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Enterprises driven by the ability to effectively innovate andmarket products and services (called “innovation en-
terprises”) experience a complex progression from initial research to profitability. The paper considers activities
related to innovation during two stages of growth experienced by new energy enterprises: the research and de-
velopment (R&D) process and the marketing process. A non-radial data envelopment analysis method was used
to construct indices tomeasure R&D efficiency, market efficiency, and integrated innovation efficiency. Empirical
research using these indices and data about 38 Chinese new energy enterprises from 2009 to 2013 revealed three
key findings. First, new energy enterprises are generally inefficient when it comes to innovating. This is particu-
larly true during the R&D stage of innovation, and there is periodically a phenomenonwhere enterprises focusing
less on R&D, and instead emphasizing marketing. Second, different types of new energy enterprises differ with
respect to their efficiency in innovation. Of these, nuclear power enterprises are the most efficient in integrated
innovation and marketing; wind energy enterprises are the most efficient in R&D innovations; and solar energy
enterprises lag behind the others in R&D efficiency. Third, innovation activities are considered “effective and in-
tensive” in only a small number of enterprises; innovation in most enterprises can be generally considered “ex-
tensive and inefficient”. Enterpriseswith different innovation andmarketing efficiencymodes should implement
targeted improvement strategies, based on efficiency characteristics.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

China's total energy consumption is rising as a result of rapid eco-
nomic growth. In 2013, China's energy consumption was 3.75 billion
tons of standard coal, accounting for 22.4% of global consumption (BP,
2013). According to International Energy Agency forecasts, China's en-
ergy consumption is expected to grow in the coming decades. Coal is
the most important energy source in China, and environmental pollu-
tion caused by coal consumption creates challenges for sustainable de-
velopment. Improving energy efficiency helps address this problem,
and many studies have focused on estimating energy efficiency (Zhou
et al., 2012;Wang et al., 2013a, 2013b; Zhang and Xie, 2015). However,
optimizing the energy consumption structure is also needed to save en-
ergy and reduce emissions to target levels. China must implement new
energy alternatives to reduce its dependency on coal and other fossil
fuels and meet growing energy demands.

China's central government acknowledges the importance of devel-
oping new energy sources, and has launched supportive policies in re-
sponse. The 12th Five-Year Plan proposed that renewable energy, such
as wind energy, solar energy, nuclear energy account for 11.4% of total
63@sina.com (Z. Zhao).
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primary energy consumption by 2015. By 2020, the goal is to have
15% of total energy consumption come from non-fossil energy sources.
The new energy industry is an emerging industry of great strategic im-
portance in China; it is greatly supported by the government and there
has been an increase in the installed capacity of new energy sources,
such as solar, wind, hydroelectric, and other new energies.

Unfortunately, however, China's new energy enterprises have weak
research and development (R&D) capabilities; and R&D investment is
less than 20% of the international average (The Economic Observer,
2015). This leads to insufficient new core technology, and an inability
for new energy enterprises to generate sufficient revenue from innova-
tive products. In recent years, China's excess production capacity has be-
come particularly obvious. Exporting new energy equipment and
components has also been very difficult, in part due to global economic
downturns and protectionist policies in developed countries.

New energy enterprises must enhance their competiveness in the
market and achieve sustainable development, by having core technolo-
gies and successfully commercializing new technologies and products.
Developing core technology and commercializing products depends
on the enterprise's ability to independently innovate. Therefore, it is im-
portant for new energy enterprises to increase the efficiency of their in-
novation activities (called “innovation efficiency”). Previous researchers
have discussed renewable energy technologies and innovation systems
cy of new energy enterprises in China: A non-radial DEA approach,
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(Blum et al., 2015; Tigabu et al., 2015) and the efficiency of high-tech in-
dustries (Guan and Chen, 2010a; Chiu et al., 2012). However, few have
focused on analyzing the efficiency of innovation in new energy enter-
prises, and the efficiency of different stages during the innovation
process.

This paper evaluates two stages of innovation efficiency in new en-
ergy enterprises, using a non-radial data envelopment analysis (DEA)
approach. Both integrated innovation efficiency and efficiency during
different development phases are considered. These analyses may
help reveal sources of lost efficiency and specific improvement
measures.

