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a b s t r a c t 

Online social networks (OSN) are a permanent presence in today’s personal and professional lives of a 

huge segment of the population, with direct consequences to offline activities. Built on a foundation of 

trust – users connect to other users with common interests or overlapping personal trajectories – online 

social networks and the associated applications extract an unprecedented volume of personal informa- 

tion. Unsurprisingly, serious privacy and security risks emerged, positioning themselves along two main 

types of attacks: attacks that exploit the implicit trust embedded in declared social relationships; and 

attacks that harvest user’s personal information for ill-intended use. This article provides an overview of 

the privacy and security issues that emerged so far in OSNs. We introduce a taxonomy of privacy and 

security attacks in OSNs, we overview existing solutions to mitigate those attacks, and outline challenges 

still to overcome. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Online social networks (OSNs) have become a mainstream cul-

ural phenomenon for millions of Internet users. Combining user-

onstructed profiles with communication mechanisms that enable

sers to be pseudo-permanently “in touch”, OSNs leverage users’

eal-world social relationships and blend even more our online

nd offline lives. As of 2017, Facebook has 1.94 billion monthly

ctive users and it is the third most visited site on the Inter-

et [1] . Twitter, a social micro-blogging platform, claims over 313

illion monthly active users, who send Tweets in more than 40

anguages [2] . 

Perhaps more than previous types of online applications, OSNs

re blending in real life: companies are mining trends on Facebook

nd Twitter to create viral content for shares and likes; employers

re checking Facebook, LinkedIn and Twitter profiles of job can-

idates [3] ; law enforcement organizations are gleaning evidence

rom OSNs to solve crimes [4] ; activities on online social platforms

hange political regimes [5] and swing election results [6] . 

Because users in OSNs are typically connected to friends, fam-

ly, and acquaintances, a common perception is that OSNs provide

 more secure, private and trusted Internet-mediated environment

or online interaction [7] . In reality, however, OSNs have raised the

takes for privacy protection because of the availability of an aston-
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shing amount of personal user data which would not have been

xposed otherwise. More importantly, OSNs expose now informa-

ion from multiple social spheres – for example, personal informa-

ion on Facebook and professional activity on LinkedIn – that, ag-

regated, leads to uncomfortably detailed profiles [8] . 

Unwanted disclosure of user information combined with the

SNs-induced blur between the professional and personal aspects

f user lives allow for incidents of dire consequences. The news

edia covered some of these, such as the case of a teacher sus-

ended for posting gun photos [9] or employee fired for comment-

ng on her salary compared with that of her boss [10] , both on

acebook. On top of this, social networks themselves intentionally

e.g., Facebook Beacon controversy [11] ) or unintentionally (e.g.,

ublished anonymized social data used for de-anonymization and

nference attacks [12] ) are contributing to breaches in user privacy.

oreover, the high volume of personal data, either disclosed by

he technologically-challenged average user or due to OSNs’ failure

o provide sophisticated privacy tools, have attracted a variety of

rganizations (e.g., GNIP) that aggregate and sell user’s social net-

ork data. In addition, the trusted nature of OSN relationships has

ecome an effective mechanism for spreading spam, malware and

hishing attacks. Malicious entities are launching a wide range of

ttacks by creating fake profiles, using stolen OSN account creden-

ials sold in the underground market [13] or deploying automated

ocial robots [14] . 

This article provides a comprehensive review of solutions to

rivacy and security issues in OSNs. While previous literature re-

iews on OSN privacy and security are focused on specific topics,

https://doi.org/10.1016/j.osnem.2017.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/osnem
mailto:imrulkayes11@gmail.com
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such as privacy preserving social data publishing techniques [15] ,

social graph-based techniques for mitigating Sybil attacks [16] , OSN

design issues for security and privacy requirements [17] , or threats

in OSNs [18] , we address a larger spectrum of security and privacy

problems and solutions. First, we introduce a taxonomy of attacks

based on OSNs’ stakeholders. We broadly categorize attacks as at-

tacks on users and attacks on the OSN and then refine our tax-

onomy based on entities that perform the attacks. These entities

might be human (e.g., other users), computer programs (e.g., so-

cial applications) or organizations (e.g., crawling companies). Sec-

ond, we present how various attacks are performed, what counter-

measures are available, and what are the challenges still to over-

come. 

2. A taxonomy of privacy and security problems in online 

social networks 

A social network is an ecosystem consisting of a number of en-

tities. These entities include, but not limited to, users, the OSN ser-

vice provider, third-party applications, and advertisers. However,

the primary stakeholders of this ecosystem are users (who receive

various social networking services) and OSN providers (who pro-

vide those social networking services). The privacy and security

problems bring significant consequences for users and OSN service

providers. For users, potential consequences mean inappropriate

sharing of personal information, i.e., leakage, and exploitation of

personal details using active mining, e.g., information linkage [19] .

For OSN services, privacy and security threats disrupt the proper

functioning of the service and damage providers’ reputation. 

We propose a taxonomy of privacy and security problems in on-

line social networks based on the stakeholders of the ecosystem

and the axes from which privacy and security risks come. As we

have already mentioned, we identify two primary stakeholders in

online social networks: the OSN users and the OSN itself. 

Users reveal an astonishing amount of personally identifi-

able information on OSNs, including physical, psychological, cul-

tural and preferential attributes. For example, Gross and Acquisti’s

study [20] show that 90.8% of Facebook profiles have an image,

87.8% of profiles have posted their birth date, 39.9% have revealed

phone number, and 50.8% profiles show their current residence.

The study also shows that the majority of users reveal their politi-

cal views, dating preferences, current relationship status, and vari-

ous interests (including music, books, and movies). 

Due to the diversity and specificity of the personal informa-

tion shared on OSNs, users put themselves at risk for a variety

of cyber and physical attacks. Stalking, for example, is a common

risk associated with unprotected location information [21] . Demo-

graphic re-identification was shown to be doable: 87% of the US

population can be uniquely identified by gender, ZIP code and full

date of birth [22] . Moreover, the birth date, hometown, and cur-

rent residence posted on a user’s profile are enough to estimate

the user’s social security number and thus expose the user to iden-

tity theft [20] . Unintended revealing of personal information brings

other online risks, including scraping and harvesting [23,24] , social

phishing [25] , and automated social engineering [26] . 

In the ecosystem of an OSN, users interact with other users (a

lot of them are complete strangers), use third-party social appli-

cations, and clicks on ads placed by the advertisers. Users’ infor-

mation leakage might happen to all of these entities. Moreover,

users’ data collected from multiple social networks lead to linkage

problems, where a significantly broader profile of the user could

be built by linking the user over the social networks. 

On the other hand, OSN services handle users’ information and

manage all users’ activities in the network, being responsible for

the correct functioning of its services and maintaining a profitable

business model. Indirectly, this translates into ensuring that their
sers continue to happily use their services without becoming vic-

ims of malicious actions. However, attacks such as Sybil, DDoS,

pam and malware on OSNs may translate into reputation damage,

ervice disruption, or other consequences with direct effect on the

SN. 

We thus classify online social network privacy and security is-

ues into the following categories (summarized in Table 1 ). 

1. Leakages and linkages of user information and content:

these issues relate to information disclosure threats. We

identify a number of entities who are involved with users’

information and their content leakage and linkage. 

(a) Leakages into other users: Users might put themselves at

risk by interacting with other users, specially when some

of them are strangers or mere acquaintances. Moreover,

some of these users may not even be human (e.g., social

robots [27] ), or may be crowdsourcing workers strolling

and interacting with users for mischievous purposes [28] .

Therefore, the challenge is to protect users and their in-

formation from other users. 

(b) Leakages into social applications: For enhanced func-

tionality, users may interact with various third-party-

provided social applications linked to their profiles. To fa-

cilitate the interaction between OSN users and these ex-

ternal applications, the OSN provides application devel-

opers an interface through which to access user informa-

tion. Unfortunately, OSNs put users at risk by disclosing

more information than necessary to these applications.

Malicious applications can collect and use users’ private

data for undesirable purposes [29] . 

(c) Leakages into the OSN: Users’ interactions with other

users and social applications are facilitated by the OSN

services, in exchange for, typically, full control over user’s

information published on the OSN. While this exchange

is explicitly stated in Terms of Service documents that

the user must agree with (and supposedly read first), in

reality few users understand the extent of this exchange

[30] and most users do not have a real choice if they do

not agree with the exchange. Consequently, the exploita-

tion by the OSN of user’s personal information is seen

as a breach of trust, and many solutions have been pro-

posed to hide personal information from the very service

that stores it. 

(d) Linkages by aggregators: Large-scale distributed data

crawlers from professional data aggregators exploit the

OSN-provided APIs or scrape publicly viewable profile

pages to build databases from user profiles and social

links. Professional data aggregators sale such databases to

insurance companies, background-check agencies, credit-

ratings agencies, or others [31] . Crawling users’ data from

multiple sites and multiple domains and further linking

them increases profiling accuracy. This profiling might

lead to “public surveillance”, where an overly curious

agency (e.g., government) could monitor individuals in

public through a variety of media [32] . 

2. Attacks on the OSN: these attacks are aimed at the ser-

vice provider itself, by threatening its core business. OSNs

have been targeted by Distributed Denial-of-service (DDoS)

attacks; have been used as platforms for propagating mal-

ware and social spam. These attacks can be performed by a

number of ways. For example, attackers can create a num-

ber of Sybil identities and use them for spam content cam-

paign or malware propagation. Attackers can also illegiti-

mately take control of the accounts created by other users,

and use those compromised accounts to launch an organized

and planned attacks. Note that users of the platforms are
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Table 1 

Categories of privacy and security problems in OSNs. 

Users’ information and content leakages and linkages Attacks on the OSN 

Leakages into other users Sybil attacks 

Leakages into social applications Compromised accounts 

Leakages into the OSN Social spam and malware 

Linkages by aggregators Distributed Denial-of-service attacks (DDoS) 
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also impacted by the attacks on the OSNs. However, attacks

on the OSN exploit the social graph of the OSN and victim-

ize more users by propagating rapidly. So, the priority of the

service provider would be to identify and stop the propa-

gation. In the following, we briefly discuss the actors (e.g.,

Sybils, compromised accounts) who could be used for at-

tacks, and the actions (social spam, malware, DDoS attacks)

of the actors. 

(a) Sybil Attacks: Sybil attacks are characterized by users

assuming multiple identities to manipulate the out-

come of a service [33] . Not specific to OSNs, Sybil at-

tacks were used, for example, to determine the out-

come of electronic voting [34] , to artificially boost the

popularity of some media [35] , or to manipulate so-

cial search results [36] . However, OSNs have also be-

come vulnerable to Sybil attacks: by controlling many

accounts, Sybil users are illegitimately increasing their

influence and power in the OSNs [37] . 

(b) Attacks from compromised accounts: Compromised 

accounts are legitimate user accounts that are created

and used by their fair owners, but have been compro-

mised by attackers [38] . Unlike Sybil accounts, these

accounts already have established social connections

and normal social network usage history. But sud-

denly they are hacked by attackers and are later used

for the ill purposes of the attackers. 

(c) Social spam and malware: Social spam are contents or

profiles that an OSN’s “legitimate” users do not wish

to receive [39] . Spam undermines resource sharing

and hampers interactivity among users by contribut-

ing phishing attacks, unwanted commercial messages,

and promoting websites. Social spam spreads rapidly

via OSNs due to the embedded trust relationships

among online friends, which motivates a user to read

messages or even click on links shared by her friends.

Malware is the collective name for programs that

gain access, disrupt computer operation, gather sen-

sitive information, or damage a computer without the

knowledge of the owner. ONSs are being exploited for

propagating malware; frequently using social spam,

e.g., [40] . 

