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Indirect Adaptive Control of an Electrohydraulic Servo
System Based on Nonlinear Backstepping

Claude Kaddissi, Jean-Pierre Kenné, and Maarouf Saad

Abstract—This paper studies the real-time position control of an elec-
trohydraulic system using indirect adaptive backstepping. Electrohydraulic
systems are known to be highly nonlinear and nondifferentiable. Backstep-
ping is used for being a powerful, nonlinear control strategy and for its
ability to ensure an asymptotic stability of the controlled system without
canceling useful nonlinearities. On the other hand, hydraulic parameters
are prone to variations; it is, therefore, useful to employ an adaptive control
strategy in order to update the controller with the parameters variation. In
such a case, indirect adaptive control is highly recommended, among other
adaptive controller types, as it has the benefit of identifying the real system
parameters value. Since not much literature is available for the indirect
method as applied to the hydraulic systems, because of its implementation
complexity, this paper shows how efficiently this method can handle the
parameter estimates.

Index Terms—Adaptive control, backstepping, electrohydraulic systems,
nonlinear control.

I. INTRODUCTION

Currently electrohydraulic systems are very popular in many in-
dustrial processes, including heavy machinery, robotics, aircraft, and
automotive. This is principally due to the high power-to-volume ra-
tio that these systems can offer. However, the nonlinearities and the
mathematical model singularity of electrohydraulic systems result in
traditional constant gain controllers being inadequate.

There are two issues at stake when dealing with electrohydraulic
systems: the accuracy of the mathematical model and the effec-
tiveness of the control strategy. Regarding the first issue, basic
modeling of hydraulic components is addressed in [1] where the
most crucial dynamics and parameters are taken into consideration.
Since then, several improvements were made: for example, in [2], a
new design for asymmetric linear hydraulic actuators is developed,
while a dynamic redesign of a nonlinear servovalve is considered
in [3]–[5]. The mathematical model that we adopted in this paper
is inspired from the previous work, with some improvements brought
in.

Regarding the control issue, several classical and advanced strate-
gies can be found in the literature. Among linear control strategies, pole
placements and classic proportional–integral–derivative (PID) con-
troller are used in [6] and [7], respectively. Likewise, more efficient
nonlinear control strategies are widely in use, like sliding mode con-
trol in [8] and [9], input–output linearization that was adopted in [10],
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and nonlinear backstepping as applied in [11] for position tracking and
in [12] for force tracking. Regardless the effectiveness of the previ-
ously mentioned strategies, one common weak point is that the system
parameters are considered constant and known. This observation was
behind the development and use of many adaptive robust controllers
(ARCs). ARCs can be classified in two categories: direct adaptive
controllers (DARC) and indirect adaptive controllers (IARC). In the
first category, the direct adaptive nonlinear feedforward control is em-
ployed in [13]; although the obtained results are satisfactory, the study
was conducted for a constant load and there was no interpretation of
the estimated system parameters value. In [14], backstepping is used
to control an electrohydraulic material testing system; repetitive learn-
ing is introduced in order to compensate for the system aging; this
consists in linearizing the system model and using a repetitive control
signal. On the other side, [15] uses a direct adaptive nonlinear control
for an electrohydraulic system driven by a single-rod actuator; in this
paper, the system uncertainty was estimated, along with the param-
eters estimation. The same approach is used in [16] for a single-rod
actuator; besides the high amplitude control signal, one can see that
the estimated parameter values do not reflect the physical values since
they vary with the desired trajectory. Another direct adaptive control
strategy based on sliding mode is used on an electrohydraulic active
suspension in [17]; one can notice the long transient state for parame-
ters convergence as well as some estimated parameters that converge
to physically impossible values.

In the category of IARC, indirect adaptive control for speed and
position feedback of hydraulic actuators is implemented in [18] and
[19]. An integrated direct/indirect ARC is adopted in [20] and [21];
although the parameters identification convergence is reasonable, a
long transient state precedes the convergence. On the other side, an
indirect adaptive backstepping controller is used in [22] for a hydraulic
robot arm; despite the successful control and parameters identification,
the experiment was conducted for a very low amplitude and slow
desired trajectory.

