
Knowledge-Based Systems 109 (2016) 122–136

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

A knowle dge-base d resource discovery for Internet of Things

�

Charith Perera

a , ∗, Athanasios V. Vasilakos b

a Centre for Research in Computing, The Open University, Milton Keynes, UK
b Dept of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Lulea, Sweden

a r t i c l e i n f o

Article history:

Received 22 January 2016

Revised 23 June 2016

Accepted 26 June 2016

Available online 29 June 2016

Keywords:

Internet of Things

Middleware

Semantic knowledge

IoT resource composition

a b s t r a c t

In the sensing as a service paradigm, Internet of Things (IoT) Middleware platforms allow data consumers

to retrieve the data they want without knowing the underlying technical details of IoT resources (i.e. sen-

sors and data processing components). However, configuring an IoT middleware platform and retrieving

data is a significant challenge for data consumers as it requires both technical knowledge and domain

expertise. In this paper, we propose a knowledge driven approach called Context Aware Sensor Config-

uration Model (CASCOM) to simplify the process of configuring IoT middleware platforms, so the data

consumers, specifically non-technical personnel, can easily retrieve the data they required. In this pa-

per, we demonstrate how IoT resources can be described using semantics in such away that they can

later be used to compose service work-flows. Such automated semantic-knowledge-based IoT resource

composition approach advances the current research. We demonstrate the feasibility and the usability

of our approach through a prototype implementation based on an IoT middleware called Global Sensor

Networks (GSN), though our model can be generalized to any other middleware platform.

© 2016 Elsevier B.V. All rights reserved.

a

g

s

b

a

s

f

a

i

u

t

s

w

g

a

1. Introduction

The Internet of Things (IoT) [2] envisions connecting billions of

smart devices to the Internet. It provides a networked infrastruc-

ture that enables things to be connected anytime, anyplace, with

anything and anyone, ideally using any path, any network and any

service [31] . These smart devices should be smoothly integrated

within Future Internet (FI) service delivery models such as sensing

as a service. The things 1 in IoT are accompanied with sensors and

actuators. It is estimated that there are about 1.5 billion Internet-

enabled PCs and over 1 billion Internet-enabled mobile phones to-

day. By 2020, there will be 50 to 100 billion devices connected to

the Internet [31] . Since these smart devices comprise sensors, it is

evident that there would be many sensors deployed around us in

the future. Even today, sensors are used in many domains such as

agriculture, environmental monitoring, and manufacturing [25] .

In order to analyse and understand a given phenomenon

extensively, data generated from appropriate sensors needs to

be fed into more sophisticated data analysis applications. These
� An earlier version of this work has been published in the Proceedings of the 9th

International Conference on Semantics, Knowledge & Grids (SKG).
∗ Corresponding author.

E-mail addresses: charith.perera@ieee.org , ngcharithperera@gmail.com

(C. Perera), vasilako@ath.forthnet.gr (A.V. Vasilakos).
1 We use terms objects, things, smart objects, devices, nodes to give the same

meaning as they are frequently used in IoT literature interchangeably.

http://dx.doi.org/10.1016/j.knosys.2016.06.030

0950-7051/© 2016 Elsevier B.V. All rights reserved.
pplications are designed to produce certain results once they are

iven required sensor data as inputs. IoT middleware solutions

implify the retrieval of data from sensors for these applications

y acting as a mediator between the hardware layer and the

pplication layer. In order to perform these bindings, middleware

olutions need to be configured depending on the context in-

ormation and user requirements. Our objective is to automate

nd simplify the configuration of IoT middleware platforms and

mprove their usability so both IT experts and non-IT experts can

se them efficiently and effectively.

