
A PUF-Enabled Secure Architecture
for FPGA-Based IoT Applications

Anju P. Johnson, Student Member, IEEE, Rajat Subhra Chakraborty,Member, IEEE,

and Debdeep Mukhopadhyay,Member, IEEE

Abstract—The Internet of Things (IoT) is a dynamic, ever-evolving “living” entity. Hence, modern Field Programmable Gate

Array (FPGA) devices with Dynamic Partial Reconfiguration (DPR) capabilities, which allow in-field non-invasive modifications to the

circuit implemented on the FPGA, are an ideal fit. Usually, the activation of DPR capabilities requires the procurement of additional

licenses from the FPGA vendor. In this work, we describe how IoTs can take advantage of the DPR capabilities of FPGAs, using a

modified DPR methodology that does not require any paid “add-on” utility, to implement a lightweight cryptographic security protocol.

We analyze possible threats that can emanate from the availability of DPR at IoT nodes, and propose possible solution techniques

based on Physically Unclonable Function (PUF) circuits to prevent such threats.

Index Terms—Cryptographic protocol, dynamic partial reconfiguration, Internet of Things, field programmable gate arrays, hardware Trojans,

physically unclonable functions

Ç

1 INTRODUCTION

INTERNET of Things (IoT) is a set of connected, uniquely
identifiable, smart objects (“things”), based on and

benefited by the Internet technology, which are expected to
bring unprecedented improvement in human quality of life
in the near future. The IoT technology has been shown to be
useful in awide range of fields, includingmedical andhealth-
care [1], system automation [2], remote sensing [3], agricul-
ture and food safety [4]. However, before the dream becomes
a reality, several important concerns about the implementa-
tion, operations and applicability of IoT require satisfactory
resolution and several issues needs to be addressed. Even set-
ting aside the technical challenges, factors related to gover-
nance, quality of service, security, privacy, interoperability
and other social and economic issues need to be resolved [5].

Cryptographic systems have become an integral part of
our daily life through the need of security of many common
activities such as communication, electronic money sys-
tems, disc encryptions etc. Today, most of the industrial sec-
tor use Hardware Security Modules (HSMs) for delivering
dedicated cryptographic services, with dual emphasis on
high performance and security. It is well known that the use
of programmable hardware in system implementation
can lead to performance improvements [6]. FPGAs are fre-
quently used to implement cryptographic hardware, to pro-
vide secure authentication, and storage of secret data [7].
FPGAs have the added advantage of being reconfigurable,
which increases their flexibility and makes them suitable
candidates for IoT applications. While the relatively higher

power dissipation of FPGAs in earlier generations used to
be a challenge limiting their deployment in power sensitive
application domains, ultra-low power FPGAs that are now
commercially available [8] allows them to be used for IoTs.

A relatively recent enhancement to FPGA capabilities is
Dynamic Partial Reconfiguation (DPR) or Runtime Partial
Reconfiguration (RPR). It is the ability to modify (mostly
through the addition of functionality) the existing circuit on
the FPGA, through “partial reconfiguration” (PR) of the
FPGA at run time. DPR allows designer to use smaller devi-
ces, reduce power consumption and improve system
upgradability. DPR-enabled FPGAs are thus ideal choices
for IoT applications. However, it has been demonstrated
that DPR-enabled FPGA based systems can be subjected to
malicious circuit alterations, typically termed as Hardware
Trojan insertion [9]. Interestingly, such attacks leverage the
same DPR capabilities that are otherwise so valuable.
Hence, proper defense strategies must be provided to
counter such threats, while keeping the inherent physical
constraints of IoT under consideration.

In recent years, Physically Unclonable Function (PUF) cir-
cuits have emerged as promising hardware security primi-
tives to be used in low-overhead security applications [10].
The operating principle of PUF circuits is based on the utili-
zation of nano-scale device–level process variation effects,
from which unique, digital “fingerprints” for devices are
derived [11]. Since the process–variation effects which are at
the heart of PUF circuits, are uncontrollable and unpredict-
able at the current state-of-the-art of semiconductor
manufacturing, the duplicate of a given PUF instance cannot
be manufactured, hence the term “unclonable” in their
nomenclature. The inherently low hardware overhead of
PUFs again make them suitable for IoT applications, espe-
cially because IoT nodes often have too little computational
resource to execute traditional mathematically intensive
cryptographic algorithms. We describe a PUF based security
protocol for DPR-enabled FPGAs that is resistant against
hardware Trojan attacks.

� The authors are with the Secured Embedded Architecture
Laboratory (SEAL), Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India. E-mail: {anjupj, rschakraborty, debdeep}@cse.iitkgp.ernet.in.

Manuscript received 11 May 2015; revised 7 Sept. 2015; accepted 12 Oct.
2015. Date of publication 26 Oct. 2015; date of current version 11 Dec. 2015.
Recommended for acceptance by S. Ray, J. Park, and S. Bhunia.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2015.2494014

110 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

2332-7766� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

We summarise the contribution of this paper as follows:

1) Envisage a DPR-enabled FPGA-based secure IoT
architecture, where the security is hardware-enabled.
To establish network connectivity across the FPGAs,
we took the assistance of the SIRC framework pro-
vided by Microsoft [12]. We mapped more than one
closely related hardware cores on to the same FPGA,
which are usually lined up in a crypto process cycle.
At the same time a reasonable security provisions are
also taken to avoid any kind of undesired mixing
between the cores.

2) We investigate threats to this architecture by launch-
ing successful Hardware Trojan insertion attacks on
the two main linchpins of security for the proposed
architecture: the cryptographic hardware core and
the True Random Number Generator (TRNG). For the
former case, we were successful in attacking an
128-bit AES cryptographic core, leading to the recov-
ery of the of the secret key by standard mathematical
analysis in less than 15 minutes using a standard PC.
For the later case, with very high probability, we
were able to bias the output bitstream of the
TRNG (described in [13]), such that the response of
the TRNG becomes predictable, with a high probabil-
ity of prediction success. These attacks are launched
by malicious configuration bitstream transfer to the
target FPGA using DPR techniques, which embed
the hardware Trojan in the FPGA.

3) We describe a protection technique against the dem-
onstrated attack, to secure the DPR-Enabled FPGAs
in IoT applications from malicious modifications,
while not compromising on the DPR capabilities of
the FPGA. Our security protocol is based on the
“XOR PUF” design [14]. Due to the composite nature
of the PUF instance under consideration, it’s behav-
iour is hard to model by an adversary who does not
have any access to the intermediate PUF responses.
However, if access to the intermediate PUF response
is available (e.g., to the implementer), the PUF can be
mathematically modelled, by following the approach
described in [15], allowing its use in the secure com-
munication protocol. Strong PUF instances can also
be used as an identification tag for the FPGA devices.

4) We establish the effectiveness of the proposed proto-
col through experimental results.

The remaining sections of this paper is organized as fol-
lows. In Section 2, we describe the proposed DPR-enabled
FPGA-based IoT architecture, and its possible applications.
Section 3 describes and demonstrates the threats on the
above mentioned architecture. In Section 4, we explore sev-
eral options to prevent the attacks, including the details of a
PUF based security protocol. In Section 5, we provide exper-
imental results to establish the effectiveness of the defense
strategy. We conclude in Section 6.

2 IOT MODEL FOR DYNAMIC RECONFIGURABLE

HARDWARE MODULES

Over the last few years, attention has been given in standard-
izing the IoT architecture [16] and protocols [17] for connect-
ing systems into a unified platform. Let us consider a set of
cryptographic hardware solutions, which can be accessed by

any authenticated application from anywhere at any time.
By the term cryptographic hardware solutions (CHS), we mean
commonly used hardware support for cryptography such as
hardware security modules, secure crypto-processors,
tamper-resistant security modules, crypto-accelerators,
embedded crypto-engines, etc. Access to each CHS is
provided on a time-shared basis. This model can be consid-
ered as a simple connected graph in which each application
utilizing the cryptographic services are on one side, and the
CHS on the other side.

Let us review the definition of IoT as given by
Uckelmann et al: “Today, the Internet of Things is a founda-
tion for connecting things, sensors, actuators, and other
smart technologies, thus enabling person-to-object and
object-to-object communications” [18]. This clearly means
that in the context of IoT, every object has an active role, as
IoT aims at increasing the ubiquity of the Internet by inte-
grating every objects to communicate with human beings as
well as other devices. Moreover, the dynamic nature of IoT
demands online modifications to both the hardware and
software components. Although at the current state-of-the-
art software updates and upgradation to suit the dynamic
needs of the IoT are relatively straightforward, the real bot-
tleneck is in terms of having the same flexibility in the hard-
ware components. This factor motivates us to develop an
architecture which can enable dynamic flexibility in hard-
ware as well.

