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Abstract— Distribution voltage profiles are subjected to 

overvoltage limit violations from high penetration of grid-

connected photovoltaic (PV) systems.  Such voltage rises seen at 

the point of PV interconnection can be mitigated by adaptively 

changing the active and/or reactive power injection from the PV 

inverter. This work proposes a local voltage regulation technique 

that utilizes very short-term (15 seconds) PV power forecasts to 

circumvent imminent upper voltage limit violation or an 

overvoltage scenario. To provide these PV generation forecasts, a 

hybrid forecasting method is formulated based on Kalman Filter 

theory, which applies physical PV generation modeling using 

high resolution (15 seconds) data from on-site measurements. 

The proposed algorithm employs an active power curtailment 

based on these PV power forecasts, when the reactive power 

estimate given by a droop-based method cannot provide the 

desired voltage regulation within predefined power factor limits. 

The curtailment threshold values are calculated in such a way 

that this voltage regulation technique can reduce possible voltage 

limit violations. The effectiveness of the proposed method is 

demonstrated with case studies developed on a standard test 

feeder with realistic load and PV generation profiles. 

 
Index Terms— High photovoltaic (PV) penetration, 

distribution voltage regulation, overvoltage prevention, active 

power curtailment, solar forecasting, Kalman Filter (KF). 

I. INTRODUCTION 

olar photovoltaic (PV) energy deployment is 

accelerating at a rapid pace throughout the world. On a 

global scale, more PV capacity was added into the generation 

mix since 2010 than in the previous four decades [1]. As the 

number of PV systems interconnected to the distribution grid 

grows, the grid faces several opportunities as well as 

challenges. One of the major concerns from network operation 

standpoint is the overvoltage or violation of voltage limit (for 

example, ±5% of nominal voltage as given by service voltage 

limits of ANSI C84.1 [2]) in a distribution network due to 

high PV penetration. To address this issue of variable voltage 

rise, advanced PV inverters are being considered as a viable 

source of reactive power, which was not allowed under 

existing standards. But rapid growth of renewable sources has 

led to the revision of existing standards so that distributed 
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resources, in general, can actively participate in feeder voltage 

regulation when necessary [2]. Besides alleviating voltage 

rise, inverters can also mitigate sudden voltage drops or 

undervoltage scenario by capacitive VAR compensation. A 

local voltage regulation technique was presented by the 

authors in [3], which combined an inverter reactive power 

injection algorithm and real or active power curtailment 

technique to keep the voltage profile within a predefined upper 

threshold.  In the literature, several methods are discussed to 

implement voltage regulation by controlling the reactive 

injection from the PV inverter [4-6]. Centralized control 

schemes use network-wide optimization to derive optimal 

real/reactive input set-points for inverter(s) [7-9]. However, 

emerging techniques like positive semidefinite optimal power 

flow using sparsity-promoting regularization approaches are 

being discussed in literature which can reduce computational 

burden when the voltage regulation needs to be managed on a 

real-time basis [8, 10]. On the other hand, decentralized or 

local voltage control methods can respond faster as they only 

involve local voltage and/or PV power production 

measurements [11-13], and thus can be deployed as an online 

application. 
The reactive power capability of a PV inverter is limited by 

the instantaneous real power generation and its apparent 

power rating [4]. Consequently, the reactive power control 

strategies alone cannot yield sufficient voltage regulations 

when PV power output is high. So active power curtailment is 

regarded as another lucrative option with reactive power 

control to prevent distribution overvoltage [3, 14-15]. Besides, 

curtailing real power can yield in better voltage regulation 

given that the distribution network is resistive in nature (high 

R/X ratio). 

Inverter-based voltage regulation applications can be further 

augmented by using PV generation forecasts. Solar forecasting 

is being used as a support tool to manage the intermittent 

nature of solar energy production which can lead to potential 

reliability concerns regarding network operation like voltage 

and frequency regulation [16]. Dispatching regulation reserves 

require short-term PV output forecasts for real-time market 

applications. For example, California Independent System 

Operator (CAISO) provides forecasts 105 minutes before the 

operating hour for its participating intermittent resource 

program [17]. The time horizon for short-term solar 

Distribution Voltage Regulation through Active 

Power Curtailment with PV Inverters and Solar 

Generation Forecasts 

Shibani Ghosh, Student Member, IEEE, Saifur Rahman, Life Fellow, IEEE,  

and Manisa Pipattanasomporn, Senior Member, IEEE 

S

Page 1 of 10 IEEE PES Transactions on Sustainable Energy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1949-3029 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2016.2577559, IEEE
Transactions on Sustainable Energy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2

forecasting is widely considered to be within few hours, 

whereas minutes timescale falls within very short-term 

category [18-20]. In the literature, researchers have 

approached the offline short-term solar generation forecasting 

problem using two broad types of techniques – time-series 

based statistical methods and artificial neural network (ANN) 

based techniques [21]. Statistical models rely on underlying 

stochastic properties of internal data structure in PV 

generation (direct forecasting) or solar irradiance (indirect 

forecasting) data [19, 21-24]. ANN methods are mostly used 

for indirect PV generation forecasting using training dataset, 

which include different weather parameters [20-21, 23, 25]. 