2. Literature review

Tomeasure innovation efficiency, researchers previously often used
a ratio of single input to single output as an efficiency value. This
method is intuitive and simple, but cannot address multiple inputs or
outputs, and fails to detect sources of inefficiency. As efficiency calcula-
tion methods have improved, researchers have started to use tools that
apply a frontier analysis approach, such as stochastic frontier analysis
(SFA) and DEA. These tools have becomemainstreammethods to calcu-
late innovation efficiency (Guan and Chen, 2010a, 2010b).

SFA is a parametric analysis method proposed by Aigner et al.
(1977). It assumes a specific form in the relationship between the
input and output functions, and applies econometric techniques to esti-
mate unknown parameters to identify the frontier. The SFAmethod has
been used to conduct efficiency assessments inmanufacturing, banking,
and other domains (Liadaki and Gaganis, 2010; Charoenrat and Harvie,
2014). Using SFA, Wang and Huang (2007) calculated innovation effi-
ciencies in 30 countries, accounting for environmental factors, and ex-
ploring the relationship between R&D efficiency and income levels. Li
(2009) used an SFA method proposed by Battese and Coelli (1995) to
measure regional innovation performance and capabilities in China's
30 provinces between 1998 and 2005. SFA methods account for the in-
fluence of random factors on output (Aigner et al., 1977); however, they
are not best for addressing scenarios with multiple outputs (Guan and
Chen, 2010a).

In contrast, the DEA method accommodates data from multiple in-
puts and multiple outputs, without setting a particular functional form
in advance (Guan and Chen, 2012). As such, the DEA method is more
widely used to measure efficiency, and many innovation efficiency
studies using DEA are found in the literature. Chen et al. (2006) used
DEA to measure the performance of six high-tech industries in Taiwan
from 1991 to 1999. Hashimoto and Haneda (2008) analyzed the re-
search and innovation efficiency of the Japanese pharmaceutical indus-
try between 1983 and 1992, using the DEA-Malmquist method.
Building on the super-efficiency DEA method, Schmidt-Ehmcke and
Zloczysti (2011) calculated and compared the innovation efficiency of
13 industries from 17 countries, including Germany, U.S., and
Denmark, identifying a number of cutting-edge, technically efficient
industries.

The studies described above measure innovation efficiency using
different DEA methods, but all view the enterprise's innovation process
as a black box, where the innovation process is a “single stage” process
of converting input to output. These kinds of study do not assess the in-
novation system's internal mechanics, and do not address how internal
operational systems and processes associated with innovation impact
integrated innovation efficiency (Wang et al., 2013a, 2013b).

“Single stage” innovation processes do not reflect production prac-
tice. In fact, innovation processes in typical high-tech industries or busi-
nesses include two phases: upstream technology development and
downstream economic transformation (Moon and Lee, 2005; Sharma
and Thomas, 2008). For this reason, some scholars have applied a
two-stage DEA model to evaluate innovation efficiency. Guan and
Chen (2010a) used the relational network DEA model to compare the
innovation efficiencies of high-tech industries in China's 26 provinces
Please cite this article as: Wang, Q., et al., Two-stage innovation efficien
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between 2002 and 2003. They found that the commercial efficiency is
better than the R&D efficiency; and the overall innovation efficiency is
more closely related to commercial efficiency.

A later study measured innovation efficiency of a national level, ex-
amining upstream knowledge production processes and downstream
knowledge commercialization processes in 30 countries (Guan and
Chen, 2012). Cullmann et al. (2012) empirically studies industrial inno-
vation efficiency in Organization for Economic Co-operation and Devel-
opment (OECD) countries, using a two-stage semi-parameter DEA
method; this study improved measures for optimizing resource alloca-
tion. Wang et al. (2013a, 2013b) divided the first phase of the innova-
tion process into “Basic production” and “R&D efforts,” and then
estimated the profitability and marketability efficiencies of Taiwan's
65 high-tech enterprises between 2006 and 2007. This study generated
an R&D decision matrix to identify sources of operational and R&D effi-
ciency for high-technology firms. The two-stage DEA method has been
applied to study commercial banks (Seiford and Zhu, 1999; Chiu et al.,
2016), insurance (Wanke and Barros, 2016), and industrial systems
(Bian et al., 2015).