To achieve the above goal, in this section, we define an
IoT architecture which supports dynamic modifications to
the hardware components. This is achieved by deploying
DPR-enabled FPGAs. Each FPGA is programmed with
more than one CHS. We define dynamic partitions to incorpo-
rate additional hardware modifications, on-the-fly as
required. This DPR-enabled FPGA architecture is the
basis of hardware sharing, hardware mixing and online
hardware updates, and plays a vital role in IoT application
as different enterprises can share the available resource.

Next we describe the proposed architecture bottom-up,
starting with the DPR-enabled FPGAs, which are the funda-
mental hardware building blocks of this architecture.

2.1 DPR-Enabled FPGA as IoT Building Blocks

DPR in the proposed architecture is performed by transfer-
ring the required partial configuration bitstream file over a
live network connection to the FPGA board. The prime com-
ponents of the proposed DPR setup are shown in Fig. 1. This
setup makes it feasible to apply DPR to perform on-the-fly
reconfiguration, enabling “add-on” functionality post initial
reconfiguration, facilities for hardware mixing or logic sharing
across the different “add-on” hardware modules, enabling
high speed low overhead data transfers, etc. Enabling DPR
on a FPGA requires partitioning the FPGA logic into static
and dynamic partitions—the dynamically configured mod-
ules can reside only in the dynamic partition. The main
work component is the DPR controller, which provides mas-
ter supervision of all modules related to enabling DPR. The
DPR controller generates the necessary control signals to
the Internal Configuration Access Port (ICAP), which is a stan-
dard Xilinx hardware primitive for PR [19], which in turn
performs the DPR in the specified dynamic partition.
Equally crucial is the network connectivity of the FPGA,

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 111

through which the secure communication targeted for the
cryptographic applications are serviced, and the DPR files
are transferred. This is established using an Internet API
Controller. This is usually not an extra requirement, as it is
relatively straightforward to design and deploy FPGA
boards with wireless (and wired) connectivity, in fact many
such IoT moats with wireless connectivity are already com-
mercially available [20].

To manage the data (including the partial configuration
bitstream) transfer functionality for the FPGAs (Internet API
Controller), we propose to use a modified version of the
widely used open-source Simple Interface for Reconfigurable
Computing (SIRC) platform [12]. SIRC consists of both soft-
ware and synthesizable hardware components, and makes
it possible to seamlessly transfer arbitrary data to a FPGA
through high-level API calls. This lets the application pro-
grammer concentrate on the functionality requiring the data
transfer, without being burdened by the task of managing
the complex network interactions. Being open source, the
SIRC framework is also sufficiently customizable by design,
and thus extremely suitable for an IoT environment. Along
with the DPR controller and the Internet API controller, the
cryptographic hardware module also resides in the static
part of the design. The dynamic region of the FPGA is fur-
ther divided into p dynamically reconfigurable partitions;
presence of multiple dynamic partitions increases the flexi-
bility and upgradability of the system. The logic interfaces
between the static partitions and the dynamic “add-ons”,
and between the dynamic “add-ons” themselves, are also

flexible and reconfigurable. In our implementation, simple
circuit components available on FPGAs such as flip-flops,
“bus macros” (predefined buses) and Lookup Tables (LUTs)
serve as communication bridges between the modules. The
design and strategy proposed by Wang et al. [21], includes
such dynamically reconfigurable interconnect, and is pro-
posed to be used for big data analysis. Similar strategies can
be adopted for the proposed IoT technology.

2.2 FPGAs as IoT Building Blocks

For convenience of discussions, we illustrate the architec-
ture with FPGAs providing solely cryptographic functional-
ities; however, in reality, the FPGAs can provide any
necessary functionality, with a cryptographic module may
or may not being present. A structural view of the DPR-
enabled FPGA as presented in Section 2.1 is shown in Fig. 2.
As illustrated, we have k distinct cryptographic cores
arranged on an FPGA. Each crypto-core is configurable by a
set of “add-ons”. The ith crypto-core has provision for pi
dynamic “add-ons” (in pi dynamic partitions), where the
optimal values for parameters pi and k are to be determined
based on constraints set by technology, economy, security
and other measures. To make the architecture symmetric,
we dedicate equal number of “add-on” partitions (say, p)
for all the crypto-cores on the FPGA. The detailed view of
“add-on” set is shown to the right of Fig. 2. The only disad-
vantage of this scheme is that since FPGA resources are
being allocated a-priori in the dynamic partitions, if one of
more of such dynamic partitions are not used, it would
incur a wastage of hardware resources. However, this short-
coming can be solved by providing expansion slots accom-
modating multiple FPGAs at the IoT nodes. Then, on
demand, these auxiliary FPGAs can be configured to accom-
modate extra dynamic partitions. We term a networked
DPR-enabled FPGA node as (DNODE); a DNODE uses the
reconfigurable portions for functionality enhancement, as
well as for interactions with other cores. The entire IoT is
proposed to be composed of DNODES as shown here.

There are several fine points about this architecture
which needs elaboration:

1) Multiple CHSs sharing a single DNODE is advanta-
geous, as this enhances the efficiency and security of
the DNODE. As an illustrative example, consider a
DNODE with two cryptographic primitives: a TRNG

Fig. 2. The Basic Building block for DPR enabled FPGA considering k Crypto services incorporated in an FPGA.

Fig. 1. The basic building block for DPR-enabled FPGA.

112 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

and a symmetric-key encryption hardware module.
Consider a user application willing to perform data
encryption using the encryption module, whose
security key is generated by the TRNG. If the two
modules resides in an FPGA, the key generated from
the TRNG need not be transmitted from other nodes
over the network. The key cannot be transmitted in
plain-text over the network, as an eavesdropper
might then trivially compromise the security of the
system after noting down the key. However, the
usage of public key protocols for key establishment
would incur an overhead not sustainable in resource-
constrained IoTs. Although it is possible to have
crypto-cores which have the key generator combined
with the encryption engines, implementing them as
separate modules gives more chance of exploring the
benefits of DPR, by enabling required modifications
targeting specific CHSs, as and when required in
future. Also, the existence of multiple functional
modules on a single FPGA allows the time-sharing of
the single FPGA intercommunication service among
the multiple modules, thereby decreasing the com-
munication overhead.

2) The distribution of the CHSs on the FPGAs is an optimi-
zation problem, targeting two objectives: (a) maxi-
mizing the interactions between the partitions, and
(b) minimizing the number of cross-node intercon-
nections. To achieve the first goal, closely related
applications should be mapped on the same FPGA,
while to meet the second goal, a graph partitioning
algorithm [22] might be used.

3) Authentication of the DNODE and its components
is performed using PUFs. Recall that PUF circuit
instances have an instance-specific behaviour, and
hence can act as identifier generator circuits for the
FPGAs (more details in Section 4.2). We propose to
use a scheme where each FPGA has an internal
“master PUF”, and each functional core (CHS) has an
associated “secondary PUF”. An internal free-running
low overhead Linear Feedback Shift Register (LFSR)

generates the challenges to be applied for the PUF
instances. The FPGA is identified by the responses of
the master PUF, while each CHS is identified by the
responses of the secondary PUFs.

2.3 Performing DPR on the FPGA

We now describe the whole process of usage and partial
reconfiguration of the IoT DNODEs based on requests from
privileged users. The whole process is shown in Fig. 3. The
Administrator provides session privilege to an authorized
user on time shared bases. A privileged user has the provision
to select the required CHS from the pool of available resour-
ces. Now the application user is entitled to get service of the
CHS (with/without DPR-based “add-on”). The PUF based
identification scheme is employed for selecting the targeted
DNODE and the target CHS. The privileged user has two
options: either to use the CHS without modifications, or
with permittedmodifications. By the term “modification” we
mean either addition of new hardware, or removal of existing
hardware in the dynamic “add-on”. We discuss twoways for
enabling DPR: “Restrictive Mode” and “Non-restrictive
Mode”, more details are presented in Section 4. In non restric-
tive mode the PR bitstream signature is compared with a
golden value stored on tamper-resistant non-volatilememory
at the IoT node, and if amatch is obtained, theDPR is granted.
For IoT applications, non-restrictive mode is more advanta-
geous as it provides more flexibility and security. As shown
in Fig. 3 if a user requests the need for “add-on” services, she
has to pass the PR bitstream verification using a secure PUF
based protocol. The details of the authenticated DPR protocol
is described in Section 4. There are provisions for t number of
DPR to be performed, whose value needs to be fixed by the
service provider. The user is not permitted to use the CHS if
there is any failure in “add-on” security checking. Once the
user is satisfied with the available “add-ons”, she uses the
CHS and exits. Every attemptedDPR is automatically logged,
with both the user details as well the currently configured
CHS behaviour for future references.