There are several characteristics we have identified as impor-

ant for developing a model for IoT that provisions sensing as a

ervice by formulating and composing multiple types of sensor as

ell as different filtering, fusing, and reasoning mechanisms to-

ether on-demand. The core features of the proposed model are

s follows:

• Autonomic: The model should support the dynamic composi-

tion of internet-connected objects, in response to dynamically

defined end-users’ requests. To this end, we have incorporated

semantic knowledge [30] , along with automated reasoning al-

gorithms for orchestrating sensors, and data processing mecha-

nisms [25] , according to the data consumer requests.

• Utility based: The proposed model should deliver services ac-

cording to a utility computing model [8,22] . It should offer

sensing capability as a service [26] over dynamically created and

http://dx.doi.org/10.1016/j.knosys.2016.06.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.06.030&domain=pdf
mailto:charith.perera@ieee.org
mailto:ngcharithperera@gmail.com
mailto:vasilako@ath.forthnet.gr
http://dx.doi.org/10.1016/j.knosys.2016.06.030

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 123

1

m

n

p

t

c

i

t

p

h

s

r

q

i

t

p

m

a

C

f

c

1

b

t

l

b

t

c

w

s

w

r

a

c

r

O

s

q

t

a

d

p

e

a

t

t

t

S

i

w

2

2

c
configured solutions 2 that are custom generated for each con-

sumer request. Sensor data consumers (users) should be al-

lowed to make the decisions on the characteristic of the solu-

tion (e.g. accuracy, reliability, latency and so on). Orchestration

of IoT resources (i.e sensors and data processing components)

in the cloud environment at runtime is an important function-

ality [5] . The dynamism implies the capability of adapting to

resources changes in volatile environments where sensors and

data processing components may be added or removed from

the system over time. This means that new solutions will be

able to compose together over time due availability of new re-

sources.

• Scalability and flexibility: The proposed solution should be flex-

ible so data processing components and sensors can be added

over time [33] . Further, the proposed solution should be scal-

able so any number of IoT resources can be supported. Such

ability increases the types of consumer requests that can be

fulfilled. Further, it increases the number of different solutions

that can be formulated to accommodate a single request. Pos-

sibility of creating multiple different solutions will increase the

choice and control consumer have. Finally, the proposed model

and its algorithms should be independent from the data (i.e.

descriptions of IoT resources) so adding a new resource does

not require changes to be made into the system.

• Ease of use / reduced learning curve: One of the primary goals

of an IoT middleware is to enable users to retrieve data quickly

without dealing with complex hardware or software level con-

figurations. It is important to make all the process simplified so

a non-technical personal (e.g, biologist) can use these IoT mid-

dleware platforms to collect the data they need with minimum

effort.

.1. Motivation

Over the last few years, we have seen more and more IoT

iddleware platforms making their way in the marketplace. Large

umber of sensors are expected to connect to these middleware

latforms. Further, variety of different IoT applications are expected

o be built on top of these middleware platforms. These IoT appli-

ations have different types of algorithms that analyse data built

nto them. These algorithms are nothing but some type black boxes

hat take specific type of inputs and generate specific type of out-

uts. One of the main responsibilities of an IoT middleware is to

ide and abstract the connectivity and communication details of

ensors and support the users to retrieve the data streams they

equired to be fed into their application easily and quickly.

Data processing components can also be used to build these re-

uired data streams as we later discuss in this paper. Currently,

t is difficult to configure IoT middleware platforms in a way that

hey produces a certain data stream that is required by an IoT ap-

lication. The challenges are discussed in Section 2 . To make IoT

iddleware configuration easier, we propose a knowledge driven

pproach called Context Aware Sensor Configuration Model (CAS-

OM) to simplify the process of configuring IoT middleware plat-

orms, so the data consumers, specially non-technical personnel,

an easily retrieve the data they required.

.2. Main contributions

The contributions of our paper are as follows:

• We propose a IoT configuration model called CASCOM to en-

rich existing IoT middleware platforms. This model helps non-
2 Solution is a combination of sensors and data processing components that can

e composed together in order to satisfy a user requirement.

p

u

[

e
IT experts to configure sensors and data processing components

with less effort.