Giorgi et al presented the impact of different input variables 

for short-term PV power prediction in [26], where their 

analyses showed that the prediction accuracy improves when 

other measured weather parameters are taken into account, 

instead of only PV power and solar irradiance. 

If PV generation forecasts are to be integrated with network 

operation applications, like local voltage regulation, it is 

useful to employ an online forecasting approach that does not 

handle a large dataset for very short-term forecasting scenario. 

In that case, measurement based dynamic prediction methods 

like Kalman Filtering (KF) technique can help reduce 

processing time. KF theory provides a sequential learning 

method that considers hourly or sub-hourly measurements for 

short-term PV power forecasting applications [27-30]. 

In this paper, a local voltage regulation technique is 

proposed which merges a droop-based inverter reactive power 

compensation algorithm and active power curtailment method 

using very short-term PV power forecasts. This technique 

expands on the local voltage regulation scheme previously 

developed by the authors in [3], and integrates the voltage 

regulation method with a hybrid forecasting algorithm that 

combines physical PV modeling based on KF theory. This 

forecasting model provides very short-term PV generation 

forecasts (15 seconds) that are used by this voltage regulation 

technique to determine required reactive compensation from 

the PV inverter and active power curtailment threshold. The 

proposed voltage regulation method is designed to be realized 

as an online application that can run in a smart grid 

environment and reduce local overvoltage under a high PV 

penetration scenario. 

The rest of the paper is organized as follows. Section II 

discusses the development of the hybrid forecasting model 

that provides very short-term PV power forecasts. Local 

voltage regulation technique using the PV power forecasts is 

proposed in section III. The dataset and system setup for the 

case studies are described in section IV. Results showing the 

efficacy of this proposed overvoltage prevention method are 

presented in section V. Finally, section VI summarizes the 

paper with concluding remarks. 

II. HYBRID FORECASTING MODEL 

A hybrid forecasting model for very short-term PV 

generation forecasting is proposed here that combines two 

techniques - physical modeling of PV generation with weather 

parameters and application of recursive KF technique.  In this 

paper, very short-term PV generation forecasting is 

represented with 15 seconds timescale. A high-level schematic 

depicting this forecasting model is given in Fig. 1. As seen in 

Fig. 1, the forecasting model requires a physical model for PV 

generation which uses weather parameters. The preceding 

block to this generation model conditions and classifies the 

historical dataset according to day types and seasons. The 

physical PV model, provided with coarse weather forecast for 

the day in question, is used as an initial seed to the recursive 

KF application block. Based on the measurements recorded 

for the day, this block recalibrates the initial PV generation 

model to a steady-state condition once ample data is gathered. 

This way, the forecasting model reduces its dependence on the 

historical dataset and can lessen the impact of any bias present 

in the past dataset. 

 

A. Day type classification based on clear sky radiation model 

Many research works have featured weather or day type 

classification for PV power forecasting method, as it helps to 

cluster the dataset with large variations [31-33]. These works 

mostly consider day types based on general weather 

conditions (sunny/cloudy/rainy). For this paper, a seven-group 

classification is assumed instead according to the incident 

solar energy or daily insolation (kWh/m�). This classification 

provides more granularity to the clustering performed on the 

historical dataset. Equation (1) defines the day type by the 

ratio (��	) between the daily measured and theoretical clear 

sky insolation. Clear sky radiation model used in this paper is 

derived using the formulae presented in [34]. 

��	 
 �������	���������	���	���	������	���	���������	���	���	�� ∗ 100% (1) 

The day type classifications according to the range of ��	 are 
listed in Table I. Seasonal classification is also considered in 

this paper (long summer: spring to fall equinox, and long 

winter: fall to spring equinox). Such classification yields a 

larger cluster for each day type in a season, compared to 

classification of season by winter, spring, summer, and fall. 

 
Fig. 1. High level schematic of the proposed hybrid forecasting model 

TABLE I 

DAY TYPE CLASSIFICATION ACCORDING TO AVAILABLE INSOLATION 

Day type Range of measured insolation to clear sky insolation 

Sunny ��	 ! 95% 

Mostly Sunny 85% % ��	 & 95% 

Partly Sunny 70% % ��	 & 85% 

Partly Cloudy 55% % ��	 & 70% 

Cloudy 40% % ��	 & 55% 

Overcast 25% % ��	 & 40% 

Snowy/rainy ��	 & 25% 
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This day type and seasonal classification is used to cluster 

daily PV generation models (described in the following 

section) derived from the historical dataset. An appropriate 

model is selected from these clusters based on the preliminary 

weather forecast (for the day in question) and the recursive KF 

process uses this model as a starting point. 

B. PV generation modeling using weather parameters 

Direct solar generation forecasting methods rely on the 

inherent non-linear relationship between the PV output power 

and the weather data. Researchers have investigated various 

input parameters to build the model for PV power [20-21, 25, 

29]. To ensure the accuracy of the multivariate regression 

based model used in this paper, the basic physical model of 

PV array performance from [35] is used (Equation (2) -(4)). At 

maximum power point tracking (MPPT) mode, the dc voltage 

(*+,) and current (-+,) for the PV module are given by: 

*+, 
 *+,. + 0123456 ln39:;;6 + 0�<23456 ln39:;;6=�
+ 0>9:;;∆4 

-+, 
 -+,.@0A9:;; + 0B9:;;�C<1 + 0D∆4= 
(2) 

In equation (2), *+,. and -+,. are the voltage and current, 

respectively, in MPPT mode at standard reference condition 

(this reference condition will be noted henceforth with 

subscript ‘0’, and refers to the operating condition of solar 

irradiance of 1000	W/m� and solar cell temperature of	25℃). 