(d) Distributed Denial-of-service attacks (DDoS). DDoSes 

are common forms of attacks, where a service is sent

a large amount of seemingly inoffensive service re-

quests that overload the service and deny access to

it [41] . As many popular services, OSNs are also sub-

jected to such coordinated, distributed attacks. 

he rest of the paper is organized as follows. Mitigating leakages

nd linkages of user information and content ( Sections 3 –6 ) in-

ludes discussions of leakages into other users ( Section 3 ), into so-

ial applications ( Section 4 ), into the OSN itself ( Section 5 ), and

inkages by aggregators ( Section 6 ). A summary of the mitigat-

ng solutions for the leakages and linkages of user information

nd content is shown in Fig. 1 . Mitigating attacks on the OSN

 Sections 7 –11 ) includes a discussion of Sybil attacks ( Section 7 ),

ttacks from compromised accounts ( Section 8 ), social spam and
alware ( Section 9 ), and Distributed Denial-of-service attacks

 Section 10 ). A summary of the mitigating solutions for the attacks

n OSNs is presented in Fig. 2 . Section 12 highlights some chal-

enges and discusses future research directions. Finally, we con-

lude the paper in Section 13 . 

. Mitigating attacks from other users 

Given the amount of sensitive information users expose on

SNs and the different types of relationships in their online so-

ial circles, the challenge OSNs face is to provide the correct tools

or users to protect their own information from others while tak-

ng full advantage of the benefits of information sharing. This chal-

enge translates into a need for fine-grained settings, that allow

exibility within a type of relationships (as not all friends are

qual [42,43] ) and flexibility with the diversity of personal data.

owever, this fine granularity in classifying bits of personal infor-

ation and social relationships leads to an overwhelmingly com-

lex cognitive task for the user. Such cognitive challenges worsen

n already detrimental user tendency of ignoring settings all to-

ether, and blindly trusting the default privacy configurations that

erve the OSN’s interests rather than the user’s. 

Solutions to these three challenges are reviewed in the remain-

er of this section. Section 3.1 surveys solutions that allow fine

unings in setting protection of personal data. The complexity chal-

enge is addressed in the literature on two planes: by providing a

isual interface in support of the complex decision that the user

as to make ( Section 3.2 ) and by automating the privacy settings

 Section 3.3 ). To address the problem of users not changing the

latform’s default settings, researchers proposed various solutions

resented in Section 3.4 . 

.1. Fine-grained privacy settings 

Fine-grained privacy advocates [44,45] argue that fine-grained

rivacy controls are crucial features for privacy management. Kr-

shnamurthy and Wills [44] introduce privacy “bits”—pieces of

ser information grouped together for setting privacy controls in

SNs. In particular, they categorize a user’s data into multiple

re-defined bits, namely thumbnail (e.g., user name and photo);

reater profile (e.g., interests, relationships and others); list of

riends; user-generated content (such as photos, videos, comments

nd links) and comments (e.g., status updates, comments, tes-

imonials and tags about the user or user content). Users can

hare these bits with a wide range of pre-defined users, includ-

ng friends, friends of friends, groups, and all. Current OSN services

e.g., Facebook and Google+) have implemented this idea by allow-

ng users to create their own social circles and to define which

ieces of information can be accessed by which circle. 

To help users navigate the amount of social information nec-

ssary for setting correct fine-grained privacy policies, researchers

uggest various ways to model the social graph. One model is

ased on ontologies that exploits the inherent level of trust as-

ociated with relationship definition to specify privacy settings.

ruk [46] proposes Friend-of-a-Friend (FOAF)-Realm, an ontology-

ased access control mechanism that uses RDF to describe re-

ations among users. The system uses a generic definition of
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Mitigating Leakages and Linkages  of 
Users' Information and Content

Mitigating Leakages into
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Fig. 1. Mitigating solutions for the users’ leakage and linkage of formation and content. 
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Fig. 2. Mitigating solutions for the attacks on OSNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

c  

t  

S  

s  

t  

b  

a  

w  

[  

a  

t  
relationships (“knows”) as a trust metric and generate rules that

control a friend’s access to resources based on the degree of sep-

aration in the social network. Choi et al. [47] propose a more

fine-grained approach, which considers named relationships (e.g.,

“worksWith”, “isFriendOf”, “knowsOf”) in modeling the social net-

work and the access control. A more nuanced trust-related access

control model is proposed by Carminati et al. [48] based on re-

lationship type, degree of separation, and a quantification of trust

between users in the network. Using regular expression notation

Cheng et al. [49] propose user-to-user relationship-based access

control (UURAC) model for OSNs. They consider relationship types,

the number of hops on the path between users and resources, and

the type of action to define the policies. 
For more fine-grained ontology-based privacy settings, seman-

ic rules have been used. Rule-based policies represent the so-

ial knowledge base in an ontology and define policies as Seman-

ic Web Rule Language (SWRL) rules. SWRL is a language for the

emantic Web, which can represent rules as well as logic. Re-

earchers used SWRL to express access control rules that are set by

he users. Finally, access request related authorization is provided

y reasoning on the social knowledge base. Systems that lever-

ge OWL and SWRL to provide rule-based access control frame-

ork are [50–52] . Although conceptually similar, Carminati et al.

51] provide richer OWL ontology and different types of policies;

ccess control policy, admin policy and filtering policy. A more de-

ailed semantic rule-based model is developed by Masoumzadeh
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nd Joshi [52] . Rule-based privacy models have two challenges to

vercome. First, authorization is provided by forward reasoning on

he whole knowledge base, challenging scalability with the size of

he knowledge base. Second, rule management is complex and re-

uires a team of expert administrators [53] . 

Role and Relationship-Based Access Control (ReBAC) are other

ypes of fine-grained privacy models that employ roles and re-

ationships in modeling the social graph. The working princi-

le of these models is two-fold: (1) track roles or relationships

etween resource (e.g., photos) owner and the resource acces-

or; (2) enforce access control policies in terms of the roles

r relationships. Fong [54] proposes a ReBAC model based on

he context-dependent nature of relationships in social networks.

his model targets social networks that are poly-relational (e.g.,

eacher–student relationships are distinct from child–parent rela-

ionships), directed (e.g., teacher–student relationships are distinct

rom student–teacher relationships) and tracks multiple access

ontexts that are organized into a tree-shaped hierarchy. When ac-

ess is requested in a context, the relationships from all the an-

estor contexts are combined with the relationships in the target

ccess context to construct a network on which authorization de-

isions are made. Giunchiglia et al. [55] propose RelBac, another

elation-based access control model to support sharing of data

mong large groups of users. The model defines permissions as re-

ations between users and data, thus separating them from roles.

he entity-relationship model of RelBac enables description logics

nd as well as the reasoning for access control policies. 

In practice, many online social networks (such as Facebook)

ave already implemented fine-grained controls. A study of Bon-

eau and Preibusch [56] on 29 general purpose online social net-

ork sites shows that 13 of them offer a line-item setting where

ndividual data items could be set with different visibility. These

ine-item settings are granular (one data item is one ‘bit’) and flex-

ble (users can change social circles). 

.2. View-centric privacy settings 

Lack of appropriate visual feedback has been identified as one

f the reasons for confusing and time consuming privacy set-

ings [57] . View-centric privacy solutions are built on the intuition

hat a better interface for setting privacy controls can impact users’

nderstanding of privacy settings and thus their success in cor-

ectly exercising privacy controls. These solutions visually inform

he user of the setting choices and consequences of his choices. 

In [58] , the authors propose an alternative interface for Face-

ook privacy settings. This interface is a collection of tabbed pages,

here each page shows a different view of the profile as seen

y a particular audience (e.g., friends, friends of friends, etc.),

long with controls for restricting the information shared with that

roup. While this solution provides visual feedback on how other

sers will see her profile, its management is tedious for users with

any groups. Wisniewskia et al. [59] propose privacy interface de-

ign based on privacy management strategies of the users. They

se self-reported privacy behaviors of 308 Facebook users and clas-

ify six distinct privacy management strategies. These strategies

re self explanatory from their names: privacy maximizers, selec-

ive sharers, privacy balancers, self-censors, time savers/consumers,

nd privacy minimalists. They advocate that these strategies could

e used to personalize privacy recommendations. 

A simpler interface is proposed by C4PS (Colors for Privacy Set-

ings) [60] , which applies color coding for different privacy visibil-

ties to minimize the cognitive overhead of the authorization task.

his approach applies four color schemes for different groups of

sers; red – visible to nobody; blue – visible to selected friends;

ellow – visible to all friends; and green – visible to everyone.

 user can change the privacy setting for a specific data item by
licking the buttons on the edge of the attribute. The color of the

uttons shows the visibility of the data. If users click “selected

riend” (blue) button, a window will open in which friends or

roups (a pre-defined set of friends) are granted access to the data

tem. A recent work of Stern and Kumar [61] also have used colors

or privacy settings and proposed a new interface in the shape of

 wheel. 

A similar approach is implemented in today’s most popular

SNs in different ways. For example, Facebook provides a drop-

own of viewers (e.g., only me, friends, and public) with icons as

isual feedback. In the custom setting, users can set more granu-

ar scales, e.g., share the data item with friends of friends, friends

f those tagged and restrict sharing with specific people or lists of

eople. A qualitative study [62] of teenage OSN users shows that

olorful privacy settings enable to have more control over the shar-

ng of their information. 

.3. Automated privacy settings 

Automated privacy settings methods employ machine learning

o automatically configure a user’s privacy setting with minimal

ser effort. 

Fang and Lefevre’s privacy wizard [63] iteratively asks a user

bout his privacy preferences ( allow or deny ) for specific ( data item,

riend ) pairs. The wizard constructs a classifier from these prefer-

nces, which automatically assigns privileges to the remaining of

he user’s friends. The classifier considers two types of features:

ommunity structure (e.g., to which community a friend of the

ser belongs) and profile information (such as age, gender, rela-

ionship status, education, political and religion views, work his-

ory). The classifiers employed (NaiveBayes, NearestNeighbors and

ecision Tree) use uncertainty sampling [64] , an active learning

aradigm, acknowledging the fact that users may quit labeling

riends at any time. Bilogrevic et al. [65] also have employed ma-

hine learning techniques and proposed SPISM for privacy-aware

nformation sharing in mobile social networks. Their system uses

ersonal and contextual features and automatically defines what

nformation to be shared with others and with what granularity. 

Social circles [66] is an automated grouping technique that an-

lyzes the users’ social graph to identify “social circles”, clusters

f densely and closely connected friends. The authors posit social

ircles as uniform groups from the perspective of privacy settings.

he assumption is that users will share the same information with

ll friends in a social circle. Hence, friends are automatically cate-

orized into social circles for different circle-specific privacy policy

ettings. To find the social circles, they used a ( α, β) clustering al-

orithm proposed in [67] . While convenient, this approach limits

sers’ flexibility in changing the automate settings. 

Danezis [68] aims to infer the context within which user inter-

ctions happen, and enforces policies to prevent users that are out-

ide that context from seeing the interaction. Conceptually similar

o Social Circles, contexts are defined as cohesive groups of users,

.g., groups that have many links within the group and fewer links

ith non-members of the group. The author used a greedy algo-

ithm to extract the set of groups from a social graph. 

Yuan et al. [69] also propose context-dependent automated pri-

acy settings for photo sharing OSNs. Their proposed model uses

he semantics of the photo and requestor’s contextual information

o define whether an access to the photo will be granted or not at

 certain context. 

An inherent tradeoff for this class of solutions is ease of use

s. flexibility: while the average user might be satisfied with an

utomatically-generated privacy policy, the more savvy user will

ant more transparency and possibly more control. To this end,

he privacy wizard [63] provides for advanced users the visual-

zation of a decision tree model and tools to change it. Another
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challenge for some of these solutions is bootstrapping: a newcomer

in the online social network has no history of interactions to in-

form such approaches. 

3.4. Default privacy settings 

Studies have shown that users on OSNs often do not take ad-

vantage of the privacy controls available. For example, more than

99% Twitter users retained the default privacy setting where their

name, list of followers, location, website, and biographical informa-

tion are visible [70] . Similarly, the majority of Facebook users has

default settings [44,71,72] . Under-utilization of privacy options are

mostly due to poor privacy setting interface [58] , intricate privacy

settings [73] , and inherent trust in OSNs [72,74] . The problem with

not changing the default settings is that they almost always tend to

be more open that the users would prefer [75] . To overcome this

situation, approaches to automatically generate more appropriate

default privacy settings have been proposed. 