This infrastructure can be expanded considering hard-
ware sharing across different sets of enterprises, so as to

Fig. 3. Process of selecting DPR partition and enabling DPR.

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 113

increase the utilization of available hardware resources, in a
cloud like environment, where it is required to guarantee
the security of the shared hardware. In such environment
the need for secure protocol for DPR enabling is a prime
consideration, since security of all enterprises involved may
get adversely affected in case of any malicious circuitry
being added on-the-fly. In other words, the processing of cor-
porate data in an infected circuit seams to be greater threat.

Several previous works [23] has described alternative
architectures for DPR that might be exploited by an adver-
sary for HTH insertions; however they have several short-
comings compared to the architecture proposed by us.
The shortcomings of the DPR architecture described in [23]
compared to our proposed DPR architecture has been
described below:

1) It makes an assumption that the partial configuration
file is already available, without any description of
the methodology to generate the necessary configu-
ration file.

2) There is no mention on what type of DPR is targeted,
i.e., whetherModular or Difference based partial recon-
figuration. This is an important piece of information,
as the type of partial reconfiguration to be performed
has a direct impact on the structure and size of the
partial configuration file.

3) The architecture is claimed to be “ultra-light”, but
the components used in the design (microprocessor
based design), shows that there is room for further
reduction in hardware resource utilization

4) The work basically gives more emphasis on the
speed of transferring the reconfiguration bitstream
over the network, rather than providing a compre-
hensive DPR base design methodology.

2.4 An Example Application

Putting it all together, an example design as illustrated in
Fig. 4, was implemented by us. A Xilinx Virtex-5 FPGA is
connected to a network over a standard 100-Mbps Ethernet
connection, providing real-time computational capabilities.
Let the CHS employed in the FPGA be a cryptographic core
and a True Random Number Generator. DPR facility is enabled
to provide additional facilities to enhance the model in the
crypto-core side (e.g., support for a specific mode of encryp-
tion like CBC, OFB, CFB, tweakable encryptions, etc.), and say,
to modify the clock generation for synchronizing the CHS
with the application using it. Considering the IoT model,
one of the DNODE in the network consist of a cryptocore
and a key generator. The partial reconfiguration bitstreams

for the “add-ons” are generated by following the difference
based DPR flow described [24] using the Xilinx FPGA Edi-
tor software which does not need a special partial reconfig-
uration license. This makes the approach well fitted for
low-cost IoT applications. Difference based PR bitstream
generation considers the difference between the existing
“add-on” configuration with the new one. Hence, this
leads to smaller PR bitstreams to be transferred over the
network which is also another advantage for low band-
width IoT applications (Section 5.2). The Phase Locked Loop
(PLL) primitive in Virtex-5 is used in the “add-on” circuits
for generating various clocks in the design. The crypto-
graphic core (specifically AES) efficiency is strengthened
by a cryptocore modifier “add-on”, specifically an efficient
Mix Column implementation [25]. The “add-ons” are
allowed to be reconfigured on demand on–the–fly by trans-
ferring the required partial configuration bitstream over an
Internet connection to the FPGA board, from an authorized
application running on remote system which can commu-
nicate with the FPGA over the network.

3 POSSIBLE THREATS TO DPR-ENABLED

FPGA-BASED IOT INFRASTRUCTURE

Since the practical deployment of IoTs is already severely
challenged from security threats, it is natural to think that
adding a feature such as DPR, which provides a relatively
simple mean to modify the hardware running on a FPGA,
will only increase the vulnerability of FPGA-based IoT. But
the multitudinous benefits offered by the DPR technology
far outweighs this disadvantage. This section is intended to
demonstrate possible threats associated with insecure usage
of DPR on the reconfigurable platform, and proves the need
for better security measures when deploying DPR in build-
ing IoTs. Cryptographic security relies mainly upon two
components: the cryptographic algorithm and the crypto-
graphic key. The following attacks in this section demon-
strate the exploitation of DPR capabilities to adversely effect
these two components, specifically through the insertion of
hardware Trojans through DPR. In the next section, we
describe defense strategies to mitigate these threats.

3.1 Attack on Advanced Encryption Standard (AES)
Hardware

Advanced Encryption Standard is the global standard for sym-
metric key encryption [26]. The proposed hardware Trojan
helps to recover the secret key of an AES-128 bit crypto-
hardware, and is shown in Fig. 5 [9]. Once inserted in the
circuit, the hardware Trojan gets triggered only when it
receives some specific predetermined bit patterns (not nec-
essarily identical) in the plain-text for some predefined
number of times (not necessarily in consecutive plain-texts).
Both the bit pattern, and the number of matchings required
to activate the Trojan, are parts of the Trojan design specifi-
cation, and decided by the adversary. Here we introduce
three metrics to quantify the characteristics of the inserted
Trojan: “Triggering Bit Pattern Length” (TBPL), “Triggering
Bit Pattern Count” (TBPC) and “Trojan Activation Time”
(TAT). The length of the bit pattern to be recognised as trig-
ger bit pattern is called TBPL, and the number of times it
has to appear to trigger the Trojan is called TBPC. We

Fig. 4. Hardware “add-ons” for cryptographic hardware core and TRNG.

114 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

define the expected number of encryption operations done
by an AES circuit infected by the Trojan before the Trojan
triggers as TAT. Once we have a quantitative estimate of
TAT, corresponding TBPL and TBPC can be determined by
fixing one of these metrics. Note that the Trojan triggering
event is non-deterministic, which simplifies the Trojan
activation mechanism by removing the need for remote
triggering, at the cost of the possibility of a scenario where
the Trojan is never triggered. Interestingly, both extremely
high and extremely low activation probabilities can be
shown to be undesirable from the adversary’s perspective
in this scenario; the first one may increase the probability
of the Trojan being detected during pre-deployment logic
testing, while the second one may keep the Trojan dor-
mant indefinitely. Hence, the adversary needs to set the
TBPL and the TBPC parameters at appropriate levels,
through correct design of the Trojan, to make sure that the
Trojan activation probability reaches a moderate non-zero
moderate value. In the implementation presented in [9],
the Trojan is activated only when it receives a specific 20-
bit pattern, nine times in succession; then, the probability
of the Trojan accidentally triggering during normal opera-
tions in � 10�7.

On activation, the Trojan synchronizes with the start of a
new plain-text encryption, and then waits for seven clock
cycles, before enabling an XOR gate with logic-1 as trigger
pulse at one of its input. The other input of this XOR gate,
connected to the 0th bit of the AES state matrix gets flipped
by the Trojan. Thus, a fault is induced in the static AES
hardware at the beginning of the 8-th round during encryp-
tion which causes the AES to generate a faulty output
cipher-text. Note that, once triggered the Trojan never gets
reactivated until the FPGA is powered-off and powered-up
again (at which point it starts detecting the input plain-text
again for possible triggering), which makes its tracking and
detection highly challenging. It has been already proved
that with a single fault injection point and with a single
faulty encryption the key can be derived with a brute-force

search of size 232 [27], which can be performed in less than
15 minutes using a standard desktop PC. The brute-force

search size can be reduced further to 28 [28].

Most of the existing Trojan detection techniques attempt
Trojan detection before the IC is deployed for operation.
Since in this approach, the Trojan is inserted after the FPGA
starts to work, the Trojan can evade pre-deployment detec-
tion techniques. Combined with the low activation probabil-
ity of Trojan, we can conclude that these HTHs can elude
functional built-in-self-test (BIST) or authentication [29].
Power or delay analysis based Trojan detection methods
also fail to detect it, because of the low impact on these side-
channel parameters (as would be confirmed by our experi-
mental results).

