
A SDN-based Architecture for Horizontal Internet
of Things Services

Yuhong Li
State Key Laboratory of Networking

and Switching Technology

Beijing University of Posts

and Telecommunications

Beijing, China

Email: hoyli@bupt.edu.cn

Xiang Su, Jukka Riekki
Center for Ubiquitous Computing

University of Oulu

Oulu, Finland

Email: {xiangsu, jpr}@ee.oulu.fi

Theo Kanter, Rahim Rahmani
Department of Computer

and Systems Sciences

Stockholm University

Stockholm, Sweden

Email: {kanter, rahim}@dsv.su.se

Abstract—The Internet of Things (IoT) architecture is expected
to evolve into a horizontal model containing various open systems,
integrated environments, and platforms. However, not much
research effort has been devoted to developing architectures
for horizontal IoT solutions so far. This paper presents an
IoT architecture based on Software-Defined Networking (SDN).
In this architecture, devices, gateways, and data are open
and programmable to IoT application developers and service
operators. Moreover, IoT data provision and interoperability are
supported at different levels. We present an implementation of
the proposed architecture. Our implementation shows that the
proposed architecture enables rapid creation of IoT applications
by reusing ready applications and data. The measurement and
evaluation results demonstrate the feasibility of the proposed
architecture.

Index Terms—Internet of Things (IoT); Horizontal solution;
Software-Defined Networking(SDN); Future network architec-
ture

I. INTRODUCTION

The development of communication technologies, nano

electronics, embedded systems, smart phones, cloud-based

networking, and physical objects enable connecting people,

places, and things to the Internet anytime and anywhere. This

is often referred to as the Internet of Things (IoT). Currently,

many applications are being developed for a wide range of

IoT scenarios, such as industrial, civilian, and military ap-

plications, including healthcare, home automation, earthquake

warning, traffic control, and industrial process monitoring.

IoT applications in different domains demand their own ded-

icated platforms and systems. Currently, most IoT services

are provided by different platforms and systems, and each

platform or system is associated with a certain application

domains. This results in dedicated (i.e. vertical) platforms and

systems, each containing a number of sensors and actuators,

a set of gateways, a computing center, etc. For example, in a

smart home, different platforms and applications are built by

different providers for appliance systems, home security, and

HVAC. Hence, there is a heavy redundancy when considering

devices, data, operations, and management of vertical systems.

The benefit of developing dedicated IoT platforms is that it

is relatively easy to operate and maintain IoT applications in

one domain, which has a limited selection of different types of

IoT devices and a computing center deployed for example on

the cloud. End users need not to worry about the compatibility

of the components. For service providers, it is easy to manage

the devices and data of the domain specific applications.

The main challenge of vertical IoT platforms is lack of

interoperability that leads to several limitations. First, it is

hard to utilize hardware and software resources to their bests.

These resources include devices, data, and operation and

management functionalities. Users need to install different

systems for different applications and services. Each system

contains its own sensors, gateways and computing center,

although many of the devices could potentially be utilized

for other applications and services as well. In addition, IoT

service providers need to design or reconfigure the devices

and communication protocols for each application and even

for each user. Finally, they also have to manage a large amount

of redundant data.

Second, introducing new services and innovations is difficult

and slow for both service operators and end users. Normally,

only service providers can improve and upgrade the existing

services. New services and innovations require deploying new

sensors and computing centers. Also, connecting new types

of physical things to ready systems can be challenging. In

summary, vertical dedicated IoT platforms are comparable

with proprietary enterprise networks; they both provide limited

possibilities for information sharing and interoperability.

The above mentioned limitations motivate research on hor-

izontal IoT platforms and architectures, which can provide a

common framework with essential functions and interfaces

for a wide range of applications in several domains. In the

early research, the focus was mostly on extending the existing

IoT platforms by developing separate endpoints, gateways

and cloud platforms. The aim was that developers can build

their services by selecting different components from different

vendors. For instance, several companies have started to roll

out cloud platforms and gateway hardware to support a larger

amount of users. The Freescale One Box [1] is an example

of such a gateway. Eurotech [2] also offers cloud services for

developers. EnOcean [3] has recently released an accessory

IEEE ICC 2016 SAC Internet of Things

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

that turns Raspberry Pi into a gateway for home automation

devices. ST Microelectronics has created its SmartHome plat-

form and gateway [4] for IoT developers to leverage their

efforts.