PriMa [76] automatically generates privacy policies, acknowl-

edging the fact that the average user will find the task of person-

alizing his access control policies overwhelming, due to growing

complexity of OSNs and the diversity of user content. The policies

in PriMa are generated based on the average privacy preference of

similar and related users, the accessibility of similar items from

similar and related users, closeness of owner and accessor (mea-

sured by the number of common friends), the popularity of the

owner (i.e., popular users have sensitive profile items), etc. How-

ever, a large number of factors and their parameterized tuning con-

tribute to longer policy generation and enforcement time. A related

approach, PolicyMgr [77] , uses supervised learning of user-provided

example policy settings and builds classifiers that are then used for

automatically generating access control policies. 

Aegis [78,79] is a privacy framework and implementation that

leverages the ‘Privacy as Contextual Integrity’ theory proposed by

Nissenbaum [32] for generating default privacy policies. Unlike the

approaches just presented above, this solution does not need user

input or access history. Instead, it aggregates social data from dif-

ferent OSNs in an ontology-based data store and then applies the

two norms of Nissembaum’s theory to regulate the flow of infor-

mation between social spheres and access to information within a

social sphere. 

4. Mitigating attacks from social applications 

Social applications, written by third-party developers and run-

ning on OSN platforms, provide enhanced functionality linked to

a user profile. For example, Candy Crush Saga (a social game) and

Horoscopes (users can check horoscope) are two popular social ap-

plications on Facebook. 

The social networking platform works as a proxy between users

and applications and mediates the communication between them.

To better understand this proxy, we show data flow between a

third-party social application and the Facebook platform in Fig. 3 .

An application is hosted on a third-party server and runs on user’s

data that are taken from the Facebook platform. When a user in-

stalls the application on Facebook, it takes permission from the

user to use some of her profile information. Application developers

write the application pages of an application using Facebook mark-

up language (FBML)—a subset of HTML and CSS extended with pro-

prietary Facebook tags. 

When a user interacts with an application, such as clicks an

application icon on Facebook to generate horoscopes (step 1 on

Fig. 3 ), Facebook requests the page from the third-party server

where the application is actually hosted (step 2). The application

requests the user’s profile information using secret communication

with Facebook (step 3). The application uses the information (e.g.,
irth date may be used to create horoscopes) and returns a FBML

age to Facebook (step 4). Facebook finally transforms the applica-

ion page from the server by replacing the FBML page with stan-

ard HTML, JavaScript (step 5), and transmits the output page to

he end user (step 6). 

OSN users are facing multiple risks while using social appli-

ations. First, an application might be malicious; it could collect

 high volume of user data for unwanted usage. For example, to

how this vulnerability, BBC News developed a malicious applica-

ion that could collect large amounts of user data in only three

ours [80] . 

Second, application developers can violate developer policies to

ontrol user data. Application developers are supposed to abide by

 set of rules set by the OSNs, called “developer policies”. Devel-

per polices are intended to prohibit application developers from

isusing personal information or forwarding it to other parties.

owever, reported incidents [81,82] show that applications violate

hese developer policies. For example, a Facebook application, “Top

riends” enabled everyone to view the birthday, gender and rela-

ionship status of all Top Friends users, even though those users

ept their privacy for those information to private [81] , violat-

ng the developer policies that private information of friends are

ot accessible. The Wall Street Journal finds evidence that Face-

ook applications transmit identifying information to advertising

nd tracking companies [82] . 

Third, third-party social applications can query more data about

 user from an OSN, regardless whether needed or not for proper

peration. A study by Felt and Evans [29] of 150 of the top applica-

ions on Facebook shows that most of the applications only needed

ser name, friends, and their networks. However, 91% of social net-

orking applications have accessed data that they do not need for

peration. This violates the principle of least privilege [83] , which

tates that every user should only get the minimal set of access

ights that enables him to complete his task. 

Finally, a poorly designed API might lead to application imper-

onation attacks, where an attacker successfully assumes the iden-

ity of a legitimate application and possess users’ data shared with

he application. For example, recently, many OSNs use OAuth 2.0

rotocol to grant access to API endpoints. Hu et al. [84] show that

he application impersonation attack is possible due to OAuth’s

ultiple authorization flows and token types. Their investigation

n 12 major OSN providers show that 8 of them are vulnerable to

pplication impersonation attacks. 

We identified three classes of solutions that attempt to min-

mize the privacy risks stated above: (i) by anonymizing social

ata made available to applications ( Section 4.1 ); (ii) by defining

nd enforcing more granular privacy policies that the third-party

pplications have to respect ( Section 4.2 ); and (iii) by providing

hird-party platforms for executing these applications and limiting

he transfer of the social data from applications to other parties

 Section 4.3 ). 

.1. Anonymizing social data for third-party applications 

Privacy-by-proxy [29] uses special markup tags that abstract

ser data and handle user input. Third-party applications do not

ave access to users’ personal data, rather they use users’ IDs

nd tags to display data to users. For example, to display a

ser’s hometown, an application would use a tag < hometown

d = “3125”/ > . The social network server would then replace the

ag with real data value (e.g., “New York”) while rendering the cor-

esponding page to the user. However, applications might rely on

rivate data for operations, for example a horoscope application

ight require users’ gender information. A conditional tag han-

les this dependency (e.g., < if-male > tag can choose the gender

f an avatar). Privacy-by-proxy ensures privacy by limiting what
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Fig. 3. Data flow in a Facebook application. 
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Fig. 4. Data flow in a PESAP aware browser [85] . 
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pplications can access, which might also limit the social value

nd usability of the applications. Data availability through proxy

lso means that application developers have to expose the busi-

ess logic to social network sites (in a form of Javascript to end

sers). This might discourage third-party developers in the first

lace. Moreover, applications could still develop learning mecha-

isms to infer attributes of a user. For example, developers might

nclude scripting code in the personal data dependent conditional

xecution blocks (if-else) that could send information to an exter-

al server when the block executes. 

Similar to Privacy-by-proxy, PESAP [85] provides anonymized

ocial data to applications. However, PESAP secures the information

ow inside the browser, so that applications cannot do information

eakage though outgoing communications with other third-parties.

he anonymization is provided by encrypting the IDs of the enti-

ies of the social graph with an application-specific symmetric key.

pplications use a REST API to get access to the anonymized social

raph. PESAP provides a re-identification end-point in order to en-

ble users to see the personal information of their friends in the

ontext of social applications. Secure information flow techniques

rotect the private information in the browser of a user. This is

one by a dynamic, secure multi-execution flow technique [86] ,

hich analyzes information flow inside a browser and ensures that

he flow complies with certain policies. The multi-execution flow

echnique labels the inputs and the outputs of the system with

ecurity labels and runs a separate sub-execution of the program

or each security label. The inputs have designated security labels

nd can be accessed by a sub-execution having the same or a

igher security label. Fig. 4 shows the data flow in a PESAP-aware

rowser. 
.2. Enforcing additional privacy policies to social applications 

Besmer et at. [87] propose an access control framework for

pplications, which adds a new user-application policy layer on

he top of the user-user policy to restrict the information applica-

ions can access. Upon installing an application, a user can specify

hich profile information the application could access. However,

he framework still uses user-to-user policy to additionally govern

n application’s access to friends’ information on behalf of the user

Alice’s installed applications will not get her friend Bob’s private

ata if user-user policy of Bob denies Alice to do so). An additional

riendship-based protection restricts the information the application

an request of a user’s friends. For example, Alice installs an ap-

lication which requests her friend Bob’s information and Bob did

ot install the application. Consider that Bob’s default privacy pol-

cy is very permissive. But Alice is a privacy conscious and she al-

ows applications to access only the Birth Date attribute. According

o friendship-based protection, when the application will request

ob’s information via Alice, it will only be able to get Bob’s birth

ate. So, friendship-based protection enables Alice’s privacy poli-

ies to extend to Bob. The model works well for privacy-savvy con-

erned users who make informed decisions about an application’s

ata usage while installing an application. An additional function-

lity could be a set of restrictive default policies for average users. 

Similar to the previous work, Cheng et al. [88] also pro-

ose an access control framework. However, Besmer’s et at. ap-

roach allows applications to transmit users’ data to their servers.

n the contrary, Cheng’s et al. framework only permits privacy-

onsensitive data to be transmitted, if any functionality of the ap-

lication runs outside of the OSN. Applications (or functions of an
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Fig. 5. A data-flow between applications and server with PoX [90] . 
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application) that run under the surveillance of the OSN can only

get the raw private data. Kavianpour et al. [89] propose to clas-

sify social applications based on authorization rights of the appli-

cations. They analyze the data transfer between a set of applica-

tions and Facebook and classify the applications based on extracted

features of data transfer. They show that their authorization-based

framework is able to reduce the risk of data leakage to third-party

applications. 

4.3. Third-party platforms for running social applications 

Egele et al. [90] note that, since popular OSN services such as

Facebook did not implement user-defined access control mecha-

nisms to date, pragmatic solutions should not rely on the help of

OSNs. They introduce PoX, a browser extension for Facebook appli-

cations that runs on a client machine and works as a proxy to pro-

vide fine-grained access controls. PoX works as a reference mon-

itor which sits between applications and the Facebook server and

controls an application’s access to users’ data stored on the server.

In so doing, an application requests the proxy for users’ profile

data. Upon receiving the request, the proxy performs access con-

trol checks based on user-provided privacy settings. If the request

is allowed, the proxy signs the access request with its key, sends

the request to the OSN server, and finally replays the result from

the server to the application. This application to server data flow

is shown in Fig. 5 . An application developer needs to use the PoX

server-side library instead of the Facebook server-side library. One

potential challenge is to motivate application developers to write

PoX-aware applications when existing mechanisms (e.g., Facebook

application environment) are perfectly in place. 

xBook [91] is a restricted ADSafe-based JavaScript framework

that provides a server-side container in which applications are

hosted and a client-side environment to render the applications

to users. xBook is different than PoX in that it not only controls

third-party applications’ access to user data (which PoX also does),

but also it limits what applications do with the data. Applications

are developed as a set of components; a component is a small-

est granular building block of codes monitored by xBook. A com-

ponent also reveals the information that the component can ac-

cess and the external entity with which it communicates. During
he deployment of an application in xBook, an application devel-

per requires to specify these information. From the specification,

Book generates a manifest for the application. A manifest is a set

f statements that specifies what user data the application will use

nd with which external services it will share the data. At the time

f installing the application, the manifest will be presented to the

ser. In this way, a user will be able to make a more informed

ecision before installing an application. Although xBook controls

hird-party applications’ access to user data and limits application’s

ata usage, it has to deal with two challenges. First, the platform

tself has to be trusted by users and by applications, as it is ex-

ected to protect users’ personal data and enable third-party ap-

lications to execute. Second, hosting and executing applications in

Book requires resources (storage, computation and maintenance)

hat may be difficult to provide in the absence of a business model.

 recent and similar approach of xBook is MUTT [92] , however, it

as the challenges related to xBook to overcome. 

. Protecting user data from the OSN 

The “notice-and-consent” approach to online privacy is the

tatus-quo for practically all online services, OSNs included. This

pproach informs the user of the privacy practices of the service

nd provides the user a choice whether to engage in the service or

ot. 

The limitations of this approach have been acknowledged for

ong. First, the long and abstruse privacy policies offered for read-

ng are virtually impossible to understand, even if the user is will-

ng to invest the time for reading them. For example, on May 2017,

e found 3048 words on Instagram’s privacy policies and 3806

ords on Twitter’s privacy policies. Second, such policies always

eave room for future modifications; therefore, the user is expected

o read them repeatedly in order to practice informed consent. And

hird, long as they are, these privacy policies tend to be incom-

lete [93] , as they often cannot include all the parties to which

ser’s private information will be allowed to flow (such as adver-

isers). Consequently, generally people do not read the Terms of

ervice and when they do, they do not understand them [30] . 