Since every attempted DPR is logged by the on the
FPGA, It is not possible for a malicious “privileged user”
to make arbitrary modifications on the existing FPGA hard-
ware without revealing her identity. However, the
“privileged user” can wait till a pre-scheduled and pre-
authorized DPR operation is to be performed, to add to or
to modify the existing circuit on the FPGA, and then, piggy-
back the malicious component of the bitstream on the
benign component bitstream to be mapped on the FPGA.
The HTH that induces the fault attack on the cipher hard-
ware is activated automatically after some time (possibly
after some other DPR has taken place), depending on the
output of a counter-like circuit or FSM. This makes it diffi-
cult to identify what exactly caused a single encryption
operation to fail, and also difficult to determine with cer-
tainty which DPR operation was exactly responsible to
cause the failure. In addition, similar to the mechanism pro-
posed in [30], the faulty cipher-text produced after the fault
attack is altered by the inserted HTH. Because of this, no
arbitrary party can recover the secret key from the gar-
bled faulty cipher-text, but only an adversary having
knowledge of how to calculate the original faulty cipher-
text from the altered version, can launch the attack. Also,
the proposed Trojan operates in an “one shot” mode, i.e.,
it self deactivates after a fault is induced in the cipher
hardware. This helps the HTH to masquerade as a ran-
dom, non-directed circuit failure, the cause for which is
difficult to determine. More details about this attack can
be found in [9].

3.2 Attack on TRNG

True Random Number Generator circuits produce ran-
domness by exploiting the intrinsic randomness of a
physical process. There are a wide variety of TRNGs used
in secure system designs, which utilizes different sources
of randomness and follows different randomness extrac-
tion methodologies. Many of them have encountered
criticisms and are prone to attacks [31], [32], [33], [34].
This section is intended to demonstrate a practical attack
on the ring oscillator (ROSC) based TRNG using “Beat
Frequency Detection” [13]. The hardware Trojan designed
by us generates a patterned sampling clock and is
inserted in the dynamic part of the circuit utilizing the
DPR facility of the FPGA. Since the sampling clock gener-
ator is an inevitable part of the TRNG design, the design
of the proposed Trojan, superimposed on this sample
clock, reduces the hardware overhead associated with the
Trojan design. Also this facilitates the use of smaller sized
partial bit files to be transferred over the network for
inserting the Trojan infected “add-on” design.

Fig. 5. Detailed design of the implemented hardware for attack on AES.

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 115

The TRNG under consideration consists of two similar
ring oscillators, where the the response of one ROSC (say,
ROSCA) is sampled using the other (say, ROSCB), and a
counter is designed to capture their frequency difference.
The output of the counter is sampled using a sampling
clock of frequency Fs on reaching the beat frequency inter-
val, where the beat frequency interval is being determined
by the frequency difference between the two ROSCs. After
sampling, the circuit is reset and is enabled again for
determining the next random number. We exploit this
sampling and reset functionality for injecting the hard-
ware Trojan.

The main component of the Trojan design is the Phase
Locked Loop circuit, which is necessary for generating the
required clock for sampling, as well as for other circuity in
the FPGA. The PLL primitive is configured to generate the
required clock as well as an additional fast Trojan clock.
Since the existence of PLL circuitry is an inevitable part of
the FPGA design, and the hardware Trojan fast clock is
superimposed on the PLL circuitry, this main component of
the hardware Trojan do not incur any additional hardware
footprint in the device. In addition to the PLL circuit, a
“Linear Feedback Shift Register” circuit is added as a part
of the hardware Trojan. A multiplexer selects one out of the
two possible clock signals (the slow sampling clock or the
fast Trojan clock), based on the LSB of the LFSR output,
when triggered remotely. Based on the LFSR output, the
sampling point varies in time. Since the Trojan clock is
much faster compared to the counter clock, when the Trojan
gets is activated, the counter outputs gets sampled before
the counter gets incremented. This action biases the TRNG
response to “zero”. After this, the circuit is reset automati-
cally for the next sampling phase. This is shown in Fig. 6.
Since the LFSR produces a sequence where a 0 or 1 is equi-
probable, it is evident that at half the times, there is a possi-
bility for the attacker to bias the response to 0, and the
remaining 50 percent values are determined by the random-
ness of the device.

The design of the Trojan clock is crucial for biasing the
response of the counter to zero. Here, the important design
metric is the determination of Trojan Sampling Clock (TS).
The effect of TS is reflected in the Probability Distribution

Function (pdf) of the TRNG response, whereby the original
true Response of the TRNG (which follows a Gaussian dis-
tribution) splits into three functions. In this case the result-
ing function may or may not be random and the degree of
randomness is decided by the composite functions given by
fðxÞ ¼ asðxÞ þ bt1ðxÞ þ ct2ðxÞ, where sðxÞ corresponds to
the Gaussian pdf of the original sampling clock, t1ðxÞ repre-
sents the symmetric/asymmetric partial Gaussian distribu-
tion due to the fast Trojan clock, and t2ðxÞ represents the
constant function x ¼ 0 (also due to fast Trojan clock), and
a, b, c are (non-negative) constant mixing weights, with

aþ bþ c ¼ 1 and a ¼ ðbþ cÞ ¼ 1
2 (presence of LFSR in the

design splits the uninfected distribution and the distribu-
tion due to HTH into components of equal weights). The
success or failure of statistical tests of randomness depends
on the actual mixture model. The randomness of the TRNG
output bitstream is dependent on this mixture model.
Hence, the generated output bitstreams passes or fails the
NIST test depending on this resultant distribution. An intel-
ligent adversary would design TS such that b ¼ 0, and hence
he can predict the “zero” biased points accurately by know-
ing the initial LFSR configuration. Our observation also
points out that glitches (i.e., extremely fast triggers) in the
sampling clock can also lead to “zero biased” points in the
TRNG responses produced. Thus the Trojan circuit can
eventually be simplified to a glitch generator circuit, with
further reduction in hardware overhead and effect on cir-
cuit parameters, in addition to the reduction in size of PR
bitstreams to be transferred over the network. As would be
shown by our implementation results, the hardware over-
head and impact on circuit parameters of the propose Tro-
jan are negligible.

3.3 Other Threats

The number of possible HTH instances in the HTH design
space is very large, and unrestricted DPR provides insertion
of any kind of these HTHs to the unsecured dynamic parti-
tion. Firstly, let us consider a combined attack of the one dis-
cussed in Sections 3.1 and 3.2. The architecture of the
circuitry implemented on the FPGA is shown in Fig. 4. A
combined DPR attack can be launched in this system by per-
forming DPR in both the dynamic “add-on” partition. Here

Fig. 6. a) Detailed design of the proposed hardware Trojan to bias the response of Beat Frequency TRNG circuit [13] implemented on FPGA. b) Free
running response of the circuit in the absence of Trojan (Sampling and Reset is not performed). c) Response of TRNG in the presence of activated
Trojan (with Sampling and Reset functioning).

116 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

the attacker can leverage the combined support of both the
Trojans, viz. the Trojan targeted towards the TRNG, and the
one in AES Crypto core, so as to further reduce the complex-
ity of key recovery attack. These kinds of combined attacks
have greater threat, as the single HTH instance might not be
sufficiently harmful to the system, whereas the combined
HTH severely compromises system security by leaking the
secret information.

Malicious dynamically reconfigurable instruction execu-
tion unit in a evolvable instruction set processor is yet
another case of potential threat via DPR. In such processor
addition of a new instruction can be executed via a mali-
cious path leading to leakage of critical informations under
rare triggering conditions. Dynamically changing an exist-
ing instruction in such processor may also lead to similar
threat to the system.

Next we describe defense strategies against the proposed
attacks.

4 DEFENSE STRATEGIES

The main idea we propose for defending against the above
mentioned attacks is enabling selective authentication of the
DPR capabilities. We propose two different modes of DPR:
the restricted mode and the non-restricted mode.

4.1 Restricted Mode DPR

Since analysis of a FPGA configuration bitstream to identify
the representative circuits is difficult [35] and not widely
explored at the present state-of-the-art, the HTHs inserted
by DPR can potentially evade the existing simple bitstream
validation mechanisms currently commonly deployed in a
FPGA. For example, any configuration bitstream is sub-
jected to “Cyclic Redundancy Code” (CRC) checking by
dedicated hardware on the FPGA prior to it being allowed
to actually make any change to the existing circuit function-
ality. However, this is only a checksum validation mecha-
nism for the bitstream, and does not analyse the semantics
of the bitstream contents. However, a restrictive mode of
DPR can be implemented that can prove effective in pre-
venting Trojan insertion, as follows. For any application
mapped on the FPGA, it is reasonable to assume that only a
limited number of possible modifications might be per-
formed for it through DPR. In such a scenario, the partial
bitstreams might be generated in advance for these “pre-
authorized modifications”, along with an associated signa-
ture to verify its authenticity. In our implementation we
used the cryptographic hash function SHA-3 to calculate
the verification signature. A “signature verifier” hardware
logic module is also incorporated in the static design, so as
to compare the signature of the incoming partial bitstreams
against a stored “golden signature”. The partial bitstream
would be allowed to modify the dynamic part of the cir-
cuit, only if the signature calculated for it matches with
one of the golden signatures. The security properties of
the cryptographic hash function would ensure that the
creation of a bitstream different to any of the valid bit-
streams, but having a valid signature is computationally
infeasible. This simple but effective technique provides sat-
isfactory protection at small hardware overhead. The only
potential disadvantages are: (a) the lack of relative flexibility

compared to an unrestricted DPR mode allowing arbitrary
modifications, and (b) potential threat of attacks on the
stored signatures on the FPGA.