Many IoT platforms have also been proposed [5]. We

focus on the platforms utilizing Software-Defined Networking

(SDN). The early efforts for employing SDN to support

policies to manage wireless sensor networks include Flow-

Sensor [6], Sensor OpenFlow [7], and SDWN [8]. Moreover,

Yiakoumis et al. [9] reported a home network slicing mech-

anism, which allows multiple service providers to share a

common infrastructure in a smart home. However, many of

these efforts are isolated to specific application domains.

Floeck et al. propose a generic Machine-To-Machine

(M2M) architecture [10]. They advocate standard based hor-

izontal service platforms in the domain of M2M industry

to enable different types of devices to communicate with

each other. However, the challenge of interoperability among

different data models still remains. Yue et al. suggested the

concept of IoT community [11]. Users with the same interests

construct a community to facilitate data maintenance, retrieval,

and distribution. However, the suggested architecture is neither

open to users nor convenient for introducing new IoT applica-

tions and services. One recent effort is to design a software-

defined approach for IoT environments to dynamically achieve

differentiated quality levels to different IoT tasks [12], but

here the focus was on developing layered SDN controller in

IoT setting and flow QoS performance. The 6TiSCH WG

at the IETF has proposed an IPv6 enabled architecture for

Industrial IoT applications [13], which is based on SDN.

However, the work focuses on supporting the best effort

traffic on deterministic TSCH-based networks, which relies

on centralized scheduling facilitated by SDN. The developers

of oneM2M [14] made efforts on horizontal IoT through

standardizing IoT protocols and data models. It addresses the

need for a common M2M service layer that can be readily

embedded within various hardware and software. We share the

same idea with oneM2M by using a common service layer.

However, we go one step further by embodying the service

interface through the SDN NBI (North-bound Interface).

Some research [15] has advocated that with the development

and maturity of distributed intelligent information transmission

and processing technologies IoT systems will make intelligent

sensing widely available through information sharing and

collaboration. These efforts also push the development of a

horizontal IoT system.

SDN technologies facilitate building network services [16]

[17]. The logically centralized controller and the standardized

south bound interfaces provide a basic but powerful architec-

ture to support common functions and interfaces on which

a wide range of user applications can be developed rapidly.

Moreover, interoperability of data in different formats and

models can also be achieved easily and in a dynamically

controlled way. Therefore, applications in different domains

can be supported easily and efficiently by the same system.

In this paper, we propose an IoT architecture based on SDN

technologies for the horizontal IoT services. This architecture

enables sharing various resources, including devices, data, and

software, among various applications at different levels. Data

interoperability can be supported interiorly in the network, and

new services and applications in different domains can be sup-

ported rapidly and efficiently. We also present a prototype of

the proposed architecture using OpenFlow and Open vSwitch.

Moreover, we describe measurement results and analyses of

running IoT services on the implemented prototype. Finally,

we explain how new IoT applications can be created based on

the existing ones.

The rest of the paper is organized as follows. In Section

II, we elaborate the proposed architecture, including its main

components and interfaces. In Section III, we describe the

prototype. We present the measurement results and analysis

in Section IV, and conclude the paper in Section V.

II. AN ARCHITECTURE FOR HORIZONTAL IOT

A. Design Principles

Our basic motivation for developing the IoT architecture

is to promote the reuse of various resources and to allow

the rapid introduction and deployment of new IoT services

and applications. Thus, we specify our design principles as

follows:

1) Layered architecture. Various types of resources are

needed for providing IoT services, such as devices for col-

lecting data, networking resources for transferring the data,

and computing resources for processing the data according to

user needs. In order to organize and use the resources as a

whole, the network architecture should be organized into a

layered structure, each layer with clear responsibilities.