Most innovation efficiency studies have focused at a macro-level,
such as an industry or geographic zone. Fewer studies have examined
micro-level enterprises, such as new energy enterprises. Further,
many studies use a radial DEA method when calculating two-stage in-
novation efficiency. This method, however, cannot account for the inef-
ficiencies associatedwith thenon-radial slacks of each input andoutput.
As such, this study used a non-radial DEA method, and a two-stage in-
novation process to calculate integrated innovation efficiency and effi-
ciency during different development phases, with a focus on new
energy enterprises. The study also offers corresponding optimization
strategies, based on different efficiency modes.

3. Two-stage innovation efficiency non-radial DEA model

3.1. Stages of innovation activities

Schumpeter, the founder of innovation theory, defined innovation as
a “new combination” of production factors, from the perspective of the
production process (Schumpeter, 1934). A combination of production
factors directly impacts innovation efficiency; an enterprise's innova-
tion process includes a series of complex innovation activities, including
research, development, demonstration, and deployment (Su and Zhang,
2012).

Innovation activity inputs include human, finance, and material re-
sources. Outputs include intermediate outputs from the R&D stage
(i.e., scientific and technological achievements, new products) and the
final outputs from technological commercialization (i.e., profits and
market value). Intermediate outputs (i.e., scientific and technological
achievements, new products) are the results of the R&D stage, but also
serve as the foundation for technological marketing (commercializa-
tion). This results in two stages of innovation activity in new enter-
prises, including in new energy enterprises (Fig. 1).

The first stage is the R&D process, which encompasses R&D inputs
and the new technology and products. This process measures R&D effi-
ciency by assessing innovation resource inputs and outputs. The second
stage uses the R&D outputs to obtain profits and create market value.
This process reflects market efficiency, and represents the conversion
of R&D achievements into economic benefits. The two stages are not in-
dependent; they are connected by the first stage's R&D outputs. Togeth-
er, both stages promote integrated innovation efficiency.

3.2. Two-stage innovation efficiency model

This study assumes there are N new energy enterprises, denoted by
DMUj(j=1,2,… ,N). Each DMU has I(xi, i=1,… , I) inputs and R(yr,r=
1, … ,R) intermediate outputs from the first innovation stage (R&D).
Then, R intermediate outputs feed into the second stage (marketing,
cy of new energy enterprises in China: A non-radial DEA approach,
e.2016.04.019

http://dx.doi.org/10.1016/j.techfore.2016.04.019


Fig. 1. Staged division of innovation activities.

1 Halkos et al. (2014) classified theworks on two-stageDEAmodels into four categories.
(1) The independent two-stage DEA approach (Wang et al., 1997; Seiford and Zhu, 1999).
(2) The connected two-stage DEA approach including value-chain model and network
DEA (Chen and Zhu, 2004; Färe and Grosskopf, 1996). (3) The relational two-stage DEA
approach, taking into account any mathematical relationship that exists between them
(Kao and Hwang, 2008; Chen et al., 2009). (4) The game-theory approach (Liang, 2008).
There are some differences between the model used here and typical network DEA
models. First, the two-stage network DEA proposed by Färe and Grosskopf (1996) do
not yield individual efficiencies; this paper's model simultaneously yields the integrated
efficiency and the individual efficiencies. Second, typical network DEAmodelsmeasure ef-
ficiency based on conventional CRS, VRS, and slack-based measures (Tone and Tsutsui,
2009). In contrast, our model combines the directional distance function with the direc-
tional Russell measure of inefficiency.
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commercialization) as that stage's inputs. The second stage has another
K(yk,k=1,… ,K) final output. Therefore, the production technology (T)
is defined as Eq. (1).