9:;;  is the effective or normalized solar irradiance which is a 

dimensionless ratio and expressed as: 

 9:;; 
 -�� -��.⁄  (3) 

Here, -�� is the incident solar irradiance and -��. is the 

reference irradiance (
 1000	W/m�6. 23456 in equation (2) is 

the thermal voltage per solar cell at temperature 45  which can 

be considered negligible (mV range per cell). ∆4 denotes the 

difference between the cell temperature (45) and reference 

condition temperature (4. 
 25℃). The model coefficients 01 
to 0D are to be determined empirically. 

The average cell temperature is related to the average back-

surface module temperature (4+�G6 and irradiance, assuming 

that the heat conduction through the module materials behind 

the cell is one-dimensional [35]. So, ∆4 can be expressed in 

terms of 4+�G as: 
 ∆4 
 345 − 4.6 ≈ 34+�G + 9:;; . 4�6 − 4. (4) 

Here, 4� denotes predetermined temperature difference 

between the cell and the module temperature at the reference 

irradiance, -��. (4� is 3℃	for the PV module considered in the 

case study). Combining 	*+,	and 	-+, terms from equation (2) 

and neglecting the 23456 components, the equation for the 

maximum dc power output, L+, can be described as: 

L+, 
 -+, ∗ *+, 
 0M9:;; + 0N9:;;� + 0O9:;;∆4
+ 01.9:;;�∆4 + 0119:;;>∆4
+ 01�9:;;�∆4� 

(5) 

Equation (5) expresses L+, as a function of measurable 

quantities	9:;;  and	∆4. The new set of empirical coefficients 

(0M to	01�) merges the previous ones (01 to	0D) with *+,. 
and	-+,., since both of these parameters are constant for a 

specific PV unit. 

The module temperature in equation (4) can again be 

elaborated with a simplistic, empirically-developed thermal 

model which relates it to environmental variables- irradiance, 

ambient temperature and wind velocity [35]. However, the PV 

system considered here records temperature measurements 

using a sensor placed at the back of the arrays along with other 

weather data. These measurements are used directly for 4+�G  
for the case studies discussed in this paper. The coefficients 0M 
to	01� are determined through regression analysis performed 

on the measured dataset for each day using equation (3)- (5). 

These coefficients represent the PV output model for the day 

which relates environmental variables to the solar generation. 

The final ac power output from the inverter is calculated from 

L+, assuming 95.5% conversion efficiency. 

C. Application of Kalman Filtering technique for PV 

generation forecasting 

KF theory is used in this measurement based hybrid 

forecasting model to provide very short-term (15 seconds) PV 

generation forecasts. In this work, the generic mathematical 

relations presented by Schweppe [36] are used to apply a 

single-step prediction concept. For this application, the PV 

generation model (discussed in section II-B) is first expressed 

as a discrete time linear system model: 

 P3�6 
 Q3�6R3�6 + S3�6 (6) 

Here, P is the observation vector or measured PV 

generation,	LTU; Q is the observation matrix and R denotes the 

state vector which is comprised of the irradiance and module 

temperature (Equation (3)- (5)): 

 R3�6 
 V -��3�64+�G3�6W (7) 

The vector S in equation (6) is the observation uncertainty or 

measurement noise, which is assumed to be zero for this 

forecasting model. Q is given by the PV generation model in 

equation (5) linking irradiance and module temperature to	LTU 
through intermediate variables 9:;;  and ∆4. 

For time increment between adjacent samples, the state 

space structure in this model is described as: 

 R3� + 16 
 X3�6R3�6 + Y3�6Z3�6 (8) 

Here,X is the state transition matrix, Y is the process noise 

gain matrix (assumed to be identity matrix for this particular 

application) and Z is the process noise or disturbance vector. 

Theoretically, for one-step ahead prediction, the best 

estimate of R3� + 16 is given by	X3�6R[3�|�6. In general, 

	R[3�1|��6 gives the best estimate of	R3�16, using 

observations	P316… 	P3��6, where	�1 ! ��. The prediction for 

the next-step can then be written as: 

R[3� + 1|�6 
 R^3� + 16 
 X3�6R[3�|�6 (9) 

Here, R^3� + 16 denotes the predicted estimate of R3� + 16 
calculated at n

th
 time step, and R[3�|�6 
 R_3�6 is the 
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corrected estimate of R3�6	based on the most recent 

observation. This correction of the state variables is done over 

the predicted values from the previous time step using the 

following relation: 

 R_3�6 
 R^3�6 + `3�6a3�6 
a3�6 
 P3�6 − P^3�6 (10) 