A second serious deterrent for users protecting their online

rivacy is the “take-it-or-leave-it” “choice” the users are offered.
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hile it may seem as a free choice, in reality the cost of not us-

ng the online service (whether email, browsing, shopping, etc.) is

nacceptably high. 

Cornered in this space of falsely informed and lack of choice,

sers may look for solutions that allow them to use the online

ervice without paying the information cost associated with it. Re-

earchers built on this intuition in two directions. The first direc-

ion tends to hide the user information from the very service that

tores it ( Section 5.1 ). The second taps into different business mod-

ls than the ones that make a living from user’s private informa-

ion and replaces the centralized service provider with a fully de-

entralized solution that is privacy-aware by design ( Section 5.2 ). 

.1. Protection by information hiding 

This line of work is empirically supported by the Acquisti and

ross’s study [72] that shows that while 60% of users trust their

riends completely with their private and personal information,

nly 18% of users trust Facebook to the same degree. 

The general approach for hiding information from the OSN is

ased on the observation that OSNs can run on fake data. If the

perations that OSNs perform on the fake data are mapped back

o original data, users can still use the OSNs without providing

hem real information. Fake data could be ciphertext (encrypted)

r obtained by substituting the original data with pre-mapped

ata from a dictionary. Encrypted data can be stored on a user’s

rusted device (including third-party servers or a friend’s com-

uter). Access controls are provided by allowing authorized users

e.g., friends) to get the original data from the fake data. Different

mplementations of this idea are presented next. 

flyByNight [94] is a Facebook application that enables users to

ommunicate on Facebook without storing a recorded trace of their

ommunication in Facebook. The flyByNight Facebook application

enerates a public/private key pair and a password during con-

guration. The password is used as a key to encrypt the private

ey and the key is stored on flyByNight server. When a user in-

talls the application, it downloads a client-side JavaScript from the

lyByNight server. This JavaScript does key generation and cryp-

ographic operations. The application knows a user’s friends and

heir public keys who have also installed the flyByNight applica-

ion. To send messages to friends, a user enters the message into

he application and selects the recipient friends. The client-side

avaScript encrypts the content of the message with other users’

ublic keys, tags the encrypted message with the Facebook ID

umbers of their recipients, and sends them to a flyByNight mes-

age database server. The encrypted messages reside on the fly-

yNight server. When a user reads a message, she provides the

assword to get the private key (stored in the flyByNight key

atabase). The private key is used to decrypt the message. fly-

yNight operates under the regulation of Facebook, as it is a Face-

ook application. It is possible that the computation load on the

acebook servers due to encryption, as well as the suspicious lack

f communication among users might attract Facebook’s attention

nd lead to deactivating the application. In the worst case, users

ose their ability of hiding their communication, but previous mes-

ages remain hidden from the OSN. 

Persona [95] hides user data from the OSN by combining

ttribute-based encryption (ABE) and public key cryptography. The

ore functionalities of current OSNs such as profiles, walls, notes,

tc., are implemented in Persona as applications. Persona uses an

pplication “Storage” to enable users to store personal informa-

ion, and share them with others through an API. Persona applica-

ion in Facebook is similar to any third-party Facebook application,

here users log-in by authenticating to the browser extension. The

rowser extension translates Persona’s special markup language.

ser information is stored in Persona storage services rather than
n Facebook and other Persona users can access the data given that

hey have the necessary keys and access rights. Similar to the fly-

yNight, Persona’s operation depends on the OSN, as core func-

ionalities are implemented as applications. 

NOYB [96] distorts user information in an attempt to hide real

dentities from the OSN, allowing only trusted users (e.g., friends)

o get access to the restored, correct information. To implement

his idea, NOYB splits a user’s information into atoms. For exam-

le, Alice’s name, gender and age (Alice, F, 26) are split into two

toms: (Alice, F) and (26). Instead of encrypting the information,

OYB replaces a user’s atom with pseudorandomly picked another

ser’s atom. So, Alice’s first atom is substituted with, for example,

he atom (Athena, F) from Athena’s profile, and the second atom

ith Bob’s atom from the same class (38). All atoms from the same

lass for all users are stored in a dictionary. NOYB uses ciphered

ndex of a user’s atom to substitute an atom from this dictionary.

nly an authorized friend knows the encryption key and can re-

erse the encryption. A proof-of-concept implementation of NOYB

s a Firefox browser plugin adds a button to ego’s Facebook pro-

le that encrypts his information and another button on alter’s

age that decrypts alter’s profile. The cleverness of NOYB is that

t stores legitimate atoms of information in plain text, thus not

aising the suspicions of the OSN. The challenge, however, is the

calability of the dictionaries: the dictionaries are public, contain

toms from both NOYB users and non-users, and are maintained

y a third party with unspecified business/incentive model. 

FaceCloak [97] , implemented as a Firefox browser extension,

rotects user information by storing fake data in the OSN. Unlike

OYB, it does not replace a user’s information with another user’s

nformation, rather it uses dictionaries and random Wikipedia ar-

icles as replacements. A user, say Alice, can protect information

rom the OSN by using a special marker pre-defined by FaceCloak

@@ in their implementation). When Alice submits the form to the

SN, FaceCloak intercepts the submitted information, replaces the

elds that start with the special marker by appropriate fake text

nd stores the fake data in the OSN. It uses a dictionary (for profile

nformation) and random Wikipedia articles (for walls and notes)

o provide fake data. Now, using Alice’s master key and personal

ndex key, FaceCloak does the encryption of the real data, com-

utes MAC keys, computes the index, and sends them to a third-

arty server. Now consider one of Alice’s friends Bob, who has in-

talled FaceCloak in his browser, and Bob wants to see Alice’s infor-

ation. After downloading Alice’s page (which also includes fake

ata from the OSN), FaceCloak computes indexes of relevant fields

sing master and personal index key of Alice. Then it downloads

he corresponding values from the third-party server. Upon receiv-

ng the value, FaceCloak checks the integrity of the received cipher-

ext, decrypts it, and substitutes the real data for the fake data. If

he value is not found, then the data is left unchanged. FaceCloak

epends on a “parallel” centralized infrastructure to store the en-

rypted data, which means that a third-party has to maintain all

sers’ data, probably without getting any benefits from it. And,

sers have to trust the reliability of the third-party server, which

lso represents a single point of failure. 

Virtual Private Social Networks) (VPSN) [98] , unlike flyByNight,

aceCloak, and NOYB, does not require third-party services to pro-

ect users’ information from an OSN. Instead, they leverage the

omputational and storage resources of the OSN users to store

eal profile data of other users, while storing fake profile data on

acebook. FaceVPSN is a Firefox browser extension that implements

PSN for Facebook. In FaceVPSN, user Alice changes her profile in-

ormation to some fake information and stores the fake informa-

ion in Facebook and sends by email her correct and fake profiles

n a prespecified XML format to her friends. In order to access Al-

ce’s real profile, her friends have to have FaceVPSN installed (as a

egular Firefox extension) and use its GUI to add Alice’s XML file.
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When Alice’s friend Bob requests Alice’s Facebook page, Facebook

sends an HTML response that has Alice’s fake data from Facebook.

FaceVPSN’s JavaScript code is triggered when “page load” event is

fired. The JavaScript code of FaceVPSN searches the profile infor-

mation of Alice in Bob’s stored XML file and replaces the fake in-

formation with real information. 

Unlike other solutions presented above, FaceVPSN does not risk

being suspended by the OSN (since it is not an application run-

ning with the OSN’s support). Like FaceCloak, however, FaceVPSN

requires a user’s friends to install the FaceVPSN extension in or-

der to see the user’s profile. Moreover, FaceVPSN demands a high

degree of user interaction that might affect usability. In particu-

lar, upon the addition of a new contact to the friend list, the user

has to explicitly exchange profile information with the new friend

and upload it into the FaceVPSN application. On top of it, every

change of profile information has to be emailed as an XML file to

all friends, and the friends are required to go through the XML up-

date process in order to see the changes. This entire process af-

fects usability, given the high number of friends a user might have

in OSNs (e.g., half the Facebook users have more than 200 friends,

and 15% have more than 500 friends [99] ) 

While the various implementations of the idea of hiding the

personal information from the OSN have different tradeoffs, as dis-

cussed above, there are also risks associated with the approach

itself. First, because the OSN operates on fake data (whether en-

crypted or randomized), it will not be able to provide some per-

sonalized services such as social search and recommendation. Sec-

ond, users end up transferring their trust from the OSN to either

a third-party server or friends’ computers for unclear benefits. The

third-party server provides yet another service whose terms of use

are probably presented in yet another incomprehensible Terms of

Service document, with an opt-out “choice”. Friends’ computers re-

quire extra care for fault tolerance and malicious attacks. In fact,

a recent user study [100] finds that higher usability costs, lack of

trust, and poor performance are the main causes of poor or no

adoption of these services. 

5.2. Protection via decentralization 

An alternative to obfuscate information from the OSN is to mi-

grate to another service that is especially designed for user pri-

vacy protection. Research in this area explored the design space of

decentralized (peer-to-peer) architectures for managing user infor-

mation, thus avoiding the centralized service with a global view

of the entire user population. The typical overlay used in most of

these solutions is based on distributed hash tables, preferred over

unstructured overlays for their performance guarantees. In addi-

tion, data is encrypted and only authorized users get access to

the plain text. In this section, we discuss decentralized solutions

for OSNs. There are three dimensions that differentiate the solu-

tions: (1) how the distributed hash table has been implemented

(e.g., OpenDHT, FreePastry, Likir DHT)? (2) where to store users’

content (e.g., nodes run by the user, by the friends or cloud infras-

tructures)? (3) how to manage encryption keys for access controls

(e.g., public-key infrastructure, out-of-band)? 

PeerSooN ’s [101] architecture has two-tiers. One tier, imple-

mented using OpenDHT, serves as a look-up service to find a user.

It stores users’ meta-data for example, the IP address, information

about files, and notifications for users. A peer can connect to an-

other peer asking the look-up service directly to get all required

information. The second tier is formed by peers and it contains

users’ data, such as user profiles. Users can exchange information

either through the DHT (e.g., a message is stored within the DHT if

receiver of a message is offline) or directly between their devices.

The system assumes a public-key infrastructure (PKI) for privacy
rotection. A user encrypts data with the public keys of the in-

ended audience, i.e., the friends of the user. 

Safebook [7,102] is a decentralized OSN, which uses a peer-

o-peer architecture to get rid of a central, omniscient author-

ty. Safebook has three main components: a trusted identifica-

ion service for certification of public keys and the assignment of

seudonyms; matryoshkas, a set of concentric shells around each

ser, which serve to replicate the profile data and anonymizes traf-

c; and a peer to peer substrate (e.g., DHT) for the location of ma-

ryoshkas that enables access to profile data and exchange mes-

ages. 

LifeSocial.KOM [103] is another P2P-based OSN. It implements

ommon functionalities in OSNs using OSGi-based software com-

onents called “plugins”. As a P2P overlay, it uses FreePastry for

nterconnecting the participating nodes and PAST for reliable, repli-

ated data storage. The system uses cryptographic public keys as

ser ID. To protect privacy, a user encrypts a private data object

e.g., profile information) with a symmetric cryptographic key. She

hen encrypts the symmetric cryptographic key individually with

he public keys of authorized users (e.g., her friends) and appends

o the data object. The object and the list of encrypted symmetric

eys are also signed by the user and they are stored in the P2P

verlay. Other users in the system can authenticate the data object

y using the public key of the author. But only authorized users

e.g., friends) can decrypt the symmetric key and thus, the content

f the object. 

LotusNet [104] is a framework for the implementation of a P2P

ased OSN on a Likir DHT [105] . It binds a user identity to both

verlay nodes and published resources for robustness of the over-

ay network and secures identity based resource retrieval. Users’

nformation is encrypted and stored in the Likir DHT. Access con-

rol responsibility is assigned to overlay index-nodes. Users issue

igned grants to other users for accessing their data. DHT returns

he stored data to the requestor only if the requestor can provide

 proper grant, signed by the data owner. 