2) Openness and programmability. This is the basis for the

rapid introduction of new applications and services and the

rapid proliferation of new businesses. Thus, the architecture

should provide open programmable interfaces, functionalities,

and services. In addition, data and methods for processing and

obtaining the data should be open as well. In this way, services

can be developed rapidly by reusing the same raw data and

by annotating different context information, which may lead

to more commercial services.

3) Data provision and sharing at different levels. Providing

data (environment, people, and things) for services is one

of the major requirements set to IoT architecture. Horizontal

IoT infrastructures should provide data for a wide range of

services in different domains, which demands data at different

levels. For example, some users may need only raw data for

further analysis and use their own knowledge bases of specific

domains, while others may need meaningful information that

has been processed utilizing knowledge in the network, for

instance, information about weather in a city and conditions

of its roads.

4) Interoperability. Heterogeneous devices may produce data

in various formats and models. In order to realize and support

services in different domains, which may use different data

models, patterns and communication protocols, interoperabil-

Fig. 1. A layered IoT architecture based on SDN.

ity should be supported in the network from the point of view

of devices, data, and communication protocols.

B. A SDN-based IoT Architecture

According to these design principles, we propose an IoT

architecture as shown in Fig. 1. This architecture consists

of four layers. The lowest layer is the device layer, which

contains sensors collecting a large amount of data in different

formats and potentially for different IoT application domains.

Some devices can also act as actuators receiving commands

from the network and performing tasks. The communication

layer is comprised of SDN gateways and routers, which can

forward data under the control of the SDN controller. The

computing layer contains SDN controllers and the accounting

and billing mechanisms. They control the forwarding of data

according to the requirements of applications. The service

developers and operators build IoT services at the service layer

by programming the SDN controllers.

According to the network scale and existing deployments,

there can be one central SDN controller or several controllers

implementing the control functions cooperatively. We focus

on the horizontal IoT architecture and inter-working among

distributed SDN controllers is out of the scope of this paper. In

this paper, we follow the philosophy of SDN, in other words,

the controllers can be deployed in a physically distributed

fashion but they are logically centralized.

The functions of the major components in the architecture

are the following:

SDN controllers. The controllers control not only data

forwarding, but also processing of data. As shown in Fig. 2,

SDN controllers have the following functions:

• Equipment management, such as configuring gate-

ways/routers, virtual network resources, policies and rules

for processing data in the corresponding devices etc.

• IoT service management, such as adding, modifying and

deleting services supported by gateways, storing and

caching policies, and updating rules and algorithms for

Data Processing & Storage center.

• Topology management, such as routing calculation and

updating topology.

• Operation and maintenance (O&M), such as maintaining

operating logs, monitoring user interfaces, alarming, and

managing functional modules.

• Security management, such as detecting conflicts and

authenticating service access.

• Implementing SDN south bound (SB) and north bound

(NB) interfaces.

Fig. 2. Functional modules of controller and gateways.

Gateways/Routers. As shown in Fig. 2, gateways/routers

are responsible for data forwarding in the networks. Besides

forwarding data, gateways can store or cache local data, or

process data under the instruction of SDN controllers. Other

functions for gateways/routers include node management, pro-

tocol converting, and security control. In addition, simple data

processing methods or rules can also be downloaded to the

gateways. Data can be processed according to the selected

method and cached locally.
In general, the following functions for processing data are

needed:

• Functions for interacting with local IoT devices (to obtain

data) and for forwarding the data to remote gateways or

data processing centers for further analysis or permanent

storage.

• Functions for local analysis and processing of the data

acquired by IoT devices.

• Functions for interacting with remote IoT devices.

• Functions for application specific data analysis and pro-

cessing.

Data Processing & Storage Center. The data obtained

from IoT devices and sinks in the networks can be selectively

stored in this module as instructed by the controller. More-

over, mechanisms and algorithms for processing data such

as data format converting, data mining and reasoning can be

performed in this component through the controller. Since the

task of this component is to provide the desired data in the

desired format for users, just like the task of the gateways,

this component belongs to the communication layer.