In equation (10), P^3�6 is the predicted estimate of the 

observation parameter(s),	P3�63
 LTU3�66; and `3�6 is the 

Kalman gain calculated at n
th
 time step. This time-varying 

value of Kalman gain introduces differential correction to the 

predicted estimate based on the output prediction error,	a3�6. 
This application of KF theory to build up the PV power 

forecasting algorithm can thus be formulated as an iterative 

method with three major steps for an arbitrary time step ‘i’: 

• Correction: 

This part involves the correction of the predicted value as 

estimated from the previous iteration (equation (10)). To 

derive this corrected estimate,	R_3�6 the instantaneous Kalman 

gain is needed which acts as a weighing parameter for the 

output prediction error, a3�6. Kalman gain is expressed as: 

 `3�6 
 c^3�6Qd3�6eQ3�6c^3�6Qd3�6 + f3�6gh1 (11) 

Here, c^3�6 is the auto covariance matrix for predicted state 

estimate error (derived in (i-1)
th
  iteration); Q3�6 is the 

observation matrix evaluated at i
th
  iteration; and f3�6 is the 

measurement noise covariance matrix recorded till i
th
 iteration. 

• Prediction: 

This step calculates the prediction estimates for the next 

time step using all the information available up to the current 

time instance. The predicted state estimates are derived based 

on the recently corrected state estimate for the current time 

step. Prediction for the output (P^3� + 16) is then given by: 

 P^3� + 16 
 	Q3�6R^3� + 16 (12) 

Where, R^3� + 16 is calculated as per equation (9) using the 

state transition matrix evaluated at i
th
 iteration,	X3�6. 

• Parameter update: 

The error covariance matrices are updated in this step for 

future use. Auto covariance matrix for predicted state estimate 

error is estimated by: 

 c^3� + 16 
 X3�6c_3�6Xd3�6 + i3�6	
c_3�6 
 [k − `3�6Q3�6]c^3�6 (13) 

Here, i3�6	is the auto covariance matrix for process noise (Z6 
evaluated until i

th
 iteration, and c_3�6 is the auto covariance 

matrix for errors in the corrected state estimate. 

The state transition matrix X3�6 contains the transitional 

properties of the irradiance and module temperature as time-

series data. At any time instance, the irradiance can be 

modeled as a product of the deterministic clear sky radiation 

(from section II-A) and cloud cover index. For very short-term 

forecasting (15 seconds), a simplistic form of X3�6 is 

considered here assuming that the cloud cover index is 

unchanged between consecutive samples. The module 

temperature on the other hand, is assumed to vary in a 

piecewise-linear fashion for the past minute. The initial value 

of the observation matrix, Q3�6, is given by the PV generation 

model from section II-A and II-B, (with weather type 

classification) based on the initial weather forecast for the day. 

Once ample measurement data are available and the model 

reaches a steady-state, Q3�6 is recalculated with the available 

measurements and updated for every time step (15 seconds). 

III. LOCAL VOLTAGE REGULATION BASED ON PV 

GENERATION FORECASTS 

Droop-based inverter reactive power compensation (RPC) 

algorithm and active power curtailment techniques (APC) are 

employed here to achieve local voltage regulation realized at 

the inverter end, as discussed in [3]. This work focuses on 

high PV penetration scenario where distribution overvoltage 

situation emerges due to reverse power flow for high PV 

output and low feeder load. In such case, only reactive power 

absorption cannot provide the desired regulation, because the 

R/X ratio in distribution network can be high (considering 

both overhead lines and cables, it can range from 0.5 to 7 for 

distribution network [37]), making it more sensitive to real 

power injection than to reactive power absorption. Therefore, 

curtailing active power can yield to better voltage regulation. 

In this study, APC is applied based on PV generation forecasts 

when reactive power absorption alone cannot prevent 

overvoltage within the predefined power factor (pf) limit. Fig. 

2 shows the schematic of this combined RPC enhanced with 

APC based on PV forecasts technique (referred to as APCf 

technique in this paper), which is explained in this section. 

A. Droop-based reactive power compensation (RPC) 

Generic droop-based algorithm has been in vogue in power 

systems for power sharing and frequency control among 

traditional fossil-fueled generators and are now being 

implemented to control the real/reactive injection from 

inverters [3, 6, 15]. The droop-based reactive power control 

algorithms rely on the static Q-V relationship which is defined 

with piecewise linear function and the settings are location 

dependent [6, 11]. This linear relationship, keeping the loads 

at all other locations fixed, can be put as [3]: 

 ∆m 
 −no ∗ ∆* (14) 

Here, ∆m is the estimated change in reactive load at a given 

bus, ∆* is the desired change in node voltage and no is the 
proportional gain or the droop parameter. Fig. 2 shows the 

schematic of the proposed RPC block where ∆* is specified 

with either  3*p, − *�3�66 or 3*Gqr − *�3�66. Here, *�3�6 
stands for the calculated node voltage (mean of three-phase 

voltages) at i
th
 instance, and *p, and *Gqr  are predefined upper 

and lower voltage thresholds, respectively.  The negative sign 

implies the fact that to lower the voltage by	∆*, reactive 

power (inductive) absorption needs to be increased by	∆m. In 

other words, the inverter needs to increase its reactive power 

absorption in order to prevent overvoltage. The droop 

parameter no varies when the active load at the node changes. 