Vis-a-Vis [106] targets high content availability. Users store

heir personal data in Virtual Individual Servers (VISes), which are

ept on the user’s computer. The server data are also replicated on

 cloud infrastructure so that the data is available from the cloud

hen a user’s computer is offline. Users can share information

ith other users using peer-to-peer overlay networks that connect

ISes of the users. The cloud service needs to be rented (consider-

ng the high volume of the data users store in OSNs), which makes

he scheme monetary dependent. 

Prometheus [107,108] is a peer-to-peer social data management

ystem for socially-aware applications. It does not implement tra-

itional OSN functionalities (e.g., profile creation, management,

ontacts, messaging, etc.), rather it manages users’ social informa-

ion from various sources and exposes APIs for social applications.

sers’ social data are encrypted and stored in a group of trusted

eers selected by users for high service availability. Prometheus

rchitecture is based on pastry, a DHT-based overlay, and it uses

ast to replicate social data. An inference on social data is subject

o user defined access control policy enforced by the trusted peers.

rometheus relies on a public-key infrastructure (PKI) for user au-

hentication and message confidentiality. 

The toughest challenge for decentralized OSNs is to convince

raditional OSN users to migrate to their systems. Centralized social

etworks have large, established user bases and they are accessi-

le from anywhere. Moreover, they already have a mature infras-

ructure, making good revenues from users’ data and maintaining

xcellent usability. However, decentralized OSNs are still an alter-

ative for centralized OSNs, specially for privacy-concerned users.

or example, Diaspora ( https://joindiaspora.com/ ) is a fully oper-

ting open source, stable and decentralized OSN, which relies on

https://joindiaspora.com/
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ser contributed local servers to provide all the major centralized

SN functionalities. 

. Mitigating attacks from large-scale crawlers 

OSNs enhance social browsing experience by allowing users

o view public profiles of others. This way a user meets others,

ets a chance to know strangers and eventually befriends some

f them. Unfortunately, attackers are there in the vast landscape

f OSNs, who exploit this functionality. Users’ social data are al-

ays invaluable to marketers. Professional data aggregators build

atabases using public views of profiles and social links and sale

he databases to insurance companies, background-check agencies

nd credit-ratings agencies [31] . For example, crawling 100 million

ublic profiles from Facebook created news recently [109] . Some-

imes crawling is a violation of terms of service. Facebook states

hat someone should not collect “...users’ content or information,

r otherwise access Facebook, using automated means (such as

arvesting bots, robots, spiders, or scrapers) without our prior per-

ission” [110] . 

One solution of the problem could be the removal of the public

rofile view functionality. But removal of the public profile view

unctionality is against the business model of OSNs. Services like

earch and targeted advertisements bring new users and ultimately

evenues to OSNs, but openly accessible contents are necessary for

heir operation. Moreover, removal of the public view functionality

ill undermine user experience, as it makes a connection, commu-

ication and sharing easy with unknown people in the network. 

OSN operators such as Facebook and Twitter attempt to de-

end large-scale crawling by limiting the number of user profiles a

ser can see from an IP address in a time window [111] . However,

racking users with low level network identifiers (e.g., IP address,

CP port numbers or SSL session IDs) is fundamentally flawed as

 solution of this problem [112] . Aggressive attackers may gather

 large vector of those identifiers by creating a large number of

ake user accounts, gaining access to compromised accounts, vir-

ualizing in a cloud, employing botnets, and forwarding requests

o proxies. Until now, researchers have leveraged encryption based

echnique [112] and crawler’s observational behavior [113] to com-

at the problem. 

ONS’s anti-crawling techniques suffer from the fact that web

lients can access a particular page using a common URL accessible

o all clients [112] . This can be exploited by a distributed crawler

.g., a crawling thread can download and parse a page for links us-

ng a session key and can deliver those links to another crawling

hread to download and parse using different session keys. So, if

ome crawlers get banned from the OSNs for malicious activities,

he links they have parsed are still valid and a fresh start is pos-

ible from those links. SpikeStrip [112] overcomes the problem by

reating unique, per-session “views” of the protected website that

orcibly tie each client to their session keys. SpikeStrip is a web

erver add-on that leverages link encryption technique. It allows

SN administrators to moderate data access, and it defends against

arge-scale crawling by securely identifying and rate limiting indi-

idual sessions. 

When a crawler visits a page, it receives a new session key and

 copy of the page whose links are all encrypted. SpikeStrip ap-

ends each user’s session key to those links and then encrypts the

esult using a server-side, secret symmetric key. It also appends a

alt to the link after encryption to make each link unique. As time

asses, the crawler progressively covers more pages and collects

inks. However, at a point, the crawler requires to change the ses-

ion key due to the expiration of the session or due to a ban from

he OSN. As SpikeStrip couples all URLs to the browser’s session

ey, this switching of sessions invalidates all the links collected for

uture traversals. Thus, a fresh start to reconstruct the collection
hould be started from the beginning. The authors implemented

od_spikestrip, a SpikeStrip implementation for Apache 2.x and

howed that it imposes only 7% performance penalty on Apache. 

PUBCRAWL [114] is based on the observation that the traffic

hat a crawler generates is significantly different from fair users.

t uses content-based and timing-based footprints to distinguish

rawler traffic from regular traffic. Content-based features are ex-

racted from URLs (e.g., access errors, page revisits) and HTTP

eaders (e.g., cookies, referrers). Timing-based features are ob-

ained from the analysis of the time series produced by the stream

f requests. Finally, PUBCRAWL relies on machine learning tech-

iques and trains classifiers using the features that can separate

rawler traffic from user traffic. 

Wan [115] uses URLs to develop an anti-crawler system called

athMarker. PathMarker differentiates fair users from malicious

rawlers by using the URL visiting path and URL visiting timing

eatures that can be obtained from the URL. 

Genie [113] exploits browsing patterns of honest/real users

nd crawlers and thwarts large-scale crawls using Credit Net-

orks [116,117] . While PUBCRAWL uses physical network layer

ifferences, Genie uses social network layer differences. Genie’s

esign is based on three observations from real-world datasets:

i) there is a balance between the number of profiles a honest

ser views and views requested by other users to her profile, but

rawlers view many more profiles than the number of times their

rofiles are viewed; (ii) a honest user views profiles of socially

lose users; (iii) a honest user repeatedly views a small set of pro-

les in the network, but unless re-crawling, the crawlers avoid re-

eating viewing of other users’ profiles. Genie leverages these ob-

ervations and enforces a viewer to make a “credit payment” in the

redit network if a user wants to view a profile. It allows a user

also might be a crawler) to view a profile if a max-flow between

hem has at least a threshold value. The required credit payment

o view a profile depends on the shortest path length from viewer

o viewer; a user has to pay more to view the profile of a distant

ser in the social graph. As a legitimate user usually views one or

wo hop distant profiles, and also other users also view her pro-

le, her liquidity of credits remains almost the same. On the other

and, a crawler views a lot of distant profiles and gets fewer views.

ventually it lacks credit liquidity to view the profiles of others. As

uch, the credit network poses a strict rate limit on profile views

f the crawlers. 

Genie might see a large number of honest users’ activities (pro-

le viewing) flagged due to the existence of outliers in a social

etwork. This might limit the usability of social networks, be-

ause without viewing a profile an outlier will not be able to be-

riend others. Genie also might require a fast computation of short-

st paths, as for each profile viewing request, it computes all the

hortest paths from viewer to viewee. Intuitively, this operation

s too costly in a modern social network (more than one billion

sers), even considering the state of the art shortest path algo-

ithms. 

Both SpikeStrip and Genie limit crawlers’ ability to quickly ag-

regate a significant portion of OSNs user data. Unfortunately,

quipped with a large number of user profiles (fake or compro-

ised) and employing dedicated crawlers for a long time, attackers

ould still collect a huge amount of users’ social data. 

. Mitigating Sybil attacks 

The Sybil attack is a fundamental problem in distributed sys-

ems. The term Sybil was first introduced by Douceur [33] , inspired

rom a 1973 book after the same name about the treatment of

 person Sybil Dorsett, who manifests sixteen personalities. In

ybil attacks, an attacker creates multiple identities and influ-

nce the working of the system. OSNs including Digg, YouTube,
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Fig. 6. The system model for Sybil detection. 
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Facebook and BitTorrent have become vulnerable to Sybil attacks.

For example, Facebook anticipates that up to 83 million of its

users may be illegitimate [118] , which is far more than what it

anticipates (54 million) earlier [119] . Researchers found that Sybil

users affect the correct functioning of the system by contributing

malicious contents [36,120] and illegitimately increasing influence

and power [35,121] . 

Malicious activities from Sybil users are posing serious threats

to OSN users, who trust the service and depend on it for online

interactions. Sybils cost OSN providers, too, in terms of monetary

losses and time. OSN providers spend significant resources and

times to detect, verify, and shut down Sybil identities. For example,

Tuenti, the largest OSN in Spain, dedicates 14 full-time employees

to manually verify user reported Sybil identities [122] . 

Two categories of solutions are available to defend Sybils: Sybil

detection and Sybil resistance. Sybil detection schemes [37,122–

125] leverage the social graph structure to identify whether a

given user is Sybil or non-Sybil ( Section 7.1 ). On the other

hand, Sybil resistance schemes do not explicitly label users’

as Sybils or non-Sybils, rather they use application-specific

knowledge to mitigate the influence of the Sybils in the

network [126,126,127] ( Section 7.2 ). In a tutorial and survey

Yu [16] compiles social graph-based Sybil detection techniques. In

this paper, we report latest works on that category, as well as Sybil

resistance schemes. 

7.1. Sybil detection 

Sybil detection techniques model an online social network

(OSN) as an undirected graph G = (V, E) , where a node v ∈ V is a

user in the network and an edge e ∈ E between two nodes corre-

sponds to a social connection between the users. This connection

could be a friendship relationship on Facebook or a colleague rela-

tionship on LinkedIn, and is assumed to be trusted. 

The social graph has n = | V | nodes and m = | E| edges. By defini-

tion, if all nodes correspond to different persons, then the system

should have n users. But, some persons have multiple identities.

These users are Sybil users and all the identities created by a Sybil

user are called Sybil identities . An edge between a Sybil user and a

non-Sybil user may exist if a Sybil user is able to create a relation-

ship (e.g., friend, colleague) with a non-Sybil user. These types of

edges are called attack edges (see Fig. 6 ). 

Attackers can launch Sybil attacks by creating many Sybil

identities and creating attack edges with non-Sybil users. De-

tection systems against Sybil attacks provide mechanisms to de-

tect whether a user (node) v ∈ V is Sybil or non-Sybil. Those
echanisms are based on the authority (e.g., the OSN provider)

nows the topology of the network (a centralized solution), or a

ode only knows its social connections (a decentralized solution).

ome common assumptions of Sybil detection schemes are below. 

ssumption 1. Attackers can create a large number of Sybil iden-

ities in OSNs and can create connections among those Sybil iden-

ities, but they lack trust relationships because of their inabil-

ty to create an arbitrary number of social relationships to non-

ybil users. Intuitively, a social relationship reflects trust and an

ut-of-band social interaction. So, it requires significant human ef-

orts to establish such a relationship. The limited number of attack

dges differentiates Sybil and non-Sybil regions in a social graph

s shown in Fig. 6 . 

ssumption 2. The non-Sybil region of a social graph is fast-

ixing. Mixing time determines how fast a random walk’s prob-

bility of landing at each node reaches the stationary distribu-

ion [128,129] . A limited number of the attack edges causes sparse

ut between Sybil and non-Sybil regions. Non-Sybil regions do not

how sparse cut as non-Sybils are well connected. As such, there

hould be a difference in terms of mixing time of the non-Sybil

egions compare to the entire social graph. 

ssumption 3. The defense mechanism knows at least one non-

ybil. This assumption is essential in a sense that without this

nowledge the Sybil and non-Sybil regions become identical to the

ystem. 