Both DARC and IARC have their advantages and drawback, but one
thing is sure that DARC cannot separate the control law design from
the parameters estimation law where the identification algorithm is
limited to the gradient type. Hence, the estimated parameters in DARC
are not accurate enough to be used for predictions and machine aging
monitoring.

This paper proposes an indirect adaptive backstepping approach
for the position control of an electrohydraulic servo system, which,
on one hand, allows us to take advantage of the robust backstepping
strategy, and, on the other, considers the system parameters variation,
constituting thus a continuation to our study in [11] and [23]. The main
concern in this paper is the identification and variation of the system
parameters with the operating conditions. The benefit of using indirect
adaptive control is that it guarantees the convergence of the system
parameters to their real physical values, while simultaneously ensuring
the system stability.

The remainder of this paper is organized as follows. The motivation
for this paper is presented in Section II$. Section III presents a brief
description of the mathematical model used. Section IV deals with the
identification algorithm and the adaptive controller design. In Section
V, experimental results are compared with a nonadaptive backstepping
controller and other existing works. Finally, some conclusions and
remarks conclude this paper in Section VI.

1083-4435/$26.00 © 2010 IEEE
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Fig. 1. Schematic of the hydraulic servosystem.

II. MOTIVATION

Electrohydraulic systems have many applications that are of great
interest. In fact, it is a real challenge to find an ideal control strategy
that combines all solutions, which is why in our previous work [11],
the focus was on the nonlinear and nondifferentiable aspects of the
mathematical model and how they were managed by the backstepping
controller. Another issue was the fine tuning of the controller param-
eters in order to ensure a good tracking of the reference signal. This
paper for its part focuses on the hydraulic system parameters and the
effect of their variation on the closed loop system behavior. For ex-
ample, temperature variation affects the viscosity and bulk modulus;
therefore, it can have a considerable effect, among other factors, on the
system parameters. That is why we found it intriguing to develop an in-
direct adaptive version of the backstepping controller. Fig. 3 illustrates
a block diagram of the closed loop system, which will be discussed in
greater detail throughout the remainder of the paper.

III. ELECTROHYDRAULIC SYSTEM MODELING

The electrohydraulic test bench that was used to conduct this paper
is represented in Fig. 1. Fig. 2, on the other hand, shows the photograph
of the experimental equipment used.

The dc electric motor {1} drives pump {2} at a constant speed.
Pump {2} has a fixed displacement, and delivers oil flow from tank
{5} to the rest of the system. Normally, the pressure Ps at the pump
discharge is kept constant by the mean of accumulator {3} and relief
valve {4}. The installed accumulator is used as an additional source
of hydraulic fluid and as a water hammer absorber. The relief valve
is set to Ps , and compensates for the pressure increase due to large
loads by returning the required additional amount of flow to tank {5}.
The hydraulic motor {6} that drives the load has a fixed displacement;
its direction of motion, speed, and acceleration are determined by the
two-stage symmetric servovalve with matched orifices {7}. The load is
generated through pump {8a}, which is driven by the hydraulic motor
and controlled by servovalve {8b} that can create a restriction at pump
{8a} discharge. All data are collected through the installed sensors:
torque meter {9}, tachometer, {10} and pressure sensors {11}.

Following is a list of the electrohydraulic system parameters:
u servovalve control input, V;
K servovalve constant gain, cm2 /V;
τ v servovalve time constant, s;

Fig. 2. Experimental electrohydraulic workbench.

Fig. 3. Indirect adaptive backstepping controller.