Because the solar generation can vary greatly between two 

adjacent time steps, a preset droop parameter might not 

provide the required correction in reactive compensation 
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(equation (14)). Subsequently, the proposed RPC technique 

updates no in each iteration with the actual voltage correction 

and preceding step change in the reactive compensation: 

 no3�6 
 |<∆m3� − 16= <*�3�6 − *�3� − 16=⁄ | (15) 

This updated droop parameter helps the RPC technique to 

follow the changes in PV output (active) and other spot load 

variations. The range of no (corresponding maximum and 

minimum values) is set using the slope of Q-V contours for 

each bus derived from steady-state power flow analyses [3]. 

∆m3�6 from equation (14) gives the estimated incremental 

change in inverter reactive power (m:st6 for the next time step 

(m:st3� + 16 
 ∆m3�6 + m:st3�6), as seen in Fig. 2. 

Positive (/negative) m:st3�6 denotes that the inverter acts as 

an inductive (/capacitive) load to the grid or absorbs(/injects) 

VAR. The inverter can only provide this estimated reactive 

power support within its reactive power capability limit, 

mG:+3�6. This capability limit depends on the inverter size and 

thus can be expanded if the inverter is oversized compared to 

the maximum power rating of the PV array (L+uv  in kWp). 

The inverter is assumed to be oversized by 10% here, leading 

its apparent power rating, w (kVA) to be 1.1 ∗ L+uv  [4]. mG:+  

is primarily defined by the real power injection, LTU , from a 

PV unit as:  xyw� − LTU�x. But to maintain the power factor at 

the point of interconnection, this limit is redefined by the pf 

limit (o�+:s). Considering both the active injection and power 

factor requirement, this limit is employed only after the 

curtailment threshold is derived. At any given time, the 

proposed voltage regulation technique clamps the inverter 

reactive power, m:st3�6 at zmG:+3�6 if |m:st3�6| ! |mG:+3�6|.  
B. Reactive power compensation enhanced with active power 

curtailment based on PV power forecasts (APCf) 

When adequate inductive VAR absorption cannot be 

provided by RPC, PV output can be curtailed to prevent 

possible overvoltage. Although curtailing solar energy can 

cost the PV system owner(s), it can help avoid excess injection 

to the grid and thus reduce the need for grid strengthening [1, 

11]. For example, Germany revised its Renewable Energy 

Sources Act in 2012 to oblige new PV installations (> 30 kW) 

to allow remote curtailment [1]. The APCf algorithm proposed 

in this work, as shown in the flow chart in Fig. 2, combines 

APC method with RPC based on PV generation forecasts and 

enhances the voltage regulation performance. In practice, 

APCf can be implemented with constant power generation 

control realized at the inverter terminal which ensures a stable 

output level [38]. For this algorithm, active power curtailment 

only comes into play when an imminent overvoltage situation 

is being projected with the PV power forecast and estimated 

reactive power, or, 

Target local voltage, *�{LTU,,;|�3� + 16, m:st3� + 16} ! *p, 
Here, m:st3� + 16 represents the required reactive power given 

by the RPC block, and LTU,,;|�3� + 16 gives the PV power 

forecast for the next time step as discussed in section II. This 

voltage is derived with the assumption that each PV system 

can access the load and generation data till the previous time 

step and does not have any forecast information for other PV 

units. This way, the local decision variables are determined 

independently by each PV system. Reducing active power 

injection decreases the target voltage and thus yield to a 

curtailment threshold that is lower than the predicted PV 

generation. Fig. 3. a) depicts the schematic for this lower 

threshold calculation. First, the pf limit is imposed on the 

estimated m:st3� + 16 if o� % o�+:s. The relationship 

between the limiting reactive power and pf limit is: 

|mG:+3� + 16| 
 ~,���� ∗ LTU,,;|�3� + 16 
				~,���� 
 tan3cosh13o�+:s66 (16) 

Equation (16) expresses the proportional relationship between 

the PV output and the reactive power limit. Here, ~,���� acts 
as a proportional constant which depends on the minimum 

 
Fig. 3. a) Lower and b) upper threshold calculation for APCf 

 
Fig. 2. Flow chart of the proposed APCf algorithm 
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power factor criterion specified by the grid codes.  For the 

APC threshold calculation, as seen in Fig. 3. a), predicted real 

injection is reduced until it reaches an operating point (L′TU  
and corresponding	m′:st) for which the target voltage would 

be right under the upper voltage limit (*p,). These updated 

estimates of real and reactive power denote the lower APC 

threshold parameters (Equation (17)). 