Most of the Sybil detection techniques are based on so-

ial graphs. Social graph-based approaches leverage random

alks [37,122,125,130] , social community [131] , and network cen-

rality [132] to detect Sybils in the network. SybilGuard [37] is a

ecentralized Sybil detection scheme, which uses Assumptions 1 –

 . A social graph with a small quotient cut has a large mixing time,

hich implies that a random walk should be long in order to con-

erge to the stationary distribution. So, the presence of too many

ybil nodes in the network disrupts the fast mixing property, in a

ense that they increase social network mixing time by contribut-

ng small quotient cuts. Thus, a verifier, which is itself a non-Sybil

ode, can break this symmetry by examining the anomaly of the

ixing time in the network. In order to detect Sybils, a non-Sybil

ode (say a verifier) can perform a random route starting from it-

elf and of a certain length w (a theoretically identifiable quan-

ity, but the paper experimentally shows that this is 20 0 0 for a

opology of one-million nodes). A suspect (a node that is in ques-

ion) is identified as non-Sybil if it is random route intersects with

he verifier’s random route. As the underlying assumption is that

he number of attack edges should be limited, the verifier’s route

hould remain within the non-Sybil region with high probability,

iven the appropriate choice of w . 

SybilInfer’s [130] assumptions are also Assumptions 1–3. More-

ver, it assumes that a modified random walk over a social net-

ork, that yields a uniform distribution over all nodes, is also fast

ixing. The core of SybilInfer is a Bayesian inference that detects

pproximate cuts between non-Sybil and Sybil regions in social

etworks. These identified cuts are used to infer the labels (Sybil

r non-Sybil) of the nodes, with an associated probability. 

SybilRank [122] is also a random walk-based Sybil detection

cheme, which uses all three assumptions and ranks user accord-

ng to their perceived likelihood of being Sybils. Using early ter-

inated power iteration, SybilRank computes landing probability

f random short walks and from that it ranks users, so that sub-

tantial portion of the Sybil users have low rank. The design of

ybilRank is influenced by an observation on early terminated ran-

om walks in social graphs—if a walk of this kind starts from

 non-Sybil node, then it has a high degree-normalized landing
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robability to land at non-Sybil node than a Sybil node. SybilRank

erms the probability of a random walk to land on a node as the

ode’s trust , ranks nodes based on that and filters lower ranked

odes as potential Sybil users. Rather than keeping computation-

lly intensive a large number of random walk traces used in other

raph-based Sybil defense schemes [37,133] , it uses power itera-

ion [134] in calculating the landing probability of random walks. 

Boshmaf et al. [135] use both social graph and users’ behav-

oral differences to identify Sybils. They first use user-level activi-

ies such as number of friends, interaction frequency and volume

f each user to potential victims i.e., honest users that are likely to

ccept friend requests from Sybils. Then they annotate the social

raph by introducing lower weights to edges incident to potential

ictims. Finally, starting from a seed node they propagate trust us-

ng power iterations and rank users. As Sybil users are usually con-

ected to honest users, they earn lower trust values. 

However, one potential problem with all of the previous ap-

roaches is that they do not tolerate noise in the prior knowl-

dge about known non-Sybil or Sybil nodes. SybilBelief [125] ,

nother random walk-based semi-supervised learning framework,

vercomes the limitation. SybilBelief propagates Sybil/non-Sybil

abel information from known Sybil/non-Sybil labels to the re-

aining nodes in the system by modeling the social network as

arkov Random Fields. However, the twist is, a portion of these

nown Sybil/non-Sybil labels might be inaccurate, which earlier

pproaches fail to address. 

Viswanath et al. [131] suggest to use community detection algo-

ithms for Sybils’ detection. They show that although other graph

roperty based Sybil defense schemes have different working prin-

iples, the core of those works revolves around detecting local

ommunities around a trusted node. So, existing community de-

ection algorithms could be used to defend the Sybils also. Al-

hough, not explicitly mentioned, their approach is centralized, be-

ause community detection requires a central authority to have the

nowledge of the entire topology. 

Xu et al. [132] propose Sybil detection based on the between-

ess rank of the edges. The betweenness of an edge is defined

s the number of shortest paths in the social graph passing the

dge [136] . The scheme assumes that the number of attack edges

s limited and Sybil and non-Sybil regions are separate clusters

f nodes. So, intuitively betweenness scores of the attack edges

hould be high as they connect the clusters. Their scheme exploits

his social network property and uses a Sybil Resisting Network

lustering (SRNC) algorithm to detect Sybils. The algorithm com-

utes the betweenness of each edge and identifies the edges with

igh betweenness as attack edges. 

Social graph based approaches still have some challenges to

vercome. First, as graph-based Sybil detection schemes exploit

rust relations, the success of the identification highly depends

n the trust related assumptions. If an assumption is not right

n a network, social graph-based Sybil detection techniques might

ork poorly in that network (e.g., [137] ). For example, the as-

umption that Sybils’ have problems in creating social connections

ith legitimate users (non-Sybils) is not well established. Although

tudy [138] shows that most of a Sybil identity’s connections are

lso Sybil identities and Sybils’ have less relationships with non-

ybil users, several other studies [26,139,140] show that users are

ot careful while accepting friendship requests and Sybil identi-

ies can easily befriend with them. Moreover, Sybil users are us-

ng advanced techniques to create more realistic Sybil identities,

ither by copying profile data from existing accounts, or by assign-

ng real users to customize them. Social graph-based Sybil detec-

ion techniques are vulnerable to such adversarial social engineer-

ng attacks. So, recently researchers have focused on combining

ser-level activity footprint and graph-level structures (e.g., Ínte-

ro [141] , VoteTrust [142] ). 
Also, another assumption that a social network is fast-mixing

ay not be right for all social networks. Study [143] shows that

any of the social networks are not fast-mixing, especially where

dges represent strong real-world trust (e.g., DBLP, Epinions, etc.). 

Second, the performance of random walk-based Sybil detection

echniques depends on the various relevant parameters of the ran-

om walks (e.g., the length of a random walk). These factors will

ork for a fixed network size (as all the schemes have shown), but

hey have to be updated with the evolution of the social networks.

Despite considerable research effort on social graph based ap-

roaches, they are far achieving desired goals. By designing simple

ttack strategies Koll et al. [144] recently show that an attacker

ould launch attacks to circumvent social graph based solutions. 

.2. Sybil resistance 

Sybil resistance schemes do not explicitly label users’ as Sybils

nd non-Sybils, rather they attempt to mitigate the impact that

 Sybil user can have on others. Sybil resistance schemes have

een effectively used in applications from diverse domains includ-

ng content rating systems [145,146] , spam protection [147] , online

uctions [126] , reputation systems [148] , and collaborative mobile

pplications [149] . 

Note two assumptions of Sybil detection schemes: (1) non-

ybil region is fast mixing, (2) Sybils cannot create an arbitrary

umber of social relationships with non-Sybils. Sybil resistance

chemes also assume that non-Sybils’ have a limited number of

ocial connections, but they do not rely on the fast mixing nature

f the non-Sybil regions. However, Sybil resistance schemes take

n additional application related information such as users’ inter-

ctions/transactions/votes etc. Using the underlying social network

f the users and system information, Sybil resistance schemes de-

ermine whether an action performed by a user should be allowed

r denied. 

Most of the Sybil resistance schemes [126,127,147] share a com-

on approach in resisting Sybils—they use a credit network built on

he top of the social network of users [150] . Originally proposed in

he electronic commerce community, Credit Networks [116,117] cre-

te mutual trust protocols in a situation where there is pairwise

rust between two users, and a centralized trusted party is un-

vailable. Nodes in a credit network trust each other by provid-

ng credits up to a certain limit. Nodes use these credits to pay for

ervices (e.g., sending a message, purchase items, vote casting) that

hey receive from one another. These schemes assign credits to the

etwork links, and allow an action between two nodes if there is

 path between them that has enough credit to satisfy the oper-

tion. As such, these schemes find a credit assignment strategy in

he graph and apply the credit payment scheme to allow a lim-

ted number of illegitimate operations in the system. A Sybil user

as limited number of edges with non-Sybils (hence, limited cred-

ts available), which restricts her to gain additional advantages by

reating multiple Sybil identities. This scenario is shown in Fig. 7 ,

hich is a core defense philosophy of some resistance schemes. In

he following, we provide a brief overview of the Sybil resistance

chemes. 

Ostra [147] leverages existing trust relationships among users to

hwart unwanted communication (e.g., spam). It bounds the total

umber of unwanted communications a Sybil user can produce by

ssigning credit values to the trust links. If a user sends a mes-

age to another user, Ostra finds a path with enough credit from

he sender to the receiver. If a path is available, credit is assigned

long all the links in the path, which is refunded if the receiver

onsiders the messages as not unwanted. However, if no such path

xists, Ostra blocks the communication, but the credit is paid. In

his way, Ostra ensures that a user with multiple identities cannot



14 I. Kayes, A. Iamnitchi / Online Social Networks and Media 3–4 (2017) 1–21 

A X

X'

X''

X'''

5
2
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Rest of the 
network

Fig. 7. Credit network based Sybil resistance [150] . The network contains four Sybil 

identities as nodes X , X ′ , X ′ ′ , X ′ ′ ′ of a Sybil user. A directed edge ( X , Y ) represents 

how much credit is available to X from Y . If X wants to pay credits from other three 

nodes, the credits must be deducted from X ’s single legitimate link to A . So, a Sybil’s 

other identities do not provide any additional credits in the rest of the network. 
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send a large number of unwanted communications, unless she also

has additional trust relationships. 

Bazaar [126] is targeted to strengthen the users’ reputation in

online marketplaces like eBay. The opportunity to create accounts

freely leads Sybil users to create multiple accounts and causes the

waste of time and significant monetary losses for defrauded users.

To mitigate Sybil users, Bazaar creates transaction network by link-

ing users who have made a successful transaction. The weight of

a link is the amount that has been successfully transferred due

to the transaction. Prior to a transaction, using a max flow based

technique, Bazaar computes the reputation of the users doing the

transaction and compares with the new transaction value. If it

finds available flow, it removes the value of the transaction be-

tween the users as credits, and eventually adds back if the trans-

action is a fraud. However, a new transaction is denied if essential

flow is not found. 

Canal [127] complements Ostra and Bazaar credit networks-

based Sybil resistance schemes by applying landmark routing-

based techniques in calculating credit payments over a large net-

work. One of the major problems of Ostra and Bazaar is that they

require computing max-flow over a graph. However, the huge size

of present day network (Facebook has over billion of nodes in so-

cial graph) leads to significant computation complexity to compute

the max-flow between two nodes in the network. As such, this

poses a bottleneck to those techniques to practically deploy in a

real-world social network. Canal efficiently computes an approxi-

mate max-flow (compromising accuracy with speed-up) path us-

ing existing landmark routing-based algorithm [151,152] . The main

components of Canal are universe creator processes and path stitcher

processes . Universe creator processes continuously select new land-

marks and path stitcher processes continuously process incoming

credit payment requests. Using real-world network datasets the au-

thors show that Canal can perform payment calculations efficiently

(within a few milliseconds), even if the network contains hundreds

of millions of links. 

TrueTop [153] is a sybil-resilient system for Twitter which mea-

sures the influence of Twitter users given the presence of Sybils.

It is based on two observations: (1) non-Sybil users might fol-

low strangers, but they are more careful and selective in retweet-

ing, replying to, and mentioning other users; (2) influential users

get much more retweets, replies, and mentions compared to other

users. TrueTop first constructs an interaction graph using users and

their retweets, replies, and mentions. Then it does iterative credit

distribution in the interaction graph and finally selects top-K influ-

ential users. 
MobID [149] makes co-located mobile devices resilient to Sybil

ttackers. Portable devices in close proximity of each other could

ollaborate various services (e.g., run localization algorithms to

et a precise street map), which is severely disrupted by Sybil

sers (Sybils could inject false information). MobID uses mobile

etworks to Sybil resilience. More specifically, a device manages

wo small networks as it meets with other devices. A network

f friends contains non-Sybil devices and a network of foes con-

ains suspicious devices. Using two networks, MobID determines

hether an unknown device is attempting a Sybil attack. MobID

nsures that a non-Sybil device accepts, and accepted by most

ther non-Sybil devices with high probability. So, a non-Sybil de-

ice could successfully trade services with other non-Sybil devices.