T ¼ xi; yr ; ykð Þ : xi can produce yr during R&D stage;
and yr can produce yk during marketing stage

( )
ð1Þ

The production technology corresponding to T is assumed to be a
closed set, with bounded convexity. In addition, inputs and outputs
are assumed to be strongly or freely disposable. Using the DEAmethod,
Eq. (2) defines the production technology under the assumption of con-
stant returns to scale (CRS) for the R&D stage (TD). Eq. (3) defines the
production technology under the condition of CRS for the marketing
stage (TM).
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In Eqs. (2) and (3), the superscript D represents the R&D stage, and
the superscript M represents the marketing stage. The variables λj

D

and μjM represent the weights of enterprise j associated with the R&D
and marketing stages, respectively. To identify the slacks in inputs and
outputs, the radial DEA methods represented by CRS (Charnes et al.,
1978) and variable returns to scale (VRS) (Banker et al., 1984) propor-
tionally decrease inputs or increase outputs.

These methods, however, do not account for different slacks of each
input or output (Fukuyama and Weber, 2009). Instead, following Chen
et al. (2012), this paper adopts a non-radial method by combining the
directional distance function with a directional Russell measure of inef-
ficiency. This allows for the simultaneously scaling of inputs and out-
puts, and accounts for all input and output slacks (Luenberger, 1992;
Fukuyama and Weber, 2009; Chiu et al., 2013; Zhang and Choi, 2013a,
2013b, 2014).

Using the CRS model, the input-oriented and output-oriented
models would generate the same result. For the non-radial DEA
model, a different orientation generates different results, because
each input and output is scaled non-proportionally. Therefore, it is
important to orient the model as either input-oriented or output-
Please cite this article as: Wang, Q., et al., Two-stage innovation efficien
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oriented before using the non-radial DEA method to evaluate
efficiency.

For the first innovation stage, maximizing R&D efficiency involves
contracting inputs as much as possible, without adjusting R&D out-
puts. As such, it is input-oriented. Given a certain quantity of R&D
output, we then want to maximize final outputs. Therefore, the
output-oriented model is used to evaluate the efficiency of the sec-
ond stage (marketing). This mixed orientation accommodates the
reality that intermediate outputs cannot be treated in the same
way as other stages. For example, suppose an output-oriented
model were used for each stage. If R&D stage performance improves
by increasing intermediate output using an output-oriented DEA
model, the increased intermediate outputs may place marketing
stage efficiency in an output orientation.

This study acknowledged the potential of reducing inputs,while also
increasing innovation activity outputs. This was done using an integrat-
ed innovation efficiency index and sub-stage efficiency indices. Accord-
ingly, we define the non-radial DEA model under a CRS assumption to
maximize the beneficial combination of all input and output slacks, as
shown in Eq. (4)1.
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This expression is subject to the following equations:

a. R&D stage:
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Table 1
Sample enterprises.

No. Stock code No. Stock code No. Stock code No. Stock code

1 000012.SZ 11 600290.SH 21 002130.SZ 31 002224.SZ
2 600089.SH 12 600192.SH 22 002227.SZ 32 002249.SZ
3 002132.SZ 13 601727.SH 23 002266.SZ 33 000601.SZ
4 600522.SH 14 600875.SH 24 600066.SH 34 000652.SZ
5 002090.SZ 15 000539.SZ 25 600525.SH 35 000930.SZ
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b. Marketing stage:
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In Eq. (4), αi
D represents the reduction of input i during the R&D

stage, while βk
M represents the increased potential of output k during

the marketing stage. The intensity variables corresponding to the R&D
and marketing stages are λjD and μjM, respectively. In the objective func-

tion, IPD ¼ 1
I ∑

I

i¼1
αD
i is themean value of the reduction potential of all the

inputs during the R&D stage, and IPM ¼ 1
K ∑

K

k¼1
βM
k measures the mean

value of the increase of all the outputs during the marketing stage.
The variable IP shows the overall improvement potential of reducing in-
puts and increasing outputs during innovation activities. A larger IP in-
dicates a stronger ability to reduce inputs while increasing outputs. If
IP=0, the enterprise cannot improve inputs or outputs, and has opti-
mized its resource utilization level.

Chen et al. (2012) studied the inefficiencies of incineration plants in
Taiwan, and decomposed these inefficiencies. Taking an opposite ap-
proach, we focused on analyzing enterprise efficiency. After computing
proportional improvements in inputs and outputs, we further defined
R&D efficiency, market efficiency, and integrated innovation efficiency
indexes. In Eq. (4), given the same output level, redundant input i dur-
ing the R&D stage is represented as αi

Dxi. This is the measure of ineffi-
ciency; efficiency is represented by (1−αi)xi. Eq. (5) thereby defines
the gap between the optimal input on the production frontier and the
actual input.