• CASCOM is completely driven by semantically enriched IoT re-

source descriptions at the back end. Therefore, new sensors

and data processing components can be added at any time.

No changes are required in the application from an algorithmic

perspective.

• CASCOM provides an easy way to construct the data streams

required by the data consumers by selecting questions and an-

swering them.

• CASCOM automatically highlights to users on potential sec-

ondary context information that can be derived from existing

primary context.

• Finally, CASCOM informs the users regarding potential sensor

and data processing components that can be added to the sys-

tem in order to enhance the ability to serve the user requests.

• CASCOM uses ontologies to model semantics where three on-

tologies capture the relevant knowledge collectively. The us-

age of ontologies help to automated composition and reasoning

process. More importantly, modelling new knowledge is very

easy due to the adoption of ontology based knowledge mod-

elling technique. Specifically, we employ two existing ontolo-

gies, namely SCO [9] , and SSN ontology [10] and developed our

own ontology called QA+TDO. New knowledge can be added to

these existing models easily using the proposed tool.

We explain all the above mentioned contributions in detail

hroughout the paper. The rest of this paper is structured as fol-

ows. Section 2 presents the background and related work. First, we

riefly introduce an IoT reference architecture and its characteris-

ics. Then, we explain where our proposed model fits in such an ar-

hitecture. Later, we review some related work and compare them

ith our own to highlight the similarities and differences. The re-

earch challenges are discussed in Section 3 . We have used a real

orld use-case scenario from the agriculture domain to explain the

esearch problem in detail. Our research question is ‘How to develop

 model that allows data consumers (i.e, non-IT and IT experts) to

onfigure IoT middleware platforms by discovering and composing IoT

esources (i.e, sensors and data processing components) effortlessly?’ .

nce the configuration is completed, the IoT middleware platform

hould produce the data streams that the data consumers have re-

uested. Data consumers can use these data streams to achieve

heir own objectives.

Subsequently, we explain the importance of resource discovery

nd composition in IoT domain and why it need to be knowledge-

riven. Architectural designs are presented in Section 4 . We pro-

ose our solution, CASCOM, which consists of six phases where

ach phase is explained in detail with relevant algorithms and ex-

mples. Section 6 presents the implementation and experimenta-

ion details. We evaluate the proposed model from both computa-

ional (i.e. storage requirements, data model loading time, query

ime) and usability point of views, presenting our findings in

ection 7 . We explain why our proposed model is feasible and how

t helps users to configure IoT middleware platforms easily. Finally,

e conclude the paper in Section 8 .

. Background and related work

.1. Background

In this section, we review a number of related work and dis-

uss the problem domain in detail. Broadly, configuration in IoT

aradigm can be categorized into two areas: sensor-level config-

ration and system-level configuration. Sensor-level configuration

13] focuses on changing a sensor’s behaviour by configuring its

mbedded software parameters such as sensing schedule, sampling

124 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

Fig. 1. Internet of Things reference architecture. Our proposed model, CASCOM, fits within the Reasoning Engine (RE) block of the architecture. The details of this architecture

is discussed in detail in [24] .

Fig. 2. Data stream.

t

r

d

s

i

d

D

g

i

f

s

w

P

3 DFO is also called the data processing component.
rate, data communication frequency, communication patterns and

protocols. In this paper, we focus on developing a system-level

configuration model for IoT midddleware platforms. System-level

configuration focuses on changing the behaviour of IoT middleware

systems by configuring internal software components. Specifically,

our proposed model identifies, composes, and configures both sen-

sors and data processing components in order to create the data

streams based on user requirements.