Sinks. They are responsible for aggregating and caching the

data obtained from IoT devices. Unlike gateways, they cannot

be programmed by SDN controllers. However, depending on

their capabilities, they can perform simple processing, such as

eliminating some redundant data obtained from the sensors.

Accounting and Billing Center. Different from the tradi-

tional networking services, which consume mainly the network

bandwidth, IoT services consume also computing and storage

resources. In addition, new services can also be provided on

demand, which may require support from service developers.

Thus, new mechanisms for accounting and billing should be

considered. In general, accounting and billing can be based

on consumed time, data amount and services used by applica-

tions. However, the prerequisite is that gateways/routers and

controllers can provide accurate mechanisms for measuring

the use of different types of resources. Billing policies are out

of the scope of this paper. Nevertheless, we do consider mech-

anisms for measuring and recording the consumed resources.

Information for instructing how controllers should control

gateways/routers is passed through the SDN North Bound

Interface (SDN NBI). Generally, the following information

should be carried through SDN NBI:

• IoT service logic and its operations, such as programs,

algorithms and rules for new services and data process-

ing; modifying, deleting and querying service operation,

etc.

• Mechanisms and policies for data storage and caching.

For instance, where and what kind of data should be

cached or stored; what data should be stored in the Data

Processing & Storage Center, etc.

• Policies related with interoperability, security, accounting,

and billing, etc.

• Information related with the operation and maintenance

of the networking equipments, including controllers, such

as logs, alarms and other functions defined by ONF [18].

The south bound interface mainly realizes the dynamic

request and response paths between the controller and the

routers/gateways. Moreover, it is used to configure the routers.

For these purposes, standard protocols, such as OpenFlow

can be used. However, since some of the devices store and

cache data, and may need to support different data formats for

interoperability, the OpenFlow protocol needs to be extended.

III. IMPLEMENTATION

To validate the proposed IoT architecture, we implemented

the main modules of the architecture and analysed their

performance. The modules have been installed in both real

devices and virtual machines. A test network has been set

up and several test services have run in the test network.

Performance evaluations have also been done on the virtual

machines based on the implementation.

The controller is implemented based on POX, an open

platform for the rapid development and prototyping of net-

work control software and a framework for interacting with

OpenFlow switches [19]. Besides using the functions provided

by POX, such as network topology maintenance, routing path

calculation, interacting with switches through OpenFlow pro-

tocol, we implemented the forwarding function on POX, which

can configure the flow tables in Routers/Gateways according to

the instructions from the IoT control plane applications and the

data storing and caching in the Gateways and Data Processing

& Storage Center.

The Gateways/Routers are implemented based on Open

vSwitch [20], a virtual switch supporting OpenFlow among

other features. We implemented the Data Store & Caching

and Node Management module. Collected data can be stored

in the gateways and be processed according to the algorithms

written by the IoT developers and distributed to the gateways

on demand. In our implementation and tests, we use Open

vSwitch 2.3.0. The gateways and routers are configured with

the same functions, in other words, they all can route data and

can store sensed data.

The SDN north bound data exchange is implemented using

JSON. The IoT service logics are encapsulated using JSON.

Fig. 3 shows the data fields currently implemented in our test

network. Among them, the field Duration means how long the

service will last. Effective Time determines when a service will

be in operation, for example, immediately or after a specified

time.

Fig. 3. Data fields of JSON through SDN north bound interface.

Fig. 4. Data fields of OpenFlow through SDN south bound interface.

In our prototype, we use OpenFlow 1.0 to realize the

SDN south bound interface. Fig. 4 illustrates the fields of

the extended OpenFlow protocol. Here, besides the standard

OpenFlow fields, two fields are added to instruct what type of

data format the gateway should use to transfer the data, and

if the data should be stored or cached in the corresponding

gateway.

IV. TESTS AND EVALUATIONS

A. Test Scenarios and Results

To illustrate the IoT services provided by our IoT architec-

ture, we setup a test network in our laboratory and run several

IoT applications in different scenarios.