Similarly, during the marketing stage, given a certain quantity of in-
puts, themaximum outputs on the best production frontier boundary is
represented as (1+βk)yk. Eq. (6) shows that the efficiency of output k is
the ratio of actual output to the maximum output on the production
frontier. Eqs. (7)–(8)2 express the R&D efficiency and market efficiency
indexes, respectively. The integrated innovation efficiency is the com-
prehensive performance of all inputs and outputs during the R&D and
marketing stages. Eq. (9) shows the integrated innovation efficiency
index, incorporating all the input and output efficiency levels.
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2 Considering R&D andmarketing stages are both focus areas for the enterprises; differ-
ent factors in the same stage share the same importance. Therefore, this paper gives each
factor the sameweight in the same stage (θi ¼ 1

�
I,φk ¼ 1

�
K) and the two stages are given

the same weight (ω1 ¼ ω2
1
�
2) in Eq. (9).
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In Eqs. (7) and (9), θi represents theweight of input i during the R&D
stage, reflecting the importance of input i in evaluating R&D efficiency.
The variable φk represents the weight of and shows the importance of
output k. The variables ω1 and ω2 are weights assigned to each of the
two stages.When αi=βk=0, the new energy enterprise has optimized
inputs and outputs during the innovation process, with no further im-
provement potential. In this case, both R&D efficiency and market effi-
ciency are equal to the unit; and the integrated innovation efficiency
is equal to the unit as well.

4. Empirical analysis and discussion

4.1. Data and sample

Using the IFinD database developed by Hithink Flush Information
Network Company Limited in China, we extracted data from the years
2007–2013 about 68 new energy enterprises. Enterprises with negative
total profits and those marked with a “delisting” risk during this period
were removed from the sample. Based on the remaining data available,
38 energy enterprises were served as the sample. All 38 were listed on
China's Shanghai and Shenzhen Stock Exchange during 2009–2013,
and were engaged in new energy development, such as solar, wind,
and nuclear power (Table 1).

As noted above, R&D is the first stage of new energy innovation, and
input resources are mainly human, material, and financial. Consistent
with Zhong et al. (2011), this study used R&D costs as the financial
input, staff wages as the human resource input (Becheikh et al., 2006),
and annual fixed assets as material inputs.

R&D outputs take the form of new technologies, new products, and
patents (Hall and Ziedonis, 2001). Not all inventions are patented, and
patents differ in quality (Griliches, 1990); as such, this study used soft-
ware assets as a proxy for R&D outputs. Increases in new products and
production process improvements also effectively promote operating
results and increase revenues. Therefore, revenues served as another
R&D output indicator (Wang et al., 2013a, 2013b).

R&D outputs are alsomarketing stage inputs (i.e., revenues and soft-
ware assets). Total profits and the market value of the new energy en-
terprise serve as marketing outputs. Total profits reflect the
comprehensive profitability of new energy enterprises, which is the
earning output during themarketing stage. Market value represents fu-
ture investor expectations and the enterprise's competitive capacity
(Wang et al., 2013a, 2013b). In addition to input and output data ex-
tracted from the IFinD database, data were also derived from annual re-
ports for new energy enterprises listed on the Shanghai Stock Exchange
and Shenzhen Stock Exchange. Table 2 provides descriptive statistics of
the input and output variables.

4.2. Results and discussion

4.2.1. Overall analysis on innovation efficiency
Fig. 2 shows the integrated innovation efficiency, and efficiency at

the two different stages across enterprises between 2009 and 2013
6 600884.SH 16 002060.SZ 26 600686.SH 36 600406.SH
7 000969.SZ 17 600456.SH 27 000559.SZ 37 600067.SH
8 002080.SZ 18 600558.SH 28 002085.SZ 38 002224.SZ
9 002009.SZ 19 002011.SZ 29 002126.SZ
10 002202.SZ 20 002058.SZ 30 002196.SZ
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Table 2
Descriptive statistics for the 38 sampled energy enterprises.