Av servovalve orifice opening area, cm2 ;
Q flow rates to and from the servovalve, cm3 /s;
P1 ,2 pressures in the actuator chambers, bars;
PL pressure differential due to load, bars;
Ps pressure at the pump discharge, bars;
Cd flow discharge coefficient, dimensionless;
ρ fluid oil mass density, g/cm3 ;
CL load leakage coefficient, cm5 /daN·s;
β fluid bulk modulus, bars;
V oil volume in one chamber of the actuator, cm3 ;
Dm actuator volumetric displacement, cm3 /rad;
TL load torque, daN ·cm;
B viscous damping coefficient, daN·cm·s;
J actuator inertia, daN·s2 ·cm;
θp actuator angular position, rad.
The system units are chosen such as to avoid numerical errors.
The flow through the servovalve is given by

Q = CdAv

√
Ps − PL

ρ
, if θ̇p > 0 (1)
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Q = CdAv

√
Ps + PL

ρ
, if θ̇p < 0. (2)

Therefore, since sign (Av ) = sign
(
θ̇p

)
,we can write

Q = CdAv

√
Ps − sign(Av )PL

ρ
(3)

where Ps = P1 + P2 and PL = P1 − P2 , since the servovalve is sym-
metric with matched orifices [1].

In order to avoid numerical problems due the nondifferentiable term
in (3), we approximated the sign function with a sigmoid function
having the following properties:

sigm (x) =
1 − eax

1 + eax
∀x ∈ �. (4)

This is a continuously differentiable function with

a > 0 and sigm (x) =

{
1, if ax → ∞
0, if ax → 0

−1, if ax → −∞
. (5)

The effect of the invariant set induced by (4) can be remedied by
choosing an appropriate value for the positive constant a.

Hence,

Q = CdAv

√
Ps − sigm(Av )PL

ρ
. (6)

This approximation guarantees the existence of a solution independent
of the actuator rotation direction. On the other hand, since hydraulic oil
is compressible to some limits; it should be considered in the actuator
dynamics. Thus, we give the compressibility equation as follows:

V

2β
ṖL =

CdAv√
ρ

g(.) − Dm θ̇ − CL PL (7a)

where
g(.) =

√
Ps − sigm(Av )PL . (7b)

Let us now consider the hydraulic actuator equation of motion given
by Newton’s second law; we have

Jθ̈p = Dm (P1 − P2 ) − Bθ̇p − TL . (8)

In (8), the Coulomb friction was neglected since the hydraulic motor
that is used is small relatively to the hydraulic power carried by the
fluid flow, even at small speeds.

The final remaining component is the servovalve. Its dynamic equa-
tion is a first-order one, since its spool inertia has been neglected for
simplification purposes. It is given by

τv Ȧv + Av = Ku. (9)

More details can be found about the electrohydraulic system modeling
in our previous work [11].

Now, if we choose x1 = θp , x2 = ω = θ̇p , x3 =
PL , and x4 = Av as state variables, the system can be
written in a fourth-order nonlinear state-space model

⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = wa x3 − wbx2 − wc

ẋ3 = pa x4

√
Ps − x3 sigm (x4 ) − pbx3 − pc x2

ẋ4 = −ra x4 + rbu

(10)

where ra , rb , pa , pb , pc , wa , wb , and wc are the system parameters
given by

ra =
1
τv

rb =
K

τv

pa =
2βCd

V
√

ρ
pa =

2βCL

V

pc =
2βDm

V
wa =

Dm

J
wb =

B

J
wc =

TL

J
.

The parameters ra and rb are known and provided by the servovalve
datasheet (refer to Section V). The parameters covered by the identi-
fication process are pa , pb , pc , wa , wb , and wc . Those parameters are
unknown but fairly time invariant and will be continuously identified
during the control process, and then injected into the backstepping con-
troller, as shown in Fig. 3. The next step is to set up and design the
indirect adaptive backstepping controller.

IV. INDIRECT ADAPTIVE BACKSTEPPING CONTROLLER

Referring to Fig. 3, the control of the electrohydraulic system is
achieved as follows:

1) The state variables x1 , x2 , x3 , and x4 are sent to the parameter
identification block along with the control signal u.

2) Once the system parameters are identified, they are introduced
into the backstepping controller block as well as the four-state
variables to generate the control signal.

3) The control signal is brought to the electrohydraulic system forc-
ing the hydraulic actuator to track the desired trajectory xref ,
taking into consideration the resistive load.

This sequence is repeated for each sampling time. Note that the
reference signal xref must be at least a Class-C4 function since its
fourth-order derivative appears in the control signal equation, as we
will see later on.