We start by briefly introducing a reference architecture for IoT

middleware. Our reference architecture, a detailed description of

which is given in [24] , is presented in Fig. 1 . The details are pre-

sented in [24] . Even though the details of this reference architec-

ture are out of scope of this paper, we would like to briefly intro-

duce some of the major responsibilities of an IoT middleware and

its different components. The objective of an IoT middleware from

users’ perspective is to collect sensor data streams so they can in-

ject them into an application that is capable of performing analy-

sis [4] . A data stream is simply a set of data items that is captured

and transferred to the users sequentially and continuously at cer-

tain intervals (e.g. every 5 s, every 2 h). A sample data stream is

illustrated in Fig. 2 . A data stream may consist of one type of data

(e.g. as illustrated in data stream 2 in Fig. 2) or multiple types of

data (e.g. as illustrated in data stream 1 in Fig. 1).

The reference architecture illustrated in Fig. 1 consists of four

layers: Data, Semantics, and Context Dissemination Layer (DSCDL),

Context Processing and Reasoning Layer (CPRL), Context and Se-

mantic Discovery Layer (CSDL), and Sensor Data Acquisition Layer

(SDAL). Data, Semantics, and Context Dissemination Layer (DSCDL)

is responsible for user management. The components belong-

ing to this layer are data dispatcher, request manager, and pub-

lish/subscribe. Typically, users will not know about the technical

details of the sensors or data processing components. They only

know about the problem they need to solve. therefore, users need
o be provided with the easy-to-use mechanisms to express their

equirements in high-level without requiring technical knowledge.

The Processing and Reasoning Layer (CPRL) is responsible for

ata processing, reasoning, fusing, knowledge generating and

toring. In this layer data processing components are organized

nto work-flows in such a way that they collectively produce the

ata streams required by the consumers. Context and Semantic

iscovery Layer (CSDL) is responsible for managing context and

enerating secondary context information from primary context

nformation. Sensor Data Acquisition Layer (SDAL) is responsible

or acquiring data. This layer communicates with hardware and

oftware sensors and retrieves sensor data into IoT middleware.

In this reference architecture, data processing components sit

ithin the Data Fusion Operator 3 (DFO) registry. Similarly, Context

rovider Registry (CPR) keeps track of the data items captured by

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 125

t

a

t

a

a

a

m

p

t

I

p

r

2

v

c

S

a

p

n

d

p

w

n

l

t

T

t

d

t

H

m

h

T

a

d

e

t

l

t

s

[

D

r

a

t

u

a

p

t

s

s

t

t

e

i

C

n

c

s

f

a

e

d

q

t

H

p

m

t

c

r

p

m

i

o

t

a

a

o

t

f

i

r

d

t

c

e

n

[

[

t

d

d

e

3

d

p

e

d

O
he sensors. Reasoning Engine (RE) is responsible for building the

bove mentioned work-flow solutions to satisfy user requests.

The challenge of configuring an IoT middleware solution at run

ime can be understood by analysing an existing middleware such

s Global Sensor Networks (GSN) [1] . Some of the key challenges

re as follows.

• Users need to know the low-level details such as data types

and measurement units of the sensors in order to request them

manually.

• It is extremely difficult to memorise different combinations of

sensor data types that can be used to fulfil user requirements

(e.g. which sensors need to be composed together to detect an

event?). In particular, domain knowledge (e.g., relating to agri-

culture) is difficult to memorise when there are multiple ways

of building a given data stream.

• Users need to know the availability of data processing compo-

nents, their input/output data types and their capabilities to de-

velop a strategy. Data processing operations need to be applied

on data in the correct sequence.

• There is no way to find out the strategies to overcome the is-

sues when existing hardware resources (i.e. existing sensors)

and software resources (i.e. data processing components) are

incapable of producing the results that users required.

• Further, the solutions designed by users may not be optimal

(e.g. due to the variability of hardware and software costs).

An ideal IoT middleware configuration model should address

ll the above mentioned challenges. The proposed configuration

odel, CASCOM, is applicable towards several other emerging

aradigms, such as sensing as a service [35] . Our proposed solu-

ion combines technologies from different research areas such as

oT middleware, semantic technologies, software component com-

osition, and context-aware computing. We discuss major related

esearch efforts in the remainder of this section.