Stage Variable Unit Mean Median Max Min Std. Dev.

Inputs in R&D stage Fixed assets Million CNY 2611.635 153.411 41524.036 5.316 5103.118
Staff wages Million CNY 546.266 78.315 6876.122 17.643 990.987
R&D costs Million CNY 180.390 15.124 2128.885 0.276 339.135

Outputs in R&D stage Software assets Million CNY 32.391 4.888 384.220 0.000 66.807
Revenues Million CNY 7475.554 390.337 79214.931 113.589 12958.000

Outputs in marketing stage Total profits Million CNY 595.052 54.800 5803.558 5.334 1037.568
Market value Million CNY 11959.120 3533.467 115866.200 757.401 17468.110
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when data are analyzed using Eqs. (4)-(9). The integrated innovation
efficiency of the 38 new energy companies between 2009 and 2013
was 0.435. This shows that these 38 enterprises innovate less efficiently
than they could, and have significant improvement potential. The new
energy enterprises' average R&D efficiency and market efficiency were
0.368 and 0.502, respectively, and the standard deviations were 0.306
and 0.277, respectively. Low R&D and market efficiencies are common
factors restricting innovation efficiency improvements, with the most
significant efficiency loss occurring in the R&D stage.

Two paired-sample nonparametric Wilcoxon signed rank test of
methods were used to assess whether efficiencies statistically signifi-
cantly differed between the two stages. Table 3 indicates thatmarket ef-
ficiency was statistically higher than R&D efficiency, further illustrating
that lower R&D efficiency is driving overall low efficiencies. R&D man-
agement needs to be strengthened, and R&D investmentsmust be ratio-
nally invested to avoid resource waste.

Our finding that market efficiency is better than R&D efficiency is
consistent with Guan and Chen (2010a), who found that R&D efficiency
has more under-exploited potential than commercial efficiency does.
However, when assessing the two-stage efficiency of Taiwan's high-
tech firms, Wang et al. (2013a, 2013b) found that average R&D efficien-
cy was higher than marketability efficiency. This difference may be due
to different research subjects or periods.

When plotted, the integrated innovation efficiency shows an
inverted u-trend: there is an initial upward trend, an innovation effi-
ciency peak in 2011 (0.468), and then a drop in efficiency. In September
2010, the Chinese government launched the “Decision of the State
Council on accelerating the cultivation and development of strategic
emerging industries.” New energy industries were listed as a key
emerging strategic area. This decision led to a significant acceleration
in technology updates and research, as well as industry commercializa-
tion, which improved efficiencies. The R&D efficiency and market effi-
ciency trends move in opposite directions. It is hard for enterprises to
engage in both technology R&D and research transformation. When
striving to improve the efficiency of a certain stage, efficiencies in
other areas may suffer.
Fig. 2. Integrated and two-stage innovation efficiency across the study period.
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4.2.2. Innovation efficiency of different types
Industry type is a factor in innovation efficiency for both R&D and

marketing stages; as such, we assessed efficiency differences based on
the type of new energy being explored. Solar energy, wind energy,
and nuclear energy are the main sources of new energy in China, and
for now, draw the most attention. As such, Table 4 and Fig. 3 focus on
the innovation efficiency of these three types of energy enterprises.

The integrated innovation efficiency index of nuclear power enter-
prises was the highest of the three at 0.500. Solar and wind energy en-
terprises had similar innovation efficiencies, at 0.399 and 0.398,
respectively. Both are below the average. The efficiency of nuclear
power and wind energy enterprises first decreased and then increased
during the study period. The two were similar between 2009 and
2011; starting in 2011, however, the innovation efficiency of wind en-
terprises significantly decreased, with its lowest level in 2013.

For R&D efficiency, wind efficiency was the highest at 0.447; solar
energy efficiency is lowest, at only 0.248. This may be driven by the
high market concentration rate of wind power equipment manufactur-
ing in the new energy field. This allows wind enterprises to concentrate
superior resources and abilities on improving R&D efficiency. R&D effi-
ciency fluctuations of all three new energy enterprises are consistent
with the integrated innovation efficiency. The R&D efficiency of solar
and nuclear power enterprises fell to the lowest values in 2010, and
then continuously improved. Efficiencies peaked in 2012, and then de-
clined significantly. Fluctuations were seen in the R&D efficiency of
wind energy enterprises; the peak of 0.594 was in 2011, followed by
an abrupt decline of 50.8% to 0.292 in 2013. This was caused by the de-
creasing efficiency of fixed assets in the R&D stage.