Fig. 5 presents the configuration of the test network. Rasp-

berry Pis are sinks (see Fig. 1) and they are configured through

the connecting Gateways. The beacons and students’ phones

are the devices in the network. The beacons 1, 2, and 3 are

deployed near a door and inside a laboratory. The beacons 4,

5, and 6 are deployed near a door and inside a meeting room.

The beacons are initialized by the corresponding Raspberry

Fig. 5. The configuration of the test network.

Pis. Beacons are connected to the corresponding Raspberry

Pis and smart mobile phones through Bluetooth. Smart mobile

phones can also connect to Raspberry Pis through WiFi.

In the first scenario, a “lab check-in” service can be provided

by the test network. This service has been implemented as

follows. When a student approaches the laboratory, a map

will be popped on his mobile phone prompting him to finish

the checking in to the lab. Several alternative beacons will be

illustrated that the student can use to connect to the network,

including not only those that he can connect to (the pink one

in Fig. 6 (a)), but also those that are detected but with no

connection currently available (the green one in Fig. 6 (a)).

Next, he can select one beacon with connections, input his

name and ID, and finish his checking in, as shown in Fig. 6

(b). All the data are stored in Raspberry Pi 1.

A professor can check at any time which students are in

the laboratory by using his mobile phone. The mobile phone

can connect to the network through, e.g., Raspberry Pi 2. In

this situation, a message RequestLab (check in) is sent to the

Raspberry Pi 2. The path Raspberry Pi 2 ⇒ Gateway 2 ⇒
Router already exists in Raspberry Pi 2 and Gateway 2, but the

router does not know how to reach Raspberry Pi 1. Therefore,

the message is forwarded to the controller, and the path Router

⇒ Gateway 1 ⇒ Raspberry Pi 1 is found. Finally, the check-

in list is sent back to the professor, as shown in Fig. 6 (c). For

the purpose of demonstration, only a name list is returned.

In the second scenario, a “meeting room booking” service

can be provided by the test network. The service has been

implemented as follows: When someone enters the meeting

room, an interface will be popped on his mobile phone

requesting him to book the meeting room. Then, the booking

information, including his name and the period of the meeting,

is stored locally in the Raspberry Pi 2.

In the third scenario, a professor thinks he may have a

meeting with students when he has time and more than ten

students are in the laboratory. What he can do now is to use

the “lab check-in” service to count how many students are in

the lab according to the check-in list, and to use the “meeting

room book” service to find if a meeting room is available.

But he thinks it is too complex to regularly check the list

of students in the laboratory, and also whether somebody is

in the meeting room and when the meeting will be finished.

Therefore, he discusses with the IoT service developer about

such a service. The service developer finds that there is no

need to deploy any new beacon, since from the “check-in list”

in the Raspberry Pi 1 the number of the students in the lab

can be calculated and obtained, and from the “meeting room

booking” states, if the available meeting room status can be

calculated.

Therefore, the IoT service developer develops applications

of counting the student number from the “check-in list” and

checking availability of the meeting room from the meeting

room booking, and loading them to Raspberry Pi 1 and 2, re-

spectively. Another service MeetingPossibility (StudentNum,

MeetingRoom), which makes the decision whether the meeting

can be organized according to the number of the students and

the availability of the meeting room is developed and loaded

to the Router through the Controller. Now, everybody can use

this new IoT service without deploying new sensors.

Now, a new service can be provided by the network. When

a request for checking meeting possibility is sent to the

router, the router will first fetch the number of the students

and meeting room availability from Raspberry Pi 1 and 2,

respectively, and check if the meeting is possible to organize

and notify the results directly to the professor.

We have measured three latencies with real devices during

the experiment in the above scenarios. First, the time for

loading a new service from the Controller to the Router

(i.e., the Meeting Possibility) is 425ms (average value of ten

experiments). This loading time includes the time used by the

Controller for resolving JSON, interpreting and sending it to

the Router, and the time used by the Router to execute it to

create the corresponding configuration files. Second, the time

for the Router to request a new path from the Controller and

get a response is 57ms (average value of 10 experiments).