4.2 PUF Based Security Protocol for DPR Enabled
IoT Applications on FPGAs

The limitations of the restricted mode of DPR can be
avoided if a secure protocol can be developed to authorize
the DPR without resorting to explicit storage of golden sig-
natures at the IoT nodes. The alternative technique should
also be flexible to allow arbitrary modifications through
DPR. Our proposed PUF based protocol aims at resolving
this issue.

A PUF instance in general can be modeled as a n-bit
input, m-bit output Boolean function g : f0; 1gn ! f0; 1gm.
In our case we consider PUF instances with n ¼ 64 and
m ¼ 1. We employ the Exclusive-OR PUF (XORPUF) [14] in
the static part of the FPGA, for secure DPR enabling. The
XORPUF is built by XOR-ing the outputs of several Arbiter
PUF (APUF) circuits. The APUF is a classic low-overhead
PUF circuit that is built by cascading several path-switching
stages (each stage is typically composed of a pair of 2:1 mul-
tiplexers). The standalone APUF is vulnerable to Machine
Learning based Modeling Attacks, e.g., using the Logistic
Regression (LR) technique [15], which enables an adversary
to predict the response of a given PUF instance for an arbi-
trary challenge with high probability of success. However,
the XORPUF is resistant to practical modeling attacks if the
number of APUFs being XORed is larger than six [15]. Each
PUF instance must be 100 percent reliable (i.e., have per-
fectly replicable input-output behavior over time), which
can be enforced by having error correction circuitry associ-
ated with them.

Security against modeling attacks and hardware over-
head are the key parameters in deciding the number of
parallel Arbiter PUFs to be employed. Replay attacks are
prevented by using different sets of CRPs for every
attempted authentication. The administrator, for every
FPGA based IoT node, maintains a database of challenges
that have been previously used for PUF based DPR
enabling/disabling, and disregards every old challenge
used. However, for challenge set size of (say) q in each
authentication attempt, with each challenge being n-bit,
the probability of repeated challenges occurring termed as

the “Failure Probability” Pfail � expð�qðq�1Þ
2nþ1 Þ, which for typ-

ical sets of values of q ¼ 1;000 and n ¼ 64, is almost
zero (quantitative estimate of the failure probability of PUF
based protocol due to challenges being reused). Hence, in
our protocol descriptions, we do not mention this chal-
lenge management issue.

We now describe two protocols for secure identification
of the requesting device and authentication of partial bit-
streams corresponding to a new “add-on” (Protocol-1), and
for enabling the DPR if Protocol-1 passes (Protocol-2). Note
that the strength of the proposed protocols depends criti-
cally on the computational difficulty of the PUF modeling
problem, and we provide a formal proof of security for the
protocols later in Section 4.3. Both the protocols exploit the
inherent ability of PUFs to support security applications,
without the need for explicit storage of secret keys.

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 117

Protocol-1. PUF Based Device Authentication and Bit-
stream Validation

Objective
1: Entity Authentication: The Administrator A (Party-1) veri-

fies the identity of device requesting DPR (Party-2, the
FPGA F)

2: PR bitstream Validation: A verifies the genuineness of the
PR bitstreams received from F.

Prerequisites
1: An n-bit input, 1-bit output XOR PUF P is reconfigured in

the static partition of the FPGA F
2: A modelM of P resides with A
3: F and A have agreed on a fixed encoding scheme Eð�Þ and a

decoding scheme Dð�Þ, such that for any binary string x,
Eð�Þ andDð�Þ are injective,X ¼ EðxÞ andDðXÞ ¼ x.

Output
A value in variable Flag to show success (Flag ¼ 1) or failure
(Flag ¼ 0)

Steps
1: F chooses: q independent random bitstrings XOR-ed with

the state of a Linear Feedback Shift Register, to form chal-
lenges from the received PR bitstreams

2: F characterizes: Rpi ¼ P ðCiÞ, 8 i 2 1; 2; . . . q. The ith chal-
lenge Ci ¼ ðCik ; Ciðkþ1Þ . . . ; CiðkþnÞ Þ is formed by taking n

consecutive bits with starting address k from the received
PR binary file with cryptographic hash value FID

3: F sends to A: S ¼ EðFID kðkqi¼1ðik kRpiÞÞÞ
4: A computes:DðSÞ ¼ ðFID kðkqi¼1ðik kRpiÞÞÞ
5: A computes: Rmi ¼MðCiÞ 8 Ci

6: A computes: N ¼ ð1�Pq
i¼1 ðRpi �Rmi

Þ=qÞ
7: IfN � 0:99, A declares device F authenticated, else sets

Flag 0 and exits
8: If step-7 is successful, A compares FIDwith the list of

available signatures for device F
9: If step-8 comparison succeeds for any available signature,

A sets Flag 1, else sets Flag 0 and exits

Protocol-1: Device Authentication and Bitstream
Validation

This is a two-player protocol between FPGA based IoT
node (denoted by F) and the Administrator (denoted by A).
The objective of this protocol is to ensure secure device
authentication and verification of PR “add-on” bitstreams.
Protocol-1 consists of the following steps:

1) F generates q different random unsigned integers.
Collection of bits of size n with each of the selected
random number as starting address, XOR-ed with
the state of a Linear Feedback Shift Register, are consid-
ered as challenges for the PUF P configured in the
static partition of F.

2) The above selected challenges are applied to the PUF
P . The respective q responses are collected.

3) An encoded1 string consisting of the concatenation
of following three parts is sent from F to A: (a) hash
value of the received PR bitstream (signature of the
PR bitstream); (b) q random numbers corresponding
to the challenge location in the PR bitstream file,
and, (c) corresponding q responses of P .

4) On receiving S, A decodes the message and retrieves
the string S.

5) The retrieved challenge locations are mapped to the
PR file with signature FID. A applies them to the
modelM and collects the corresponding responses.

6) A determines the matching between the received
responses and the generated responses.

7) If 99 percent ormorematch2 is found between the gen-
erated and received responses, the device F is declared
to be authenticated byA; otherwiseAdeclares an error
by reseting a flag, and exits to call Protocol-2.

8) A then compares the obtained signature FID in its
database, with all the available signatures for F.

9) If FID matches a signature, A sets a flag and calls
Protocol-2. takes necessary decision to enable/dis-
able the attempted DPR.

Protocol-2: PUF based Scheme for Enabling/Disabling
DPR

Protocol-2 is very similar to Protocol-1, except that, the roles
of A and F gets reversed. A communicates back the decision
by sending the model generated (actual) or complement
(false) responses to F depending upon the authentication of
device and applicability of the reconfiguration file. If com-
parison with the PUF characterization data fails at F, the
DPR attempt is invalidated. Note that an explicit ENABLE/
DISABLE command from A to F is avoided to increase the
security of the protocol. Every time a DPR is attempted, the
two protocols are invoked to authorize the attempt.

Protocol-2. PUF Based Scheme for Enabling/Disabling
DPR

Objective
1: Enable/Disable DPR: The Administrator A (Party-1) com-

municates back to the FPGA (Party-2) F certain data which
disables or enables DPR

Prerequisites
Same as Protocol-1, value of Flag obtained from Protocol-1
output
A value in variable EN to show successful DPR (EN ¼ 1) or
failure (EN ¼ 0)
Steps
1: A chooses: l independent random challenges from the PR file

with hash value FID
2: A characterizes: Rmi ¼MðCiÞ, 8 i 2 1; 2; . . . l. The ith chal-

lenge Ci ¼ ðCik ; Ciðkþ1Þ . . . ; CiðkþnÞ Þ is formed by taking n

consecutive bits with starting address k from the received
PR binary file with cryptographic hash value FID

3: If Flag==1, A sends to F: S ¼ EðFID kðkli¼1ðik kRmiÞÞÞ, else,
A sends S ¼ EðFID kðkli¼1ðik kð1�RmiÞÞÞÞ

4: F computes:DðSÞ ¼ ðFID kðkli¼1ðik kRmiÞÞÞ
5: F computes: Rpi ¼ P ðCiÞ 8 Ci

6: F computes: N ¼ ð1�Pl
i¼1 ðRpi �Rmi

Þ=lÞ
7: IfN � 0:99, EN 1, else EN 0 and exits.