The average market efficiency of solar energy, wind energy, and nu-
clear power enterprises were 0.550, 0.349, and 0.604 respectively.
Among these, the market efficiency of wind energy enterprises was
below average; themarket efficiency of solar and nuclear energy enter-
prises was above average.

Fig. 3 shows the average innovation efficiency values during the R&D
and marketing innovation stages for these three types of energy enter-
prises. Solar and nuclear power enterprises have highermarket efficien-
cies than R&D efficiency; this lower R&D efficiency is a major cause of
these enterprises' poor innovation efficiency. For example, for solar en-
ergy enterprises, the R&D efficiency is less than half themarket efficien-
cy. To balance innovation across the R&D and marketing stages, solar
energy enterprises should focus on upgrading R&D efficiency.

For wind energy enterprises, the R&D efficiency is higher than mar-
ket efficiency; improvements in management during the marketing
stage would strengthen the transition of R&D achievements into com-
mercial applications. In addition, the gap between the enterprise's
R&D efficiency and market efficiency is small compared to solar energy
enterprises. This indicates that, despite similar integrated innovation ef-
ficiency, wind power enterprises coordinate and balance the relation-
ship between R&D and marketing.

4.2.3. Innovation efficiency improvement strategy
For the next stage of analysis, we set the development efficiency

value as the abscissa, and market efficiency value as the ordinate.
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e.2016.04.019

http://dx.doi.org/10.1016/j.techfore.2016.04.019


Table 3
Results of Wilcoxon signed rank test.

Null hypothesis Z statistic Asymptotic significance

Market efficiency- R&D efficiency The Median of the difference between R&D efficiency and market efficiency is 0 −2.433 0.015

Note: The significance level is 0.05.
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These establish boundaries for the combination matrix shown in Fig. 4.
Newenergy enterpriseswere classified into four types based on innova-
tion efficiency: Type A— efficient and intensive; Type B— emphasizing
R&D, focusing less on market; Type C — extensive and inefficient; Type
D — emphasizing market, focusing less on R&D.

Overall the innovation efficiency of most new energy enterprises is
relatively low: 15 enterprises belong to the “extensive and inefficient”
type (C), five enterprises belong to “effective and intensive” type (A).
Next, we describe possible optimization strategies, based on each type's
efficiency characteristics.

A total of five enterprises are in the Type A category: “efficient and
intensive”. These enterprises have relatively high efficiency levels dur-
ing the innovation process, and may be benchmarks of efficiency im-
provement for other enterprises. For these enterprises, it may be
difficult to improve their innovation if they do not increase innovation
inputs and outputs levels. Therefore, these enterprises should focus on
raising innovation quality to build on high-level research, enhance
high market efficiency, and maintain competitive advantage by
adjusting the innovation strategy.

A total of nine enterprises are in the Type B category: “emphasizing
R&D, focusing less on market”. These enterprises have high R&D effi-
ciency, but low market efficiency. Type B enterprises should maintain
their advantage of high R&D efficiency, while improving business per-
formance. This may include a focus on increasing profits, controlling in-
novation costs, and building market value.

A total of 15 enterprises are in the Type C category, which is the “ex-
tensive and inefficient” type. Type C enterprises have invested signifi-
cant human, financial, and material resources in the R&D stage.
Unfortunately, the benefits have not been fully realized, because they
did not focus on factors such as investment quality and business perfor-
mance at the marketing stage. This led to a lower market efficiency.
These enterprisesmust acknowledge thedifficulty in improving innova-
tion efficiency, and increase innovation from both R&D and marketing
perspectives.

A total of nine enterprises are in the Type D category. This category
emphasizes the market, with relatively low efficiencies in the R&D
stage, and relatively high efficiencies in the marketing stage. These pat-
terns point to the need for increased R&D awareness, includingmaster-
ing core technologies, and promoting both R&D and integrated
innovation efficiency.