. Attacks from compromised accounts 

A compromised account is a legitimate account that has been

acked and taken over by an attacker [38] . The attacker can ex-

loit the account for a number of mischievous purposes, such as,

preading contents via wall posts or direct messages, liking com-

ercial social pages, and following others. Note that compromised

ccounts are different than Sybil or fake accounts in that compro-

ised accounts have an established trust relationship with others.

o, they are not deemed suspicious to OSNs. Attackers exploit this

mbedded trust and use the accounts for increasing influence and

ower. 

User accounts can be compromised in a number of ways. Users

ight trust third-party websites or applications with their OSN

redentials and those third-parties might be malicious. Users’ ac-

ount passwords are sometimes weak and bots could guess them.

ttackers also use cross-site scripting and social phishing to com-

romise users’ accounts. 

Compromised accounts have negative consequences on the

SN. They damage the reputation of the system by providing fake

ike, following and promoting unwanted content. Victims of the

ompromised accounts lose their accounts and hence their social

onnections. A research [154] on Twitter compromised accounts

hows that about 27% of the compromised users change to a new

ccount once their accounts are compromised. 

A number of solutions [38,155,156] have been proposed to de-

ect compromised accounts in OSNs. These solutions exploit behav-

oral deviation of the account before and after an account is com-

romised. Compa [38] detects compromised accounts using statis-

ical modeling of user behavior and anomaly detection. It makes

wo assumptions—(1) a compromised account will show noticeable

ehavioral differences compared to the behavior of the legitimate

wner of the account, and (2) an attacker will spread the same ma-

icious content (e.g., tweet or messages) from a subset of account

t has compromised. Compa makes behavioral profile of a user and

hecks for a sudden and significant violation of disseminated con-

ent from the profile. It makes the behavioral profile of a user con-

idering content features, such as time of posting, the source of the

ontent (e.g., third-party applications), language, links of the con-

ent, interaction and proximity to other users. Then it computes

n anomaly score for a new content comparing it to the user’s al-

eady established profile. The user is put in a suspicious category if

 significant portion of new messages has higher anomaly scores.

inally, Compa groups similar content and hence compromised ac-

ounts using two similarity measures: content similarity and url

imilarity. One potential problem with Compa is that attackers can

till dodge the system by not posting the same messages from the

ccounts it has compromised. 

SynchroTrap [155] also assumes that the compromised accounts

ct together in different social network contexts (e.g., page like,

hoto upload, follow others). It further assumes that those ac-

ions are loosely synchronized. SynchroTrap is a more generalized
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ersion of Compa for any social network context, as it assumes that

ctions (e.g., photo upload) are only coordinated, the action might

e content independent (e.g., follow others). However, SynchroTrap

akes the real difference in terms of scalability. As it is built as an

ncremental processing system, it can efficiently process massive

SN user activity data. (The system was successfully deployed on

acebook and Instagram). First, SynchroTrap abstracts users’ actions

sing tuples—a combination of user ID, timestamp of actions, type

f action (e.g., posting), IP address of the users. Then, for each pair

f users, using Jaccard similarity, it computes similarity between

wo users for their actions during a period of time. Finally, it uses

ierarchical clustering algorithms to group users having the similar

ctions. 

Viswanath et al. [156] also uses anomaly detection techniques

o detect compromised accounts (anomalous behavior in general).

ut the difference with Compa is that it does not make any as-

umptions about attack strategy (e.g., Compa assumes coordinated

osting of the same content from compromised accounts). They fo-

us on modeling Facebook Like activity behavior of normal users. In

o doing, they use features, such as, temporal (number of likes per

ay), spatial (number of likes in different categories), and spatio-

emporal (summary of the distribution of like categories using en-

ropy). Of these features, they use principal component (PCA) anal-

sis technique to detect the features that best explain normal

ser behavior. They experimented with Facebook, Yelp and Twit-

er datasets and found that three to five principal components are

nough to model normal users’ behavior. These components are

ater used to flag anomalous users, whose behavior do not fit the

omponents. Using ground truth data from Facebook compromised

sers, the authors showed that the technique worked well. 

Ruan et al. [157] introduce a set of social behavioral features

hat can be used to measure behavioral deviation when an ac-

ount is compromised. More specifically they use eight new behav-

oral features which cover both a user’s extroversive posting and

ntroversive browsing activities. Using sample data from Facebook

hey show that social behavioral profile can effectively differentiate

sers with accuracy up to 98.6%. 

. Mitigating social spam 

Spam is a news in web-based systems (e.g., [158,159] ). How-

ver, OSNs have added a new flavor to it by acting as effective

ools for spamming activities and propagation. Social spam (e.g.,

160,161] ) is unwanted content that is directed specifically at users

f the OSN. The worst consequences of social spam include phish-

ng attacks [25] and malware propagation [162] . 

Spamming activity is pervasive in OSNs and spammers are suc-

essful. For example, about 0.13% of spam tweets in Twitter gen-

rate a page visit [120] , which is only 0.0 03–0.0 06% for spam

mail [163] . This high click-through is due to the fact that OSNs

xpose intrinsic trust relationship among online friends. As such,

sers read and click messages or links that are shared from their

riends. Study [26] shows that 45% of users on OSNs click on links

osted by their friends’ accounts. 

Defending spam in OSNs can improve user experience. OSN ser-

ice providers will also be benefited as this will lessen the system

orkload in terms of dealing with unwanted communications and

ontents. Defense mechanisms against spam in OSNs can be clas-

ified into two categories: (1) spam content and profile detection,

nd (2) spam campaign detection. Spam content and profile-level

etection involve checking individual accounts or contents for an

vidence of spam contents ( Section 9.1 ). On the other hand, a spam

campaign” is a collection of malicious content having a common

oal, for example, selling backdoor products [164] ( Section 9.2 ). 
.1. Spam content and profile detection 

Some early spam profile detections [165–167] used social hon-

ypots. A honeypot is a trap deployed to capture examples of

efarious activities in networked systems [165] . For years, re-

earchers have used honeypots to characterize malicious hacker ac-

ivities [168] , to obtain footprints of email address crawlers [169] ,

nd to create intrusion detection signatures [170] . Social honey-

ots are used to monitor spammers’ behaviors and store their in-

ormation from the OSNs [167] . 

Webb et al. [166] took the first step to characterize spam

n OSNs using social honeypots. They created honeypot MySpace

rofiles in different geographic locations for harvesting deceptive

pam profiles on MySpace. An automated program (commonly

nown as bots) worked on behalf of a honeypot profile and col-

ected all of the traffic it received (via friend requests). After four

onths of the deployment and operation, the bots collected a

epresentative sample of friend requests (and corresponding spam

rofiles). Through statistical analysis the authors showed the fol-

owings: (i) spam profiles follow distinct temporal patterns in

pamming activity; (ii) 57.2% of the “About me” contents of the

pam profiles are duplicated; (iii) spam profiles redirect users to

redefined web pages. 

In [167] , the authors also collected spam profiles using social

oneypots. But this work is different from the previous one in that

t not only collects and characterizes spam profiles, it extracts fea-

ures from the gathered spam profiles and builds classifiers to de-

ect potential spam profiles. The authors consider four categories

f features such as demographics, content, activity and connections

rom the spam profiles collected from MySpace and Twitter. These

eatures are later used to train machine learning classifiers that are

ble to distinguish spam and fair profiles. 

One of the limitations of these honeypot-based solu-

ions [166,167] is that they consider all profiles that sent friend

equests to honeypots are spam profiles. But in social networks, it

s common to receive friend requests from unknown person, who

ight be legitimate users in the network. The solutions would

e more rigorous if legitimate users were not considered. Also,

he methods are effective when spammers become friends with

he honeypots. Otherwise the honeypots will be able to target

nly a small subset of the spammers. As such, recent research on

oneypot-based spam detection is focusing more on how to build

ore effective social honeypots (e.g., [171] ). Another problem is

hat, in social networks, friendship is not always required for

pamming. For example, in twitter, a spammer can use mention

e.g., @user) tag to send spam tweets to a user. 

Stringhini’s et al. solution [172] overcomes some limitations of

he previous two honeypot-based papers by using richer feature

ets. The authors deployed honeypots accounts on Facebook, Twit-

er and MySpace; 300 on each platform for about one year and

ogged the traffic (e.g., friend requests, messages, and invitations).

hey build classifiers from the following six features: (i) FF ratio:

he ratio of the number of friend requests sent by a user and the

umber of friends she has; (ii) URL ratio: the ratio of the number

f messages containing URLs and total messages; (iii) Message sim-

larity: similarity among the messages sent by a user; (iv) Friend

hoice: the ratio of the total number of names among the profiles’

riends, and the number of distinct first names; (v) Messages sent:

he number of messages sent by a profile as a feature; and (vi)

riend number: the number of friends a profile has. Finally, the

uthors manually inspected and labeled profiles as spam and used

andom Forest algorithm for classification. 

Benevenuto et al. [173] detect video polluters such as spammers

nd promoters in YouTube online video social networks using ma-

hine learning techniques. The authors considered three attribute

ets: user attributes, video attributes, and social network (SN)
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attributes in classification. Four volunteers manually analyzed the

videos and built a test set of the dataset labeling users as spam-

mers, promoters and legitimate users. They proposed a flat classifi-

cation approach, which was able to detect correctly 96% of the pro-

moters, 57% of spammers, and wrongly classifying only 5% of the

legitimate users. Interestingly, social network attributes performed

the worst in classification—only one feature (UserRank) was within

the top 30 features. 

Kayes et al. [174] identify abusive content providers in commu-

nity question answering social networks. Similar to the previous

approaches, they have used a number of platform-related features

to train machine learning classifiers. But the difference is that they

not only used users’ social network and activity-specific features,

but also leveraged the crowd-sourced rule violations reports con-

tributed by the members of the network. 

In a recent article Cresci et al. [175] show a paradigm-shift

of social spam profiles. They find evidence of a new generation

of spambots, so-called social spambots. These bots are intelligent

and evolve over time. For example, they can search the Internet to

fill their profiles with real data, post credible sources of informa-

tion, and interact socially with friends or followers. Cresci et al.

show that traditional spam profile detection techniques such as

those based on textual features of shared messages, posting pat-

terns and social relationships do not work for these social spam-

bots as the bots demonstrate human-like behavior. Researchers

have used statistical divergence [176] , behavioral DNA sequenc-

ing [177] , and graph anomaly [178–180] to detect spambots. Fer-

rara et al. [181] have done a comprehensive study on detecting the

spambots. In this paper, we also describe few of the techniques. 

Viswanath et al. [176] detect tamper in crowd computation us-

ing statistical difference of users participating in the computa-

tion. The intuition behind their detection is that statistical dis-

tribution of reputation scores such as number of followers or

friends of the users participating in a tampered crowd computa-

tion significantly differs from an untampered computation. They

use Kullback–Leibler distance between the distributions and mark

a crowd computation tampered if the distance exceeds a threshold.

Cresci et al. [177] use DNA-inspired behavioral modeling to de-

tect spambot groups. They associate each account to a digital DNA

sequence by encoding the behavior of the account in a string.

These accounts are then compared against one another in order

to obtain anomalous similarities using Longest Common Substring

(LCS). Finally they label the accounts as spambots if the accounts

share a suspiciously long DNA substring. 

9.2. Spam campaigns detection 

Chu [182] detect social spam campaigns on Twitter using tweet

URLs. They collected a dataset of 50 million tweets from 22 mil-

lion users. They considered tweets having the same URL as a

campaign and clustered the dataset into a number of campaigns.

The ground truth was produced through manual inspection us-

ing Twitter’s spam rules and automated URL checking in five ser-

vices. They obtained a variety of features ranging from individual

tweet/account levels to a collective campaign level and built a clas-

sification model to detect spam campaigns. Using several classifi-

cation algorithms they were able to detect spam campaigns with

more than 80% success rate. The focus of this solution is spam

tweets with URLs. However, Twitter spammers can post tweets

without any URL. Even obfuscated URLs (e.g., somethingDOTcom)

will make the detection inefficient. 