 L′TU & LTU,,;|�3� + 16;	md:st & ~,���� ∗ LdTU (17) 

To make this method robust against forecasting errors, a 

virtual upper threshold 3LddTU6 is calculated even when no 

overvoltage scenario is predicted with	LTU,,;|�3� + 16 
and	m:st3� + 16. This upper APC threshold calculation is 

thematically explained in Fig. 3. b). LddTU	is derived by 

gradually increasing the forecast value (keeping the pf fixed 

near unity) until the target voltage touches the upper limit. As 

seen in Fig. 3. b), the voltage can be increased if reactive 

absorption is lowered or pf is improved. So:  

 L′′TU ! LTU,,;|�3� + 16;	m′′:st 
 0.1 ∗ LddTU (18) 

 In Fig. 3, both LdTU and LddTU are calculated considering 

the predicted PV output for the next time instance. Due to 

forecast errors, LTU,,;|�3� + 16 can either underestimate or 

overestimate the actual PV generation,	LTU�3�6, leading to 

erroneous prediction of possible overvoltage scenario. If the 

overvoltage scenario is predicted properly the lower threshold 

calculation can help to prevent it. On the contrary, the upper 

threshold calculation acts as a preventive measure when an 

overvoltage condition is not being predicted because of the 

error in the PV forecast. At any instance, either upper or lower 

APC threshold is calculated for the next step; and the other 

one is set to be zero. So, net APC threshold can be written as: 

 L�T53� + 16 
 L′TU + L′′TU  m�T53� + 16 
 md:st + mdd:st (19) 

The APCf technique calculates this net curtailment 

threshold (L�T53� + 16) and corresponding reactive 

compensation (m�T53� + 16) adaptively based on PV power 

forecasts to keep the voltage within	*p,. At any time step, ‘i’, 

L�T53�6 acts as the curtailment threshold and if the measured 

PV generation,	LTU�3�6 is higher than this threshold then 

active power curtailment takes place. Otherwise, the 

instantaneous PV generation is injected without any 

curtailment. The PV inverter set-point (LTU3�6, mTU3�6) is: 
LTU3�6, mTU3�6

 min �LTU�3�6, L�T53�6� ,max	3m�T53�6, m:st3�66 (20) 

Here, mTU3�6 is set as the maximum between m�T53�6 and 

m:st3�6 so that the reactive compensation from the inverter 

can be maximized within the limit (m:st3�6 & mG:+3�66. 
IV. CASE STUDY SETUP 

This work uses a modified IEEE 34-node test feeder system 

(Fig. 4) to build the case studies. Load profile data are derived 

from measurements of 1-minute resolution from a substation 

transformer that feeds mostly residential and commercial 

customers in the Northern Virginia area. Individual spot loads 

at the test feeder are perturbed with Gaussian distribution 

(mean= scaled down base loads given by the test feeder 

configuration; standard deviation= 5%), to synthesize a 

realistic net load profile of 15 seconds resolution. Scaled base 

values are used for distributed loads. 

 

The daily PV generation profiles are derived based on real-

time data collected from the 6.44 kW rooftop PV array located 

at Virginia Tech- Advanced Research Institute building in 

Arlington, Virginia (coordinates: 38.8803° N, 77.1083° W). 

Weather data and electrical data collected by this system are 

used to formulate and validate the hybrid forecasting model. 

System configuration data are used to model the clear sky 

radiation for this PV site.  

As shown in Fig. 4, the PV systems are integrated at two 

different locations for this case study- bus#848 (PV1) and 

bus#860 (PV2). Bus#848 represents the end of the feeder 

location where the overvoltage phenomenon is most 

prominent [3]. To simulate high PV penetration scenario, a 

700 kWp PV system is considered for PV1 and for PV2 a 300 

kWp system. The PV sizing are selected in a way so that they 

pose similar local overvoltage scenario at the two locations. 

For PV1, generation profiles are scaled up from the 6.44 kW 

PV array data, to roughly represent any dispersed PV 

integration in a large-scale form. For PV2, data from another 

day in the month (with similar day type and 

irradiance/temperature profiles) is chosen and accordingly 

scaled up, to signify spatial variability. As this study analyzes 

the proposed voltage regulation technique on a very short 

timescale (15 seconds), the voltage regulators are operated 

with fixed tap positions in the 34 node test feeder. Thus, the 

effectiveness of the regulation technique can be assessed in 

absence of any other feeder voltage control device. For this 

case study, the proposed technique is evaluated with a 

narrower voltage regulation band (*p, 
 1.03	o. �. and	*Gqr 

0.97	o. �.) compared to the standard z5% range. The power 

factor limit is taken to be 0.9 for the oversized inverters and 

large-scale PV integration [6, 11]. The modified test feeder is 

modeled with OpenDSS. Numerical calculations regarding the 

hybrid forecasting model, RPC and APCf algorithms are 

executed in MATLAB.  

The APCf technique is independently applied to each PV 

system which calculates the necessary reactive power 

compensation and the APC threshold based on the local 

voltage measurements and the individual forecast data. 

 

Fig. 4. Modified IEEE 34-node test feeder (PV locations at 848 & 860) 
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TABLE II 

MEAN OVERVOLTAGE INDICES AND RELATIVE FREQUENCIES OF OVERVOLTAGE FOR DIFFERENT DAYS 

Date Day Type 

��S����� for 

Base case, 

PV1 (p.u.) 

��S����� for 

Modified 

base case, 

PV1 (p.u.) 

��S����� with 

APCf, 

PV1 (p.u.) 

��S����� for 

Base case, 

PV2 (p.u.) 

��S����� for 

Modified 

base case, 

PV2 (p.u.) 

��S����� with 

APCf, 

PV2 (p.u.) 