4.3 Formal Proof of Security

We now provide a formal proof of security for the two pro-
posed protocols, following a methodology that is standard

1. Since IoT uses low bandwidth communication, the use of encod-
ing scheme mainly aids in correcting errors in the received string S.

2. The model can be built extremely accurate [15], still we provide 1
percent tolerance, as the modeling error is non-zero.

118 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

in cryptography to establish protocol security [36]. First, we
define a negligible function as follows: a function fð�Þ defined
over natural numbers is termed negligible if for every poly-
nomial pð�Þ, there exists a positive value M such that for all

integers n > M, fðnÞ < 1
pðnÞ. A function that is not negligi-

ble is called non-negligible.
Let MPUF be the mathematical model of the XORPUF

possessed by the adversary, corresponding to the actual
XORPUF hardware at the IoT node, which is characterized
by a mathematical mapping PUF . Let c be an arbitrary n-bit
challenge. Then, the fact that an XORPUF with six or more
APUFs cannot be modelled accurately by efficient computa-
tional means, is stated as the following:

Pr MPUF ðcÞ � PUF ðcÞð Þ ¼ 0½ 	
 1

2
þ neglðnÞ; (1)

where neglðnÞ is a negligible function.
We now demonstrate that the problem of breaking our

proposed protocols is at least as difficult as the problem of
accuratelymodeling an arbitraryXORPUF instance. In partic-
ular, we show that the problem of breaking the proposed pro-
tocols by an adversary leads to a mathematical relationship
that violates inequality-(1). Consider q arbitrary challenges
c1; c2; . . . cq which are used by the administrator and the

FPGA during the authentication phase. Define the q-bit vec-

tor v ¼ ðv1; v2; . . . vqÞ, where vi ¼MPUF ðciÞ � PUFðciÞ, which
denotes how many of the applied challenges produced the
same response from the XORPUF and itsmodel in possession
of the adversary. Suppose, an adversary can successfully
break Protocol-1 and Protocol-2. This would imply (again
invoking the notion of security expressed in Inequality-(1)):

Pr HWðvÞ � 0:99q½ 	 ¼ 1

2
þ �ðqÞ; (2)

whereHWðvÞ denotes theHammingWeight of a binary vector
v, and �ð�Þ is a non-negligible function. Let S � f1; 2; . . . qg
denote the set of indices for the challenges for which vi ¼ 1,
i.e., the predicted value from the XORPUF and the actual
XORPUF hardware match. Then, since the adversary suc-
cessfully broke the protocols, jSj � 0:99q. Assuming each
challenge is applied independently, Eqn. (2) implies, for a
given set of indices S:

YjSj

i2S
Pr vi ¼ 1½ 	 ¼

YjSj

i2S
Pr MPUF ðcÞ � PUF ðcÞð Þ ¼ 0½ 	 ¼ 1

2
þ �ðqÞ:

(3)

Let p ¼ maxifPr vi ¼ 1½ 	g. Then, the above equation leads to:

pjSj � 1

2
þ �ðqÞ: (4)

Since 0 < p < 1, and jSj � 0:99q > 1, hence pjSj < p. Thus,
the above inequality leads to:

p >
1

2
þ �ðqÞ: (5)

Note that the above inequality implies than for any arbitrary-
choice of a set of q challenges, there is always one challenge
for which the response obtained from the adversary’s mathe-
maticalmodel and that obtained from the XORPUF hardware

match, with probability greater than 1
2 by a non-negligible

amount. This contradicts the fundamental assumption about
the security of XORPUF described in Eqn. (1). Hence, we
prove that the proposed protocols are secure, assuming the
computational difficulty of the XORPUFmodelling problem.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

The hardware architectures (including the cryptographic
primitives and the hardware Trojan) were designed using
Verilog HDL. The designs were synthesized and imple-
mented using Xilinx ISE 14.5 for the Xilinx Virtex-V target
platform, and simulated using Xilinx Isim. The DPR method-
ology was implemented using the technique described in [9].
Power estimation of the circuits was carried out using Xilinx
XPower Analyzer and delay estimation using Xilinx Timing
Analyzer. The computations to recover the secret keywere car-
ried out on a PCwith 2GBofmainmemory and a 2GHzCPU.

5.2 Effectiveness of Difference Based DPR
Methodology

Table 1 shows the required partial bitstream file to be
loaded via the network for erasal and implementation of
an “add-on” Trojan discussed in Section 3. For both the
test cases (AES Trojan and TRNG Trojan), the complete
reconfiguration file is 3,890.087 kB. From Table 1, it is evi-
dent that the required partial bitstream sizes for adding
and removing the Trojans are relatively very small, which
is a direct consequence of the difference based DPR meth-
odology. This in turn leads to lesser data transfer between
the remote PC and the deployed FPGA. The Internal Con-
figuration Assess Port (ICAP) (Virtex-5 primitive for PR) of
the targeted FPGA board is configured to run in 8 bit con-
figuration at a clock frequency of 100 MHz. Hence DPR
for the required PR files are performed in the order of
micro-seconds.

5.3 Effectiveness of Inserted Trojan

Table 2 shows the percentage increase in the total on-chip
power consumption of the AES design before and after Tro-
jan insertion, while Table 3 compares the critical path delays
before and after Trojan insertion in the dynamic partition.
Table 4 compares the hardware overheads for the golden
and the Trojan-infected AES designs. The simulated power

TABLE 1
Partial Reconfiguration File Size

Test Case Complete
Bitstream Size (kB)

Partial Reconfiguration
File (P1-to-Blank) (kB)

Partial Reconfiguration
(Blank-to-P1) File (kB)

Test case-1 3;890:087 23:460 23:460
Test case-2 3;890:087 15:367 15:367

TABLE 2
Power Overhead for AES Encryption/Decryption Circuit

Golden Reference (Blank
Dynamic partition) (mW)

Trojan Infected
Circuit (mW)

Increase in
Power w.r.t.Golden (%)

2,923.97 2,924.95 0.0335

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 119

traces obtained from the Trojan-free and the Trojan-inserted
design did not show any significant variation. From these
results, it is clear that the Trojan insertion can be realized
using minimal hardware overhead, and has negligible effect
on the power and delay. Moreover, the Trojan implemented
here is much more lightweight than the Trojan described
in [30]. The small size of the Trojan results in a negligible
payload to be transferred to implant the Trojan which
allows it to be piggybacked with a benign design. Finally, as
expected, the faulty cipher-text obtained under the influ-
ence of the activated Trojan, led to the recovery of the cipher
key by 15 minutes of computation time. (following the the-
ory described in [27]).

Table 5 shows the percentage increase in the total on-
chip power consumption of the TRNG design before and
after Trojan insertion, while Table 6 compares the hard-
ware overheads for the golden and the Trojan-infected
designs. From these results, it is clear that the Trojan inser-
tion can be realized using minimal hardware overhead.
The power profile shows 6.164 percent increase in power
after Trojan insertion. This is due to the fast Trojan clock.
The probability of occurrence of ones, P ð1Þ in the gener-
ated random numbers is shown in Table 7. Due to 50 per-
cent biasing of response to “zero”, it is expected to
get P ð0Þ to be ð3=4Þ, in the Trojan infected design, which is
evident from the results. We collected 20 million LSB bits
from the golden BFD-TRNG [13] design and the Trojan
infected design. NIST [37] statistical tests were performed

on the samples. For a block size of 100, the golden refer-

ence design passed all the NIST tests (P-value x2 > 0:01
and Proportion �0:96). The infected design failed all NIST
tests except “Rank” and “Linear Complexity”. NIST statis-
tical tests were performed on the samples for the Golden
TRNG circuit and the proposed HTH design on TRNG for
various Trojan sampling clock frequencies.This is provided
in Table 10. As discussed in Section 3.2, the TRNG output
LSB bitstreams pass or fail NIST statistical tests based on
the type of the resultant distribution.

