc, MSc and PhD degrees in computer
science from Nanjing University, China, in
1996, 1998 and 2000, respectively, all with the
highest honors.
He joined the Department of Computer Sci-
ence & Technology at Nanjing University as
an assistant professor in 2001, and is currently
Cheung Kong Professor and Director of the

LAMDA group. His research interests are in artificial intelligence,
machine learning, data mining, pattern recognition, information re-
trieval, evolutionary computation, and neural computation. In these
areas he has published over 60 papers in leading international journals
or conference proceedings.
Dr. Zhou has won various awards/honors including the National Sci-
ence & Technology Award for Young Scholars of China (2006), the
Award of National Science Fund for Distinguished Young Scholars
of China (2003), the National Excellent Doctoral Dissertation Award
of China (2003), the Microsoft Young Professorship Award (2006),
etc. He is an Associate Editor ofIEEE Transactions on Knowledge
and Data Engineering, Associate Editor-in-Chief ofChinese Science
Bulletin, and on the editorial boards ofArtificial Intelligence in
Medicine, Intelligent Data Analysis, Knowledge and Information Sys-
tems, Science in China, etc. He is/was a PAKDD Steering Committee
member, Program Committee Chair/Co-Chair of PAKDD’07 and
PRICAI’08, Vice Chair/Area Chair of ICDM’06, ICDM’08, etc.,
Program Committee member of various international conferences
including AAAI, ICML, ECML, SIGKDD, ICML, ACM Multimedia,
etc., and General Chair/Co-Chair or Program Committee Chair/Co-
Chair of a dozen of native conferences. He is a senior member
of China Computer Federation (CCF), the Vice Chair of the CCF
Artificial Intelligence & Pattern Recognition Society, an Executive
Committee member of Chinese Association of Artificial Intelligence
(CAAI), the Chair of the CAAI Machine Learning Society, and
the Chair of the IEEE Computer Society Nanjing Chapter. He is
a member of AAAI and ACM, and a senior member of IEEE and
IEEE Computer Society.