Curtailed 

energy with 

APCf, PV1 

(%) 

Curtailed 

energy with 

APCf, PV2 

(%) 

nRMSE, 

PV1 (%) 

nRMSE, 

PV2 (%) 

05/12/2013 Sunny 0.0194 0.0135 0.0014 0.0206 0.0149 0.0022 15.02 6.28 5.86 2.34 

04/01/2014 Mostly Sunny 0.0238 0.0174 0.0043 0.0251 0.0184 0.0049 36.68 6.75 3.46 1.76 

03/17/2015 Partly Sunny 0.0192 0.0139 0.0029 0.0204 0.0150 0.0036 19.59 9.27 4.85 6.09 

04/29/2015 Sunny 0.0278 0.0217 0.0043 0.0292 0.0230 0.0049 42.12 7.13 2.80 2.39 

05/20/2015 Sunny 0.0191 0.0125 0.0021 0.0204 0.0135 0.0031 13.91 5.28 4.27 2.34 

 

However, it is assumed here that the PV system has access to 

the past load/generation data for the day through a 

communication infrastructure. These data are used to predict 

any impending local overvoltage scenario. This architecture 

can be visualized in a centralized fashion where each inverter 

sends its query to a control/data center for available 

load/generation data. Once these data are dispatched to the PV 

units, they can calculate their threshold parameters 

considering local injections as variables. In reality, a PV unit 

in one location can impact the local voltage seen by another 

unit, and thus the voltage can fluctuate even with locally 

optimized real/reactive injection. This masking effect, 

however, depends on the network topology, as well as the size 

of the PV systems, and variations in spot loads.   

V. SIMULATION RESULTS 

The application of the proposed APCf technique focuses on 

the prevention of overvoltage and thus improves the local 

voltage profile. This improvement shows vivid results when 

the feeder load is low and PV generation is high. As the feeder 

is located in Northern Virginia area, the net load tends to be on 

the lower side during Spring or March-May timeframe. To 

evaluate the performance of the APCf method, sample days 

are taken from March- May, 2013-15. Fig. 5 displays the 

daytime load and PV generation profiles for such a day (May 

20, 2015). For the same day, Fig. 6. a) and 7. a) show the 

improvement in voltage profiles for PV1 and PV2 against two 

cases: base case and modified base case. The base case 

considers the actual PV generation profile without any active 

power curtailment or reactive power compensation (unity pf). 

In order to showcase a more realistic voltage control practice 

for comparison, the modified base case assumes constant pf 

operation without any curtailment. To keep it consistent with 

the case study presented in section IV, the pf is fixed at 0.9 for 

the modified base case. PV1 and PV2 voltage profiles for the 

base case show overvoltage situations in these figures, as they 

violate the upper threshold (1.03 p.u.) during peak generation 

hours. For the modified base case, because the reactive power 

compensation is limited by the pf constraint and no active 

power curtailment takes place, sufficient voltage regulation 

cannot be provided. Thus, even though the degree of 

overvoltage is reduced from the base case (Fig. 6. a) and 7. 

a)), the corresponding voltage profiles remain beyond 1.03 

p.u. most of the times. In contrast, the APCf technique 

dynamically curtails a portion of the generated PV power, as 

shown in Fig. 6. b) and 7. b), and keeps the voltage steady 

near about the upper limit even when the PV forecast values 

are not very close to the measured ones. It can be seen from 

Fig. 6. a) and 7. a) that, the voltage profiles for PV2 are mostly 

shaped by the larger PV system at the end of the feeder, PV1. 

Thus it needs to curtail less active power compared to PV1 

(seen in Fig. 6. b) and 7. b)) even though the base case voltage 

profiles were showing similar overvoltage scenario. Also, both 

PV1 and PV2 attempt to keep their local voltages within the 

upper threshold independently based on their own 

measurements and calculations. Therefore, the actual voltage 

is different from their independent estimation, when both the 

PV systems are operating simultaneously. 

To quantify the performance of the APCf technique over the 

day, this work uses mean overvoltage index, *qt���� defined as: 

 *qt���� 
 ���{�� − *p,}; ����	�� ! *p, (21) 

Here, �� represents the vector containing measured voltage 

profile for the day, and *p, is the predefined upper voltage 

limit. The numeric values of 	*qt���� (p.u.) measure the degree of 

the overvoltage scenario. Ideally, *qt����	should be zero when no 

overvoltage is observed throughout the day. Table II shows 

*qt����	 values for other Spring days along with the corresponding 

curtailed energy (%) and forecast errors. For the forecast 

errors, normalized root mean square error (nRMSE %) 

between the PV power forecasts and generated PV power is 

used here as a performance evaluation criterion for the 

forecasting model (normalization constant=	L+uv). As seen 

from this table, the *qt����’s for modified base case are less than 

their base case counterparts due to the reactive power 

compensation under a constant pf condition for all these 

sample days. Compared to the modified base case, the APCf 

technique reduces the *qt���� indices significantly through 

adaptive active power curtailment and variable reactive power 

compensation. Also the application of the proposed APCf 

technique provides nearly similar improvement of the 

*qt����	indices for all these days for both the PV locations. This 

again implies that the improvement in PV2 voltage profile is 

influenced by the APCf technique applied for both PV1 and 

PV2. The range of *qt����	 values (with APCf) indicates that the 

local voltage profiles remain within a moderate level of 0.005 

p.u. beyond the upper threshold (*p,), on average, throughout 

the whole day. Also the	*qt����’s with APCf do not show any 

direct correlation with corresponding nRMSE’s, proving that 

the technique is robust against forecasting errors.  
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Unlike *qt���� with APCf, the curtailed energy is directly 