Based on (10), we can write (11) and (12)
{

ẋ2 = wa x3 − wbx2 − wc

ẋ3 = pa x4g(.) − pbx3 − pc x2
(11)

(
ẋ2

ẋ3

)
=

⎛
⎜⎜⎜⎜⎝

x3 0
−x2 0
−1 0
0 x4g(.)
0 −x3

0 −x2

⎞
⎟⎟⎟⎟⎠

T

×

⎛
⎜⎜⎜⎝

wa

wb

wc
pa

pb

pc

⎞
⎟⎟⎟⎠ . (12)

It can be seen that the subsystem (12) is linear with respect to its
parameters, which is a sufficient condition for the parameters to be
identified through the continuous recursive least-squares method for
slowly varying systems [24]. The latter is among the unbiased iden-
tification methods, and with the addition of a low power white noise
signal to the closed loop system input, the parameters will converge
asymptotically to their real value. So, let

y(t) =

(
ẋ2

ẋ3

)
(13a)

ϕ(t) =

(
x3 −x2 −1 0 0 0
0 0 0 x4g(.) −x3 −x2

)
(13b)

θT = ( wa wb wc pa pb pc ) (13c)

where y(t) is the observation vector, ϕ(t) is the matrix of regressors, and
θ is the vector of unknown parameters that are continuously identified.
Then,

y(t) = ϕ(t)θ. (14)
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Next, we define the least-squares error V (θ) and the matrix P(t) as
well, according to [23],⎧⎪⎪⎨

⎪⎪⎩

V (θ) =
∫ t

0 eα (t−T ) (y(T ) − ϕ(T )θ(T ))2 dT
α(tn ) = 1 − λ(1 − α(tn−1 )) : Weighting factor,

with λ = 0.99

P (t) =
(∫ t

0 ϕ(T )ϕ(T )T dT
)−1

.

(15a)

We also define the estimated system parameters as follows:

θ̂T = ( ŵa ŵb ŵc p̂a p̂b p̂c ) . (15b)

Let θ̃ be the parameter estimation error and
	

θ = θ̂ + θ̃ the true value
of θ; thus,

	

θ =

(
ŵa + w̃a︸ ︷︷ ︸

	
w a

ŵb + w̃b︸ ︷︷ ︸
	
w b

ŵc + w̃c︸ ︷︷ ︸
	
w c

p̂a + p̃a︸ ︷︷ ︸
	
p a

p̂b + p̃b︸ ︷︷ ︸
	
p b

p̂c + p̃c︸ ︷︷ ︸
	
p c

)
. (15c)

Identification is carried on until the value of θ̃ minimizes the least-
squares error, according to [23], and satisfies the following conditions:⎧⎪⎪⎨

⎪⎪⎩

dθ̂(t)
dt

= P (t)ϕ(t)T e(t)

e(t) = y(t) − ϕ(t)θ̂ = ϕ(t)
(
θ − θ̂

)
= ϕ(t)θ̃

dP (t)
dt

= αP (t) − P (t)ϕ(t)T ϕ(t)P (t)

. (16)

By integrating the first equation of (16), we get the estimates of the
system parameters.

Finally, to close the loop in Fig. 3, the backstepping controller block
is designed based on [25]; its tuning parameters are listed in the Ap-
pendix .

Let ei = xi − xid be the tracking error between every state variable
and its desired value.

Let fi (θ̃,
˙̃
θ) be the functions that group the parameter estimation

errors and their derivatives.
Step 1: Let V1 = 1

2ρ1
e2

1 be a candidate Lyapunov function for the
subsystem ẋ1 = x2 of (10). Then,

V̇1 =
e1

ρ1
(ẋ1 − ẋ1d ) =

e1

ρ1
(x2 − ẋ1d ). (17)

If we choose the following stabilizing function, as the desired value for
x2 in (17):

x2d (e1 , x1d ) = ẋ1d − ρ1e1 (18)

this will yield

V̇1 = −e2
1 +

e1e2

ρ1
. (19)

Step 2: Let V2 = (1/2ρ1 )e2
1 + (1/2ρ2 )e2

2 be a candidate Lyapunov
function for the subsystem; ẋ2 = 	

wa x3 − 	
wbx2 − 	

wc then,

V̇2 = −e2
1 + e2

{
ŵa

ρ2
x3 +

(
1
ρ1

+
(ŵb − ρ1 )ρ1

ρ2

)
e1

+
(ρ1 − ŵb )

ρ2
e2 − ŵb

ρ2
ẋ1d − ẍ1d

ρ2
− ŵc

ρ2
+ f2 (θ̃)

}
.