.2. Related work

Microsoft SensorMap [18] (sensormap.org) is a data sharing and

isualization framework. It is a peer produced sensor network that

onsists of sensors deployed by contributors around the world.

ensorMap mashes up sensor data on a map interface. Then, it

llows to selectively query sensors and visualize data. Our ap-

roach completely automates the configuration process by elimi-

ating the requirement of hand picking sensors. Linked Sensor Mid-

leware (LSM) [29] (lsm.deri.ie) is a platform that provides wrap-

ers for real time data collection and publishing. It also provides a

eb interface for sensor search, linked stream data query, data an-

otation and visualisation. LSM mainly focuses on linked data pub-

ishing. Sensor selection needs to be done manually in order to re-

rieve sensor data. Xively (Xively.com) is a platform for Internet of

hings devices. Xively allows different data sources to be connected

o it. Then, it provides functionalities such as event triggering and

ata filtering. It acts as a mediator between sensors and applica-

ions where users need to manually select and configure sensors.

yperCat (hypercat.io) is an open, lightweight JSON-based hyper-

edia catalogue format for exposing collections of URIs. HyperCat

as proposed the notion of describing resources in a semantic way.

hese descriptions are designed for exposing information about IoT

ssets over the web. HyperCat provides a standard mechanism for

evelopers to publish linked-data descriptions of resources.

Context-awareness is a critical functionality that needs to be

mbedded into IoT middleware solutions [25] . Context informa-

ion (e.g. accuracy, reliability, cost) plays a significant role in se-

ecting sensors and data processing components [23] . To support

his, CASCOM provides context discovery functionalities by using

emantic knowledge and fusing raw sensor data. The SensorMashup
28] platform offers a visual composer for sensor data streams.

ata sources and intermediate analytical tools are described by

eference to an ontology, enabling an integrated discovery mech-

nism for such sources. Selection of data sources and analytical

ools based on user requirement need to be done manually by

sers. Khemakhem et al. [14] use multiple ontologies to discover

nd compose software components by focusing on non-functional

roprieties. In web service composition domain, service composi-

ion means composing a larger service by combining many smaller

ervices. This is the same principle used when composing a larger

oftware component from many smaller components.

Web service (WS) composition using ontologies [17] is similar

o IoT resource composition performed in CASCOM from a func-

ional point of view but different from an implementation and

xecution point of view. Web services composition domain only

nvolves in combining multiple software components. In contrast,

ASCOM needs to deal with both hardware and software compo-

ents in its configuration model. We present a comparison of WS

omposition and IoT resource composition in Table 1 .

Leitner et al. [16] have proposed a cost-based service compo-

ition model to support service level agreements (SLA) in manu-

acturing domain. Similar to our approach, in SLAs, customers are

llowed to express their requirements and expectations (e.g. mon-

tary costs, time to deliver, quality). Based on the customer needs,

ifferent service providers will be used to accommodate the re-

uest order (e.g. normal shipping or express shipping). However,

hese composition are done based on predefined business rules.

addad et al. [11] have addressed the issue of selecting and com-

osing Web services not only according to their functional require-

ents but also to their transactional properties and QoS charac-

eristics. Though QoS characteristics are important in IoT resource

omposition domain, transactional properties are less relevant. The

eason is that IoT resource composition does not need to sup-

ort compensations or undoing transactions. Bronsted et al. [7] has

entioned that ‘Only 10 cases use scenario-based evaluation, which

s most realistic because it involves actual use by users. So, for many

f the mechanisms, there’s weak empirical support for the claim that

hey work in realistic settings’ . This is one of the reasons we evalu-

te our approach using use-case and also described the processes

nd techniques using real-world applications. Kritikos and Plex-

usakis [15] have discussed quality of service and its importance

owards web service discovery. They recognize QoS as a set of per-

ormance and domain-dependent attributes that has a substantial

mpact on WS requesters’ expectations. This is also similar in IoT

esource composition domain as well.