5.4 Hardware Overhead of Defense Strategies

The hardware utilization for the whole circuity imple-
mented on the FPGA for restricted DPR mode is shown in
Table 8, excluding the user application AES/TRNG with its
“add-ons”. The restricted mode of DPR is implemented by
calculating the SHA-3 hash value of the received PR bit
streams followed by comparison with the stored hash val-
ues. Table 9 shows the hardware overhead of an 8-XOR
PUF with 64-bit APUFs. Through our experimental results
we found that our proposed secure DPR schemes incur min-
imal hardware overhead, and they are also minimally inva-
sive by design.

6 CONCLUSIONS

IoT architectures need to trade-off between the essential
flexibility and the inherent resource-constraints. Dynamic
Partial Reconfiguration (DPR) is a powerful technique that
adds immense flexibility to FPGAs, and is thus suitable for
IoT applications, provided potent security threats are over-
come. We have proposed and demonstrated the feasibility
of implementation of two different low overhead secure
DPR architectures targeted for IoT applications.

TABLE 3
Timing Overhead for AES Encryption/Decryption Circuit

Design
Without Trojan (ns)

Design
With Trojan (ns)

Increase in Critical
Path Delay (%)

9.502 9.502 0.00

TABLE 4
Hardware Overhead for AES Encryption/Decryption Circuit

Device
Utilization

Golden
Reference Design

Trojan
Infected Design

Hardware Overhead
w.r.t Golden (%)

Slice 1,576 1,582 0.38
SliceReg 1,742 1,748 0.34
LUTs 3,733 3,739 0.16

TABLE 5
Power Overhead for TRNG Circuit

Golden Reference (Dynamic
partition with PLL) (W)

Trojan Infected
Circuit (W)

Increase in
Power w.r.t.Golden (%)

1.314 1.395 6.1644

TABLE 6
Hardware Overhead for TRNG Circuit

Device
Utilization

Golden
Reference Design

Trojan
Infected Design

Hardware Overhead
w.r.t. Golden (%)

Slice Reg 2,086 2,094 0.3835
Slice LUT 3,711 3,715 0.1078
Occupied Slice 1,277 1,286 0.7048
LUT Flip-Flop Pairs 4,236 4,323 2.0538
BUFG/BUFGCTRLS 3 4 0.3333

TABLE 7
Frequency Distribution of Generated Random Numbers

Design Trojan Infected Golden Reference

Parameter Experimental Theoretical Experimental Theoretical

Frequency 0.2488 0.2500 0.4992 0.5000
Percentage Deviation 0.468% 0.16%
Percentage Deviation 50.1522%

Infected from golden (Experimental)

TABLE 8
Hardware Utilization Incorporating Signature Verifier

Module Name Slice Slice Reg LUT LUTRAM BRAM/FIFO

Ethernet API Controller 1,059 1,188 2,355 11 111
Bridge 9 36 0 0 0
Reconfiguration Controller 8 12 15 0 0
Signature Verifier 1,298 2,247 2,891 1 32
Input FIFO 10 6 24 8 0

TABLE 9
Hardware Utilization for 8-XOR PUF with 64-bit APUFs

Module Name/
Components

Path Swapping
Switches

Arbiter Register/
Flip-Flop

Balanced XOR
tree

Total

LUT 1,024 8 0 3 1,035
Flip-Flip 0 0 8 0 8

120 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

ACKNOWLEDGMENTS

A part of the current paper (Sections 2.1 and 3.1) is based on
a paper published by the authors in the ACM WESS’14
workshop.

REFERENCES

[1] A. J. Jara, M. A. Zamora-Izquierdo, and A. F. Skarmeta,
“Interconnection framework for mHealth and remote monitoring
based on the Internet of Things,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 9, pp. 47–65, Sep. 2013.

[2] S. Kelly, N. Suryadevara, and S. Mukhopadhyay, “Towards the
implementation of IoT for environmental condition monitoring in
homes,” IEEE Sensors J., vol. 13, no. 10, pp. 3846–3853, Oct. 2013.

[3] S. Wang, “Spatial data mining under Smart Earth,” in Proc. IEEE
Int. Conf. Granular Comput., Nov. 2011, pp. 717–722.

[4] R. J. Lehmann, R. Reiche, and G. Schiefer, “Future internet and the
agri-food sector: State-of-the-art in literature and research,”
Comput. Electron. Agriculture, vol. 89, pp. 158–174, 2012.

[5] V. Ovidiu, F. Peter, G. Patrick, G. Sergio, S. Harald, B. Alessandro,
J. I. Soler, M. Margaretha, H. Mark, E. Markus, and D. Pat,
“Internet of things strategic research roadmap,” in Internet of
Things - Global Technological and Societal Trend. Delft The Nether-
lands: River Publishers, 2011, pp. 9–52.

[6] G. De Michell and R. K. Gupta, “Hardware/software co-design,”
Proc. IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997.

[7] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs:
State-of-the-art implementations and attacks,” ACM Trans. Embed-
ded Comput. Syst., vol. 3, no. 3, pp. 534–574, 2004.

[8] ULTRA LOW-POWER iCE FPGAs. (2008) [Online]. Available:
http://www.latticesemi.com/ /media/LatticeSemi/Documents/
ApplicationNot es/UZ/UltraLow-PoweriCEFPGAs.PDF?docu-
ment_id=44648, Lattice Semiconductor

[9] A. P. Johnson, R. S. Chakraborty, D. Mukhopadyay, and S. G€oren,
“Fault attack on AES via hardware Trojan insertion by dynamic
partial reconfiguration of FPGA over ethernet,” in Proc. 9th Work-
shop Embedded Syst. Security, Oct. 2014, pp. 1:1–1:8.

[10] M. van Dijk and U. R€uhrmair, “Physical unclonable functions in
cryptographic protocols: Security proofs and impossibility
results.” IACR Cryptology ePrint Archive, vol. 2012, p. 228, 2012.

[11] D. Lim, “Extracting secret keys from integrated circuits,” Master’s
thesis, MIT, Cambridge, MA, USA, 2004.

[12] K. Eguro, “SIRC: An extensible reconfigurable computing com-
munication API,” in Proc. IEEE Symp. Field-Programmable Custom
Comput. Mach. (Short Paper), May 2010, pp. 135–138.

[13] Q. Tang, B. Kim, Y. Lao, K. Parhi, and C. Kim, “True random
number generator circuits based on single- and multi-phase beat
frequency detection,” in Proc. IEEE Custom Integr. Circuits Conf.,
Sep. 2014, pp. 1–4.

[14] G. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/
IEEE Des. Autom. Conf., Jun. 2007, pp. 9–14.

[15] U. R€uhrmair, F. Sehnke, J. S€olter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable
functions,” in Proc. 17th ACM Conf. Comput. Commun. Security,
2010, pp. 237–249.

[16] S. Shen andM. Carugi, “Standardizing the Internet of Things in an
evolutionary way,” in Proc. ITU Kaleidoscope Acad. Conf.: Living in a
Converged World - Impossible Without Standards?, Jun. 2014,
pp. 249–254.

[17] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco,
G. Boggia, and M. Dohler, “Standardized protocol stack for the
Internet of (important) Things,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 3, pp. 1389–1406, 3rd Quarter 2013.

[18] D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the
Internet of Things, 1st ed. New York, NY, USA: Springer, 2011.

[19] Virtex-5 Libraries Guide for HDL Designs UG621, Xilinx Inc. (2010,
Jul.) [Online]. Available: http://www.xilinx .com

[20] (2014, Feb.). Xilinx UltraScale MPSoC Architecture. Xilinx Inc.
[Online]. Available: http://www.xilinx.com

[21] C. Wang, X. Li, and X.-H. Zhou, “CRAIS: A crossbar-based inter-
connection scheme on FPGA for big data,” J. Comput. Sci. Technol.,
vol. 30, no. 1, pp. 84–96, 2015.

[22] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, 1998.

[23] P. Bomel, J. Crenne, L. Ye, J. Diguet, and G. Gogniat, “Ultra-fast
downloading of partial bitstreams through ethernet,” in Proc.
22nd Int. Conf. Archit. Comput. Syst., 2009, pp. 72–83.

[24] S. G€oren, Y. Turk, O. Ozkurt, and A. Yildiz, H. F. Ugurdag,
“Achieving modular dynamic partial reconfiguration with a dif-
ference-based flow,” in Proc. ACM/SIGDA Int. Symp. Field Pro-
grammable Gate Arrays, 2013, pp. 270–270.