(20)

If we choose the following stabilizing function, as the desired value for
x3 in (20):

x3d (e1 , e2 , ẋ1d , ẍ1d )

=

{
−a1e1 − a2e2 +

ŵb

ŵa

ẋ1d +
ẍ1d

ŵa

+
ŵc

ŵa

}
(21a)

where

a1 =
ρ2

ρ1 ŵa

+
(ŵb − ρ1 )ρ1

ŵa

and

a2 =
ρ1 − ŵb + ρ2

ŵa

. (21b)

Thus,

V̇2 = −e2
1 − e2

2 +
ŵa

ρ2
e2e3 + e2f2 (θ̃). (22)

Step 3: Let e3 = x3 − x3d and V3 = (1/2ρ1 )e2
1 + (1/2ρ2 )e2

2 +
(1/2ρ3 )e2

3 be a candidate Lyapunov function for the subsystem
ẋ3 = 	

p a x4g(.) − 	
p bx3 − 	

p c x2 ; then

V̇3 = −e2
1 − e2

2 + e3

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p̂a Cdx4g(.)
ρ3

+ b1 − b6
ρ3

e1 +

(
b2 − b7

ρ3
+ ŵa

ρ2

)
e2

+ b3
ρ3

e3 + b8 − b4
ρ3

ẋ1d − b5
ρ3

+
˙̂wa

ρ3 ŵ
2
a

ẍ1d

−
. . .
x1d

ρ3 ŵa
− b10 + f3 (θ̃,

˙̃
θ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(23a)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = p̂b a1 + p̂c ρ1 − a1ρ1 − ρ2 /ρ1

b2 = p̂b a2 − p̂c + a1 − ρ2a2

b3 = p̂a a2 − p̂b

b4 = p̂b p̂b/p̂a + p̂c

b5 = (p̂b + p̂b )/p̂a

b6 = ρ2
˙̂wa /ρ1 ŵ

2
a +

[
ρ1

˙̂wb ŵa − ρ1
˙̂wa (ŵb − ρ2 )

]
/ŵ2

a

b7 =
[
− ˙̂wb ŵa − ˙̂wa (ρ1 + ρ2 − ŵb )

]
/ŵ2

a

b8 =
( ˙̂wb ŵa − ˙̂wa ŵb

)
/ŵ2

a

b9 =
( ˙̂wc ŵa − ˙̂wa ŵc

)
/ŵ2

a

b10 = p̂b ŵc /ρ3 ŵa + b9/ρ3

. (23b)

If we choose the following stabilizing function, as the desired value for
x3 in (23a)

x4d (e1 , e2 , e3 , ẋ1d , ẍ1d ,
. . .
x1d )

=
1

p̂a Cd g(.)

{
− (b1 − b6 ) e1 −

(
b2 − b7 +

ρ3 ŵa

ρ2

)
e2 − b3e3

− (b8 − b4 ) ẋ1d +

(
b5 +

˙̂wa

ŵ2
a

)
ẍ1d +

. . .
x1d

ŵa

+ b10 − ρ3e3

}
.

(24)

Thus,

V̇3 = −e2
1 − e2

2 − e2
3 +

p̂a Cd g(.)
ρ3

e3e4 + e3f3 (θ̃,
˙̃
θ). (25)

At this stage, the stabilizing functions, which are the desired trajectories
of all the state variables, have been designed. Every stabilizing function
depends on the tracking error of the previous states, on the desired
position, and on its derivatives.

Final step: The final step involves the design of the control sig-
nal, which is the electric signal that actuates the servovalve. Let
V4 = (1/2ρ1 )e2

1 + (1/2ρ2 )e2
2 + (1/2ρ3 )e2

3 + (1/2ρ4 )e2
4 be a candi-
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date Lyapunov function for the subsystem ẋ4 = −ra x4 + rbu; then

V̇4 = −e2
1 − e2

2 − e2
3 + e4

{
rb

ρ4

(
1 − x3f (.)h(.)