For Type B, C, and D enterprises, three possible paths are possible to
improve efficiencies in a way that will result in high R&D efficiency and
high market efficiency (Fig. 5). Path 1 is a unilateral optimization path
(B→ A; D → A). Type B and C enterprises can improve their integrated
innovation efficiency by improving management during the lower
Table 4
Integrated and two-stage innovation efficiency for different types of new energy
enterprises.

Solar energy Wind energy Nuclear power

IP IPD IPM IP IPD IPM IP IPD IPM

2009 0.397 0.287 0.506 0.425 0.503 0.348 0.447 0.313 0.580
2010 0.413 0.161 0.665 0.406 0.433 0.379 0.437 0.293 0.582
2011 0.400 0.216 0.584 0.455 0.594 0.317 0.503 0.385 0.622
2012 0.414 0.338 0.489 0.392 0.414 0.370 0.584 0.528 0.640
2013 0.371 0.237 0.505 0.310 0.292 0.329 0.527 0.456 0.597
Mean 0.399 0.248 0.550 0.398 0.447 0.349 0.500 0.395 0.604

Please cite this article as: Wang, Q., et al., Two-stage innovation efficien
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efficiency stage. Path 2 is a gradual improvement path (C → D → A;
C → B → A), where Type C enterprises use their advantages to first
evolve into Type B or D enterprises, and then ultimately Type A enter-
prises. Path 3 is the jumping optimization path (C→A), requiring enter-
prises to quickly respond tomarket demand, invest substantialfinancial
resources, and facilitate rapid enterprise transformation.
5. Conclusions

New energy enterprises in China generally have two problems relat-
ed to innovation: aweak R&Dcapacity, and a lack of core technology. In-
creasing the capability to innovate is key to the sustainable growth of
new energy enterprises. This paper divided innovation activities into
two stages, and then applied non-radial DEA methods to develop inte-
grated innovation efficiency and all-phase efficiency indicators. An em-
pirical analysis then examined 38 new energy enterprises in Shanghai
and Shenzhen, China between 2009 and 2013. Key conclusions are as
follows.

In general, the average innovation efficiency across all samples was
0.435. The R&D efficiency and market efficiency indices differed signifi-
cantly, at 0.368 and 0.502. Low efficiency during the R&D stage was a
driver for an enterprise's overall low innovation efficiency. To improve
the innovation efficiency of new energy enterprises, efficiency levels
during R&D must be improved.

In terms of efficiency over the studied timeframe, integrated innova-
tion efficiency between 2009 and 2013 fit an inverted u-shape trend.
R&D efficiency and market efficiency shows opposite characteristics.
This suggests that should consider both technology R&D, and improving
research achievement transformation during the innovation efficiency
optimization process. This would improve integrated innovation
efficiency.

Different types of new energy enterprises performed differently in
terms of innovation efficiency, R&D efficiency, and market efficiency.
Nuclear energy enterprises have the highest innovation efficiency;
wind energy enterprises and nuclear power enterprises have lower in-
novation efficiencies.Wind energy enterprises have the highest R&D in-
novation efficiency; nuclear power enterprises have the highest market
efficiency. The R&D efficiency is lower than the market efficiency for
solar energy enterprises and nuclear power plants. These enterprises
need to strengthen R&D capability and improvemanagement to narrow
the efficiency gap and balance betweenR&Dandmarketing.Wind ener-
gy enterprises have higher R&D efficiency than market efficiency, and
Fig. 3. Two-stage innovation efficiencies for different types of new energy enterprises.
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Fig. 4. Two-stage innovation efficiency matrix.
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should focus on improving management during marketization,
strengthening the transition velocity of R&D achievements.

Most new energy enterprises have a relatively low innovation effi-
ciency level, and can be described as “extensive and inefficient.” Only
a few enterprises can be called “efficient and intensive.” Enterprises
with different efficiency modes should adjust their strategies, based
on their efficiency characteristics. For enterprises without high R&D ef-
ficiency, butwith highmarket efficiency, there are three possible paths:
the unilateral improvement path, the gradual improvement path, and
the jumping improvement path. The best path depends on the
enterprise's abilities and current efficiencies.
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