[25] H. Li and Z. Friggstad, “An efficient architecture for the AES mix
columns operation,” in Proc. IEEE Int. Symp. Circuits Syst., 2005,
vol. 5, pp. 4637–4640.

[26] J. Daemen and V. Rijmen, The Design of Rijndael: AES-the Advanced
Encryption Standard. New York, NY, USA: Springer Science &
Business Media, 2002.

[27] D. Mukhopadhyay, “An improved fault based attack of the
advanced encryption standard,” in Proc. 2nd Int. Conf. Cryptol.
Africa: Progress Cryptol., 2009, pp. 421–434.

[28] M. Tunstal, D. Mukhopadhyay, and S. Ali, “Differential fault anal-
ysis of the advanced encryption standard using a single fault,” in
Proc. 5th IFIP WG 11.2 Int. Conf. Inf. Security Theory Practice. Secu-
rity Privacy Mobile Devices Wireless Commun., 2011, pp. 224–233.

[29] K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication
for preventing hardware Trojan insertion,” in Proc. IEEE Int.
Symp. Hardware-Oriented Security TRUST, 2013, pp. 45–50.

[30] S. S. Ali, R. S. Chakraborty, D. Mukhopadhyay, and S. Bhunia,
“Multi-level attacks: An emerging security concern for crypto-
graphic hardware,” in Proc. Des. Autom. Test Eur. Conf. Exhib.,
2011, pp. 1–4.

[31] B. Sunar, W. Martin, and D. Stinson, “A provably Secure true ran-
dom number generator with built-In tolerance to active attacks,”
IEEE Trans. Comput., vol. 56, no. 1, pp. 109–119, Jan. 2007.

TABLE 10
Statistical Test Results for Golden and Infected TRNG

Test Sampling Clock (Golden) 103:1992KHz Trojan Clock 135:2265KHz Trojan Clock 172:2531KHz

LSB LSB-1 LSB-2 LSB-3 LSB-1 LSB-2 LSB-3 LSB-1 LSB-2 LSB-3

P-Val/Proportion P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop. P-Val Prop.

Frequency 0:1223 1:00 0:9114 1:00 0:0179 0:95 0:5341 1:00 0:7399 1:00 0:1223 1:00 F F F F F F

BlockFrequency 0:3505 1:00 0:5341 1:00 0:4373 1:00 0:2133 1:00 0:5341 0:95 0:8343 1:00 F F F F F F

CumulativeSums* 0:2133 1:00 0:4373 1:00 0:1626 0:95 0:2757 1:00 0:9114 1:00 0:9114 1:00 F F F F F F

Runs 0:5341 1:00 0:3505 0:95 0:9114 1:00 0:7400 0:95 0:1626 1:00 0:5341 0:95 F F F F F F

LongestRun 0:9114 1:00 0:9114 0:95 0:2133 1:00 0:0669 1:00 0:3505 1:00 0:1223 1:00 F F F F F F

Rank 0:5341 1:00 0:5341 1:00 0:7399 1:00 0:0909 1:00 0:5341 1:00 0:2757 1:00 0:1626 1:00 0:2133 0:95 0:6371 1:00

FFT 0:5341 1:00 0:5341 0:95 0:8343 1:00 0:5341 1:00 0:8343 1:00 0:9643 1:00 F F F F F F

NonOverlappingTemp.* 0:0043 0:90 0:0043 0:90 0:0179 0:90 0:0179 0:90 0:5341 F 0:0114 F F F F F F F

OverlappingTemplate 0:4373 0:95 0:5341 1:00 0:0909 1:00 0:3505 1:00 0:9915 1:00 0:8343 1:00 F F F F F F

ApproximateEntropy 0:9915 1:00 0:4373 1:00 10:1626 0:90 0:1626 1:00 0:6371 1:00 0:0909 1:00 F F F F F F

Serial* 0:3505 1:00 0:3505 1:00 0:1626 1:00 0:3505 1:00 0:1223 0:90 0:2133 1:00 F F F F F F

LinearComplexity 0:9114 0:95 0:8343 1:00 0:0352 1:00 0:7399 1:00 0:3505 1:00 0:6371 1:00 0:3505 0:95 0:3505 1:00 0:9114 1:00

*Note: Tests with more than one subtest, the p-value and proportion shown here are the smaller values. F corresponds to cases of test failure.

JOHNSON ET AL.: A PUF-ENABLED SECURE ARCHITECTURE FOR FPGA-BASED IOT APPLICATIONS 121

[32] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “A self-timed
ring based true random number generator,” in Proc. IEEE 19th Int.
Symp. Asynchronous Circuits Syst., May 2013, pp. 99–106.

[33] M. Dichtl and J. Goli�c, “High-speed true random number genera-
tion with logic gates only,” in Proc. 9th Int. Workshop Cryptographic
Hardware Embedded Syst., 2007, vol. 4727, pp. 45–62.

[34] H. Martin, T. Korak, E. S. Millan, and M. Hutter, “Fault attacks on
STRNGs: Impact of glitches, temperature, and underpowering
on randomness,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 2,
pp. 266–277, Feb. 2015.

[35] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik,
“Hardware Trojan insertion by direct modification of FPGA con-
figuration bitstream,” IEEE Des. Test Comput., vol. 30, no. 2,
pp. 45–54, Apr. 2013.

[36] J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman
& Hall/CRC Cryptography and Network Security Series). Boca Raton,
FL, USA:CRCPress, 2007.

[37] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statis-
tical test suite for random and pseudorandom number generators
for cryptographic applications,” DTIC Document, Fort Belvoir,
VA, USA, Tech. Rep. SP 80022 Rev. 1a, 2001.

Anju P. Johnson received the BTech degree in
electronics and communication engineering from
Cochin University of Science and Technology
(CUSAT) in 2010 and the MTech degree in VLSI
Design from Amrita University in 2012. She has
been a PhD research fellow and a senior project
officer in the Department of Computer Science and
Engineering, IIT Kharagpur, since 2012. Before
Joining IIT Kharagpur, she was a faculty (Adhoc)
in the Department of Electronics and Communica-
tion Engineering, NIT Calicut. Her research inter-

ests include design and analysis of hardware Trojan Horse and VLSI
system design. She is a student member of the IEEE.

Rajat Subhra Chakraborty received the BE
(Hons.) degree in electronics and telecommuni-
cation engineering from Jadavpur University,
India, in 2005, and the PhD degree in computer
engineering from Case Western Reserve Univer-
sity, Cleveland, OH. He has been an assistant
professor in the Computer Science and Engineer-
ing Department, IIT Kharagpur, since 2010. His
professional experience includes a stint as CAD
software engineer at National Semiconductor,
and a graduate internship at AMD Headquarters

at Santa Clara (California). His research interests include hardware
security; including design methodology for hardware IP/IC protection;
Hardware Trojan detection and prevention through design and testing,
attacks on hardware implementation of cryptographic algorithms, and
reversible watermarking for digital content protection. He has close to
50 publications in international journals and conferences of repute.
He has delivered keynote talks and tutorials at several international con-
ferences and workshops, and has rendered his service as a reviewer
and program committee member for multiple international conferences
and journals. He is the co-author of four book chapters, one published
book: Reversible Digital Watermarking: Theory and Practice (Morgan
Claypool, USA), and one forthcoming book: Hardware Security (CRC
Press, Boca Raton, FL). He is one of the recipients of the IBM Faculty
Award for 2012, and a “Royal Academy of Engineering (United Kingdom)
Fellowship” in 2014. He holds one US patent, and two more international
patents and three Indian patents have been filed based on his research
work. He is a member of the IEEE.

Debdeep Mukhopadhyay received the BTech
degree from the Department of Electrical Engi-
neering, IIT Kharagpur, Kharagpur, India, and the
MS and PhD degrees in computer science and
engineering from IIT Kharagpur. He was an
assistant professor with the Department of Com-
puter Science and Engineering, IIT Madras,
Chennai, India, and is currently an associate pro-
fessor with the Department of Computer Science
and Engineering, IIT Kharagpur. His research
interests include cryptography, VLSI of crypto-

graphic algorithms, and side channel analysis. He received the Indian
Semiconductor Association Techno Inventor Award for best Ph.D. thesis
in 2010, the Indian National Science Academy Young Scientist Award in
2010, the Indian National Academy of Engineers Young Engineer Award
in 2010, the Associate of Indian Academy of Science in 2011, the Out-
standing Young Faculty Fellowship in 2011, and the IUSSTF Fellowship
in 2012. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

122 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