2p̂a Cdρ.g(.)3

)
u

+
p̂a Cd g(.)e3

ρ3
− ra

ρ4
x4 −

J(.)
ρ4 p̂a Cd g(.)

− 1
2p̂a Cdρ4ρ.g(.)3

{ẋ3 sgm(x4 ) − ra x3x4f (.)}h(.)

}
+ f4 (θ̃,

˙̃
θ,

¨̃
θ)

(26a)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (.) = ∂(sgmx4 )/∂x4 =2ae−ax 4 /(1 + e−ax 4 )2

h(.) = −b1e1 − c1e2 − c2e3 + b4 ẋ1d + b5 ẍ1d +
. . .
x1d/ŵa

+pb ŵc /ŵa

J(.) = (d1 − ḃ1 + ḃ6 )e1 + (d2 − ḃ2 + ḃ7 − ˙̂wa /ρ2 )e2

+(d3 − ḃ3 )e3 − c2 p̂a Cd g(.)e4 + x
(4)
1d /ŵa

+(b5 + ˙̂wa /ŵ2
a )

. . .
x1d

+[b4 + ḃ5 + ( ¨̂wa ŵ2
a − 2ŵa

˙̂w
2
a )/ŵ4

a ]ẍ1d

−(ḃ8 − ḃ4 )ẋ1d + ḃ10

and ⎧⎪⎪⎨
⎪⎪⎩

c1 = b2 + ρ3 ŵa /ρ2

c2 = b3 + ρ3

d1 = b1ρ1 + ρ2 c1 /ρ1

d2 = −b1 + c1ρ2 + ρ3c2 ŵa /ρ2

d3 = −c1 ŵa + c2ρ3 .

(26b)

Now, we choose the control signal u in (26a) as shown by (27) at the
bottom of this page. Thus,

V̇4 = −e2
1 − e2

2 − e2
3 − e2

4 + f4 (θ̃,
˙̃
θ,

¨̃
θ). (28)

It can be shown that f4 (θ̃,
˙̃
θ,

¨̃
θ) tends to zero when θ converges toward

θ̂ [25]. At that moment, (28) becomes strictly negative.
This shows that the error dynamic is globally asymptotically stable,

because any error signal will converge to zero.
Finally, if the system model (10) can be written in terms of the

closed loop tracking errors ei = xi − xid to reflect the error dynamics
as follows:

( ė1 ė2 ė3 ė4 )T = A ( e1 e2 e3 e4 )T (29a)

where

A =

⎛
⎜⎝

−ρ1 1 0 0
− ρ2

ρ1
−ρ2 ŵa 0

0 − ρ3
ρ2

ŵa −ρ3 p̂a Cd g(.)
0 0 − ρ4

ρ3
p̂a Cd g(.) −ρ4

⎞
⎟⎠ . (29b)

V. EXPERIMENTAL RESULTS

Regarding the details of the real-time computing system, refer
to [11]. The servovalve time constant is 0.02 s; this is the smallest
time constant among all components. Therefore, in order to have good
data acquisition, the sampling rate for such a system must be roughly

Fig. 4. Angular position, desired position, and tracking error, when using the
indirect adaptive backstepping during sudden load increase.

Fig. 5. Control signal of the indirect adaptive backstepping controller.