related to the *qt���� for base case. High base case *qt���� suggests 

that the PV generation profile is high for these days compared 

to the respective daily load profiles (for example: 04/01/2014, 

04/29/2015). As a result, corresponding *qt����’s for the modified 

base case also remain on the higher end, as no energy is 

curtailed under its assumptions (Table II). Higher curtailment 

is mandated by the APCf technique subsequently, to reduce 

the extent of overvoltage for such days, for both the PV 

systems. However, the active power curtailment was much 

less for PV2, compared to PV1 (situated at the end of the 

feeder) even for such days. In general, PV2 does not need to 

curtail as much energy as PV1 because it is closer to the 

substation (as seen in table II). Similar findings were reported 

in [15] which demonstrated that the amount of curtailed 

energy depends on the location of the PV system (with respect 

Fig. 5. Net load for the daytime and PV generation for May 20, 2015 

Fig. 6. a) Voltage profile improvement by APCf application over base case and modified base case, b) PV generation, prediction and output profiles (after 

APCf) for May 20, 2015 (for PV1) 

Fig. 7. a) Voltage profile improvement by APCf application over base case and modified base case, b) PV generation, prediction and output profiles (after 

APCf) for May 20, 2015 (for PV2) 
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to the substation or transformer) for their droop-based active 

power curtailment scheme. This work modeled a residential 

suburban feeder with 12 houses, each having a PV system of 

8.4 kWp. Their results show that the farthest houses (from the 

transformer) produced 15-16 kWh less than the nearest ones to 

the transformer, which is ~50% of the expected daily 

electricity generation for these houses.  

The curtailed active power is also related to the power 

factor requirement. The closer o�+:s  is to 1 the lower the 

reactive power absorption/injection capability limit should be. 

Here, all the case studies conform to the 0.9 pf criterion. 

However, the proposed APCf technique is also evaluated 

against other hypothetical power factor criteria. Table III 

shows the results regarding the PV output (real and reactive) 

with these values of o�+:s  for PV1 (700 kWp) for May 20, 

2015. The daily average curtailed power (kW) is derived by 

taking the mean difference between the generated (L*�|s) and 

output (L*qp	) PV power when APC takes place (L*�|s !
L*qp	). Daily average reactive absorption (kVAR) is 

calculated as the mean of reactive compensation m:st when 

m:st ! 0. As seen from this table, the average curtailed power 

increases from 10.23 kW to 24.18 kW when o�+:s  goes up 

from 0.8 to 0.9. The increase in active power curtailment is 

commensurate with the decrease in reactive compensation as it 

is falls from 215.63 kVAR to 137.42 kVAR. This analysis 

infers that if the power factor requirement is relaxed, the 

proposed APCf technique can utilize the inverter reactive 

compensation capability and further reduce the necessity of 

active power curtailment. 

 

VI. CONCLUSION 

This work proposes a local voltage regulation technique that 

adaptively changes real/reactive injection/absorption from the 

PV inverter based on PV generation forecasts to prevent 

distribution overvoltage, in case of high PV penetrations. The 

proposed voltage regulation algorithm takes aid from the very 

short-term (15 seconds) PV power forecasts and calculates 

required inverter set-points accordingly to ensure that the local 

voltage profile remains within the upper voltage threshold and 

at the same time the power factor is maintained within the 

predefined bounds. The PV power forecasts used for this 

technique are provided by a hybrid forecasting model which 

takes available measurements (for the given day) as inputs and 

uses historical dataset of the same resolution for initial 

weather based and seasonal clustering purpose. Using these 

forecast values, an imminent overvoltage scenario is predicted, 

while the proposed method combines a droop-based reactive 

power estimation method along with active power curtailment 

technique to prevent such overvoltages.  The proposed 

technique determines a virtual curtailment threshold margin 

along with an estimated reactive compensation, even when 

overvoltage is not likely to occur according to the generation 

forecast. In this way the performance of this method does not 

get hampered by instantaneous forecasting errors in case the 

PV forecast is much lower than the generated PV power. Case 

studies presented in this paper evaluate the performance of this 

technique for several days with varying levels of overvoltage 

scenarios for multiple PV systems connected to the test feeder. 

Results suggest that this voltage regulation technique can 

effectively reduce the extent of distribution overvoltage.   

As this voltage regulation technique uses a forecasting 

method that does not involve handling of large historical 

dataset all the times, it can be realized as an online inverter 

application for addressing the voltage limit violation in 

distribution circuits with high PV penetrations. This technique 

builds upon the variable real/reactive injection/absorption 

capability of an inverter for maintaining the voltage within a 

predefined upper threshold. The method creates a framework 

where PV generation forecasts are used to assist the fast 

operation of modern smart inverters for local voltage 

regulation. Such an application therefore can be integrated 

with burgeoning smart inverter technologies to ensure 

seamless PV integration in a growing landscape of 

renewables. 
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