This includes the time for the Router to send the request to

the Controller, the time used for the Controller to calculate the

path and then send it to the Router, and the time used for the

Router to install it in the Flow Table and use the Flow Table

for the first time. Third, the time for transmitting data request

from Raspberry Pi 2 to Raspberry Pi 1, then transmitting the

data back to Raspberry Pi 2 is 0.81ms (average value of 10

experiments).

From the test scenarios and measurements, we notice that

by using the proposed architecture, new services can be

introduced and deployed rapidly through reusing the existing

services and data. In addition, it is feasible to use SDN

technique for the IoT services.

B. Performance Evaluation

We evaluate the proposed IoT architecture in terms of

Round-Trip Time (RTT) and packet loss rate when a IoT

services exists and the RTT when a new IoT service is

introduced.

In our experiments, one controller, eleven gateways/ routers

and nine hosts (PC) are installed as virtual machines in a server

(ubuntu 14.04.2 LTS). The network topology is shown in Fig.

7. RTT is measured for packet sending from a sending host

(any of h1 to h9) to a receiving host (any of h1 to h9 except

(a) (b) (c)

Fig. 6. Example of laboratory check-in service. (a) Information prompting a student to check-in when near the door. (b) Information on the student’s mobile
phone after check-in. (c) Check-in list visuable for a professor.

the sending host) and back to the sending host when, a) there

is already an existing path between the two hosts, and b) there

is no existing path, in order to see the performance of the SDN

controller.

Fig. 7. Network topology for evaluation.

Fig. 8. RTT when there exist paths between two hosts.

Fig. 8 shows the average RTT for already existing paths

between two hosts as a function of the number of routers on

the path. Fig. 9 shows the average RTT when there are no

existing path between two hosts as a function of the number

of routers on the path. In this case, the first gateway (i.e.,

the gateway closest to the sending host) sends the packet

forwarding request to the controller. The controller calculates

the corresponding path and sends back an OpenFlow message

to configure the Flow Table. Then, the packet is forwarded

to the next router based on the Flow Table. Note that the

controller sends an OpenFlow message to each node along the

calculated path from the source to the destination. Therefore,

when the packet arrives at the second router, there is already an

entry in the Flow Table for it, thus the packet can be forwarded

immediately. If the Flow Table has not been configured due to

some delays in the network, a forwarding request will be sent

to the controller in the second router. However, the controller

does not need to calculate the path this time, since it already

maintains this information due to the request from the first

gateway. Thus, the result is sent back to the second gateway

immediately. Since all the routers along the path are configured

proactively, the increasing of the routers’ number will not

cause notable difference in RTT, as shown in Fig. 9.

Fig. 10 shows the packet loss rate when an IoT service sends

packets at different rates and there are already paths between

the sender and the receiver. In this experiment, the network

bandwidth is fixed at 300M bit per second, and the application

sends data at different rates for ten seconds. We have repeated

the tests when no path between the two hosts exists when the

service began to run. In other words, the controller is involved

in finding the path. However, the results are similar, as shown

in Fig. 10. This is because the controller did not cause much

packet loss.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an IoT architecture based on

SDN for horizontal IoT services. This architecture achieved

Fig. 9. RTT when no paths exist between two hosts.

Fig. 10. Packet loss rate.

our design goals, i.e. developing a layered architecture with

open and programmable devices and data at different levels.

We reported the design principles and architecture in detail,

presented our implementation, three test scenarios, and perfor-

mance evaluations.

The horizontal IoT solution based on the proposed archi-

tecture aims at supporting multiple services with different

scenarios and in different domains. The proposed architecture

enables new IoT services to be provided rapidly. In addition,

both IoT devices and IoT data can be reused among multiple

services. The implementation and evaluation demonstrate the

feasibility of our approach.

Our proposed architecture does not provide any extra se-

curity mechanism. However, security is one of the foundation

issues when SDN is designed. Security mechanisms could be

applied to protect the SDN controller, establish trust among

entities, and create a robust policy mechanism. Moreover,

security as a service could be delivered to protect the avail-

ability, integrity, and privacy of all connected resources and

information in the IoT architecture.