Gao et al. [164] conduct a rigorous and extensive study on de-

tecting spam campaigns in Facebook wall posts. They crawled 187

million Facebook wall posts from about 3.5 million users. Inspired

by a study [183] which shows that spamming bot-nets create email

spam messages using templates, they consider wall posts having
imilar texts as a spam campaign. In particular, they model the

all posts as a graph: a post is a node and two nodes are con-

ected by an edge if they have the same destination URL or their

exts are very similar. As such, posts from the same spam cam-

aign will make connected subgraphs or clusters. To detect which

lusters are from spammers, they use “distribute” coverage and

bursty” natures of spam campaigns. The “distributed” property is

haracterized based on the number of user accounts posting in the

luster under the intuition that spammers will use a significant

umber of registered accounts for a campaign. The intuition be-

ind the “bursty” property is that most spam campaigns are the

esults of coordinated actions of many accounts within short pe-

iods of time. Using threshold filters on these two properties they

ound clusters of wall posts and classified them as potentially ma-

icious spam campaigns. Template-based spam campaign detection

as been also done in Twitter [184] . 

0. Mitigating Distributed Denial-of-service attacks (DDoS) 

ttacks 

A denial-of-service (DOS) attack is characterized by an explicit

ttempt to monopolize a computer resource, so that an intended

ser cannot use the resource [41] . A Distributed Denial-of-service

ttack (DDoS) deploys multiple attacking entities to simultaneously

aunch the attack (we refer readers [185] for a taxonomy of web-

ased DDoS attacks and defenses). DDoS attacks in social networks

re also common. For example, on August 6, 2009, Twitter, Face-

ook, LiveJournal, Google’s Blogger, and YouTube were attacked by

 DDoS attack [186] . Twitter experienced interrupted service for

everal hours, users were complaining of not being able to send

heir Tweets. Facebook users were experiencing longer periods of

ime (delays) in loading Facebook pages. 

Several papers evaluated how a social network could be lever-

ged to launch a bot-net based DDoS on any target of the Internet,

ncluding the social network itself. Athanasopoulos et al. [187] in-

roduce a bot-net “FaceBot” that uses a social network to carry out

 DDoS attack against any host on the internet (including the so-

ial network itself). They created a real-world Facebook applica-

ion, “Photo of the Day”, that presents a different photo from Na-

ional Geographic to Facebook users every day. Every time a user

licks on the application, an image from the National Geographic

ppears. However, they placed special codes in the application’s

ource code. Every time a user views the photo, this code sends

 HTTP request towards a victim host, which causes the victim to

erve a request of 600 KBytes. They used a web server as a victim

nd observed that the server recorded 6 Mbit per second of traf-

c. They introduce defense mechanisms which include providing

pplication developers with a strict API that is capable of giving

ccess to resources only related to the system. 

Ur and Ganapathy [188] showed how malicious social network

sers can leverage their connections with hubs to launch DDoS

ttacks. They created MySpace profiles which befriended hubs in

he network. Those profiles posted “hotlinks” to large media files

osted by a victim web server to Hubs’ pages. As hubs receive a

arge number of hits, a significant number of the visitors would

lick those hotlinks. As a consequence, it staged a scenario where

 flash crowd was sending requests to the victim web server—a

enial of service was the result. They proposed several mitigating

echniques. One approach is to restrict some privileges of a user

hen he becomes a hub (e.g., friends of a hub might no longer be

ble to post comments containing HTML tags to the hub’s page).

ut this approach unfortunately restricts the user’s freedom on the

SN. So, they propose a focused automated monitoring on a hub

r creating a hierarchy of a hub’s friend, so that only close friends

ill be able to post on a Hub’s profile (the intuition is that close

riends will not exploit the hub). Furthermore, they recommend a
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eputation based system for social networks that scores user be-

avior. Only users with a higher reputation scores are allowed to

ost on the Hub’s profile. 

However, bot-net based DDoS attacks are difficult to mitigate,

ecause of the difficulty to distinguish legitimate communications

rom those that are part of the attack. As social networks are flour-

shing, bot-net based DDoS attacks are becoming stronger, because

ore legitimate users are unwillingly becoming part of an attack. 

1. Mitigating malware attacks 

Malicious software (malware) is a program that is specifically

esigned to gain access, disrupt computer operation, gather sen-

itive information or damage a computer without the knowledge

f the owner. Participatory Internet technologies (e.g., AJAX) and

pplications (e.g., RSS) have expedited malware attacks, because

hey enable the participation of the users. OSNs (all of them use

articipatory technologies and applications) are providing them-

elves as infrastructures for propagating malware. The “Koobface”

s probably the best example of malware propagation using social

etworks [40] . It spread rapidly through Facebook social networks.

he malware used Facebook credentials on a compromised com-

uter and sent messages to the owner’s Facebook friends. The mes-

ages redirected the owner’s friends to a third-party website and

hey were asked to download an update of the Adobe Flash player.

f they would download and install the file, Koobface would install

nd infect their system using the same process. 

In a survey, Gao et al. [189] discuss a number of methods in

hich malware propagates through social networks. For example,

sing cross-site request forgery (CSRF or XSRF) malware invites le-

itimate users to click on a link. If a user clicks, it opens an ex-

loited page containing malicious scripts. Eventually, the malware

ubmits a message with a URL for a wall post on the user’s profile

nd clicks on the “Share” button so that all of her friends can see

his message as well as the link. URL obfuscations are also widely

sed for malware attacks. An attacker uses commonly known URL

horteners to obfuscate the true location of a link and lures other

sers to click it. 

Unfortunately, malware propagation on social networks exhibits

nique propagation vectors. As such, existing Internet worm de-

ection techniques (e.g., [190] ) cannot be applied to them. In the

ontext of OSNs, Xu et al. [191] proposed an OSN malware de-

ection system by leveraging both the propagation characteristics

f the malware and the topological properties of OSNs. They in-

roduced a “maximum coverage algorithm” that picks a subset of

egitimate OSN users to whom the defense system attaches “de-

oy friends” to monitor the entire social graph. When the decoy

riends receive suspicious malware propagation evidence, the de-

ection system performs local and network correlations to distin-

uish actual malware evidence from normal user communication.

owever, the challenge for this honeypot-based approach is to de-

ermine how many social honeypots (in this context decoy friends)

arge-scale OSNs (e.g., billions of Facebook users) should deploy. 

2. Challenges and future research directions 

As the OSNs are enjoying unprecedented popularity, keeping

sers engaged with new functionalities, new privacy and secu-

ity threats are emerging [192,193] . The dynamic landscape of pri-

acy and security attacks have enabled researchers to continuously

ooking forward for new threats and provide mitigating techniques.

owever, there are open problems that still withstand the plethora

f solutions in the literature. An overview of the problems is pre-

ented below. 

The privacy solutions reviewed in Section 3 are focused on

pecific aspect of privacy, such as, enabling granular settings,
roviding visual feedback through designing user friendly and in-

ormed graphical interface, or generating automated or default pri-

acy policies. However, an integrated privacy solution covering all

he planes is still expected. Such a solution might face multiple

hallenges, e.g., too much granular privacy settings would be a

roblem in designing succinct interfaces, automated or default pri-

acy policies might have different interface requirements. More-

ver, automated and default privacy solutions also have bootstrap-

ing problems to overcome. A newly joined OSN user has no his-

ory of interactions that could be used as an input of automation. 

A body of literature has used third-party platforms for pro-

ecting users from social applications ( Section 4 ) and from OSNs

 Section 5.1 ). The third-party platforms have been used for appro-

riate norm following execution of social applications and limiting

he transfer of the social data from applications to other parties.

hird-party platforms have been also used to hide users’ real data

o protect them from the OSN. However, those solutions them-

elves have to be trusted by users and by applications, as they

re expected to protect users’ personal data and enable a third-

arty application’s execution. Moreover, research needs to propose

romising business models for those platforms, because hosting

nd executing applications on those platforms have a high require-

ent of logistics and maintenance. 

One possible future research direction includes understanding

he privacy leakage and associated risks when OSNs work as a Web

racker. OSNs (e.g., Facebook, Twitter) continue to be the login of

hoice for many websites and applications. As such, OSNs can track

heir users in third-party websites by placing cookies to users’ de-

ices on behalf of those websites. Note that OSNs already know

hat users do in their platforms. Tracking the users in third-party

ebsites enables them to create a more detailed user profile. As

uch, OSNs could essentially work as a traditional third-party Web

ggregator by offering advertisers targeted advertising in publish-

rs’ websites. In general, third-party Web tracking has seen much

olicy debate recently [194–196] , and OSNs have aggravated the

racking. Research could explore a comprehensive risk assessment

nd solutions considering OSNs as potential trackers. 

The attacks discussed in this article are often closely inter-

wined. User data collected though crawling attacks or via social

pplications may help an attacker to create background knowledge

or launching de-anonymization attacks. An attacker might possess

n unprecedented number of user accounts using malware and

ybil attacks and could use those accounts for social spam prop-

gation and Distributed Denial-of-service attacks. Social spam can

lso be used to propagate malware. Some attacks might be a pre-

equisite for another attacks. For example, a de-anonymization at-

ack can reveal the identity of an individual. That identity could

e used to launch an inference attack and to learn unspecified at-

ributes of an individual. Researchers still need to explore the at-

acks that are are synergies of attacks. 

3. Summary and discussion 

Millions of Internet users are using OSNs for communication

nd collaboration. Many companies rely on OSNs for promoting

heir products and influencing the market. It becomes harder and

arder to imagine life without the use of OSN tools, whether for

reating an image of oneself or organization, for selectively fol-

owing news as filtered by the group of friends, or for keeping in

ouch. However, the growing reliance on OSNs is impaired by an

ncreasingly more sophisticated range of attacks that undermine

he very usefulness of the OSNs. 

This paper reviews online social networks’ privacy and security

ssues. We have categorized various attacks on OSNs based on so-

ial network stakeholders and the forms of attack targeted at them.

pecifically, we have categorized those attacks as attacks on users
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and attacks on the OSN. We have discussed how the attacks are

launched, what are the available defense techniques and what are

the challenges involved in such defenses. 

In online social networks, privacy and security issues are not

separable. In some contexts privacy and security goals may be the

same, but there are other contexts where they may be orthogo-

nal, and there are also contexts where they are in conflict. For

example, in an OSN, a user wants privacy when she is commu-

nicating with other users though the messaging service. She will

expect that non-recipients of the message will not be able to read

it. OSN services will ensure this by providing a secure communica-

tion channel. In this context, the goals of security and privacy are

the same. Consider another context where there is a security goal

of authenticating a user’s account. OSNs usually do this by sending

an activation link as a message to the user’s e-mail address. This is

not a privacy issue—OSNs are just securely authenticating that ma-

licious users are not using the legitimate user’s e-mail to register.

In this context, security and privacy goals are orthogonal. However,

anonymous views in OSNs (e.g., LinkedIn) present a context where

security and privacy goals are in conflict. Users may want to have

privacy (e.g., anonymization) while viewing other users’ profiles.

However, the viewee might want to secure her profile from anony-

mous viewing. 

There are also several functionality-oriented attacks that we did

not discuss in this paper. Functionality-oriented attacks attempt

to exploit specific functionalities of a social network. For exam-

ple, Location-based Services (LSP) such as Foursquare, Loopt and

Facebook Places utilize geo-location information to publish users’

checked-in places. In some LSP, users can accumulate “points” for

“checking in” at certain venues or locations and can get real-world

discounts or freebies in exchange for these points. There is a body

of research that analyzes the technical feasibility of anonymous us-

age of location-based services so that users are not impacted by

location sharing [197,198] . Moreover, real-world rewards and dis-

counts give incentives for users in LSP to cheat on their locations,

and hence research [199,200] has focused on how to prevent users

from location cheating. 

OSNs and social applications are here to stay, and while they

mature, new security and privacy attacks will take shape. Technical

advances in this area can only be of limited effect if not supported

by legislative measures for protecting the user from other users

and from the service providers [8] . 
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