ten times smaller which means 1 ms. However, because of the heavy
amount of calculations and the discretization method that was used
(fourth-order Runge–Kutta method), sampling times larger than 0.1
ms did not yield to the expected performance. Therefore, a sampling
time of 0.1 ms was used and the control signal was updated at the
same rate. The actuator angular speed is measured by a 48.1-r/min/V
tachometer; the angular position was obtained by integrating the angu-
lar speed. The supply pressure Ps is set at 7 MPa; pressures P 1 and
P 2 at the hydraulic actuator inlet and outlet, respectively, are measured
with two electrical manometers of 2 MPa/Vdc . The servovalve open-
ing was measured by its spool position sensor with a constant gain of
0.0265 cm2 /V. The desired angular position trajectory is a sine function
with a 2π rad amplitude and a 2-Hz frequency. A white noise signal
with as low power of 0.02 dB·W was added to the desired position
in order to provide the signal with a wide range of frequencies with-
out, however, perturbing the system output. This is crucial for good
unbiased parameters identification. Also, for a faster identification, the
matrix P initial value should be high enough and was set to 5000∗I6 .
Fig. 4 shows the angular position, the desired position, and the tracking
error. At instant 12.24 s, the load on the actuator was increased abruptly
to ten times its nominal value (57 N·m), as we can see the adaptive con-
troller achieves very good tracking with a maximum error around 1/40
πrad. However, because of the adaptive control, the desired position is
once more attained quite in only 0.07 s. At the same time, in Fig. 5, we

u(e1 , e2 , e3 , e4 , ẋ1d , ẍ1d ,
...
x1d , x

(4)
1d )

=

{
−ρ4/ρ3 .p̂aCdg(.)e3 + rax4 + J(.)/p̂aCdg(.) + 1/2p̂aCdρ.g(.)3 {ẋ3sgm(x4) − rax3x4f(.)}h(.) − ρ4e4

}
rb (1 − x3f(.)h(.)/2p̂aCdρ.g(.)3)

. (27)
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Fig. 6. Parameters of the hydraulic motor: motor displacement and friction.

Fig. 7. Parameter wc (proportional to the resistive torque TL ).

Fig. 8. Angular position, desired position, and tracking error when using a
nonadaptive backstepping.

can see the peak of voltage (−0.34 V) in the control signal, due to the
load increase, and the ability of the adaptive controller to restore the
former signal amplitude. Let us now examine the identification of the
parameters and their behavior during the sudden load increase. Fig. 6
illustrates the convergence of the hydraulic motor parameters wa and
wb that are proportional to the motor displacement and friction coeffi-
cient, respectively. It is clear that the identification has achieved a good
convergence of the parameters toward their physical values. In fact, wa

regains its value shortly after the sudden load increase; however, wb

converges toward a higher value since the friction coefficient increases
with load.

On the other hand, the hydraulic parameters pa , pb , and pc that are
proportional to the oil bulk modulus have a very similar behavior as
well; this is why they are not shown. Fig. 7 shows parameter wc that

Fig. 9. Control signal of the nonadaptive backstepping controller.

is proportional to resistive torque TL , as we can see, after the abrupt
load increase, wc converges to a new value which is fairly ten times its
previous value (from 2 to 20 s−2 ). For all identified parameters, we can
see from Figs. 6 and 7 that convergence is reached in roughly 1 s in the
phase preceding the load increase, as compared to 4 s in [17] and 10
s in [20]. Finally, Figs. 8 and 9 study the behavior of the nonadaptive
backstepping controller, using the same control parameters value, as
the adaptive controller (Appendix). Although the desired position in
this case is smoother and has a frequency of 1 Hz, when the load on
the hydraulic actuator is set to ten times its nominal value, the tracking
is lost and the actuator oscillates continuously (see Fig. 8) along with
a saturated control signal (see Fig. 9).

VI. CONCLUSION

In this paper, an indirect adaptive backstepping controller was de-
signed for an experimental electrohydraulic test bench. It is well known
that electrohydraulic systems parameters are subjected to variations,
depending on the system load, pressure, and temperature. The results
were compared to those obtained with a real-time nonadaptive back-
stepping controller as well as to results from other similar works. We
saw that during parameter variations, the adaptive controller was able
to track the desired reference signal with a slight transient behavior
after the parameters variation. On the other hand, the nonadaptive con-
troller was unable to keep the system on track, and ended up with large
oscillations and instability. This paper is an added value to the existing
literature since few references are available for IARC as applied to
electrohydraulic systems, because its implementation constitutes a big
challenge. We were able to show and prove that IARC is the ideal option
for hydraulic systems control, since it leads to the real physical values
of the system parameters, which allows a good system monitoring.

APPENDIX

LIST OF THE CONTROLLER TUNING PARAMETERS
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