As future work, our plan is to implement more functions

and algorithms on SDN controllers and gateways, for example,

calculating routing paths by considering the caching in the

gateways and some security strategies. In addition, we will

implement more complex IoT scenarios (e.g. related to smart

cities) with the integration of multiple information sources and

perform evaluation to validate our architecture. We will also

study horizontally interworking between different domains by

enabling nodes to be context-aware.

ACKNOWLEDGMENT

This work was partly supported by TEKES as part of the

Internet of Things program of DIGILE (Finnish Strategic

Center for Science, Technology and Innovation in the field

of ICT and digital business). Special thanks to Congliang

Zhao, Ming Yao, Yuanyuan Huang, Wenchao Liu, Han Zheng,

Xiaoyu Hao, master students at the State Key Laboratory of

Networking and Switching Technologies, Beijing University

of Posts and Telecommunications, who have implemented the

prototype and testbed. Xiang Su thanks the funding from

Tekniikan edistämissäätiö, Tauno Tönningin säätiö, and Walter

Ahlströmin säätiö.

REFERENCES

[1] Onebox, 2016. [Online]. Available: www.onebox.com/
[2] Eutech, 2016. [Online]. Available: http://www.eurotech.com/en/
[3] EnOceanOrg, 2016. [Online]. Available: http://www.enocean.org/
[4] ST microelectronics, 2016. [Online]. Available:

http://www.st.com/web/en/home.html
[5] J. Mineraud, O. Mazhelis, X. Su and S. Tarkoma, “A gap analysis of

Internet-of-Things platforms,” Comput. Commun., in press.
[6] A. Mahmud and R. Rahmani, “Exploitation of openflow in wireless

sensor networks,” in Proc. of the 2011 International Conference on
Computer Science and Network Technology. IEEE, 2011, pp. 594-600.

[7] T. Luo, H. Tan, and T. Q. S. Quek, “Sensor openflow: Enabling software-
defined wireless sensor networks,” IEEE Commun. Lett., vol. 16, no. 11,
pp. 1896–1899, 2012.

[8] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
defined wireless networks: Unbridling SDNs,” in Proc. 2012 European
Workshop on Software Defined Networking. IEEE, 2012, pp. 1–6.

[9] Y. Yiakoumis, K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Slicing
home networks,” in Proc. of the 2nd ACM SIGCOMM workshop on
Home networks, ACM, 2011, pp. 1–6.

[10] M. Floeck, A. Papageorgious, and A. Schuelke, “Horizontal M2M
platforms boost vertical industry: effectiveness study for building energy
management systems,” in Proc. of 2014 IEEE World Forum on Internet
of Things. IEEE, 2014, pp. 15–20.

[11] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: Enabling
Community-Based Data-Centric Services Over the Internet of Things,”
IEEE Internet of Things Journal, vol. 1, No. 5, pp. 472–482, 2014.

[12] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A Software Defined Networking Architecture for the Internet-of-
Things.” in Proc. 2014 IEEE/IFIP Network Operations and Management
Symposium, IEEE, 2014, pp. 1–9.

[13] P. Thubert, M.R. Palattella, and T. Engel, “6TiSCH Centralized Schedul-
ing: when SDN Meet IoT,” in Proc. of IEEE Conf. on Standards for
Communications and Networking, Tokyo, IEEE, 2015, pp. 42–47.

[14] oneM2M - Standards for M2M and the Internet of Things, 2016.
[Online]. Available: http://www.onem2m.org/

[15] O. Vermesan and P. Friess (Eds), “Internet of Things From Research
and Innovation to Market Deployment,” River Publishers Series in
Communication, 2014.

[16] N. McKeown, T. Anderson, H. Balakrshman, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Tuner, “OpenFlow: enabling innovation
in campus networks,” Sigcomm Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[17] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T. Turletti, “A
survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Commun. Surveys Tuts.,vol.16, no. 3,
pp. 1617–1634, 2014.

[18] Open networking foundation, 2016. [Online]. Available:
https://www.opennetworking.org/

[19] POX, 2016. [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[20] Open vSwitch, 2016. [Online]. Available: http://openvswitch.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