Several projects [9] have designed and developed ontologies to

escribe software components. Such approaches have helped them

o perform dynamic composition of software components. A pro-

ess of software component matching using ontologies has been

xplained in [21] . In our work we employed the Software Compo-

ent Ontology discussed in [9] . Semantic Sensor Ontology (SSNO)

10] also allowed us to model sensor descriptions. Noguchi et al.

19] have proposed a mechanism that generates connection be-

ween different software components in order to process sensor

ata and detect events. In contrast, our objective is to produce the

ata streams required by the users so they can be further analysed

xtensively using sophisticated applications.

. Research challenges

This section describes and analyses the research challenges in

etail with concrete examples and scenarios. Fig. 3 illustrates the

roblem in general. The explanations are based on agriculture and

nvironmental monitoring domains. The proposed solution helps

ata consumers to overcome the difficulties listed in Section 2 .

ur research question is ‘How to develop a model that allows non-IT

126 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

Table 1

Comparison of web services composition and IoT resource composition Domains. In summary, web services selection is based on virtual capabilities and characteristics

where IoT resources selection is based on both physical and virtual capabilities and characteristics. As a result, IoT resources are much complex elements to be selected and

composed autonomously than web services.

Web service domain [36] IoT domain

Similarities • Consuming single web service may not create significant value.

Therefore, web services selection and composition is critical to

generate value.

• Collecting data from a single sensor may not create significant value.

Therefore, sensor selection and composition is critical to generate value.

• Many alternative web services are available to use • Many alternative sensors will be available to use

• Can be found through directory services • Middleware solutions such as OpenIoT and GSN will play a mediator

roles between sensors and sensor data consumers

• Quality of services matters [34] . • Quality of sensors (and data) matters

• There are free as well as paid services. • There will be free as well as paid sensors

Differences • Web service compose with other web services in to work-flows. • Sensors and data processing components compose together into

work-flows.

• Largely guided by standards. • No standards (yet) [12] .

• Largely depend on software. • Largely depend on hardware, firmware, as well as software

• Less uncertainty (unless some hardware sensors are involved. e.g,

data from weather stations.)

• More uncertainty.

• Not tangible and more reliable. • Sensors are Tangible, could be mobile and less reliable.

• Some web services accept data as input and produce some data

based on them (e.g. data fusion).

• Some sensors may accept queries/conditions/preferences as inputs and

produce data based on them. Nevertheless, sensors do not accept raw

data with the intention of fusing data.

• Data send to the consumer using web services. • Comparatively, more sensors will be accessible over the Internet by 2020

[31] .

• Comparatively, fewer web services will accessible over the Internet

by 2020 [36] .

• Sensors, typically provides less meaningful raw sensor data where they

need to be processed by data processing components.

• Typically provide more meaningful processed and refined data.

Fig. 3. The problem definition in general.

Fig. 4. Use cases that illustrates the need of CASCOM.

p

n

c

d

a

c

c

t

a

c

t

n

t

e

t

u

m

f

1

(

c

n

a

(

n

c

r

4 we employed rules based reasoning in this disuccions.
experts to configure sensors and data processing mechanisms in an IoT

middleware according to their requirements?’ . The notations we use

in this section are presented in Table 2 . Other notations we used

in this paper are as follows: Wrapper (W) and Virtual Sensor (VS).

Fig. 4 illustrates two scenarios from two different domains. Each

of them has different consumer requirements that lead to two dif-

ferent execution flows. We selected these two scenarios due to the

fact that, together, they allow us to showcase the full capabilities of

Context-Aware Sensor Configuration Model (CASCOM). In use case

1, a plant scientist wants to monitor whether the experimental

crops can be infected by Phytophtora [3] disease or not. Phytoph-

tora is a fungal disease which can enter a field through a variety

of sources. The development and associated attack of the crop de-

pends strongly on the climatological conditions within the field.

Humidity plays a major role in the development of Phytophtora .

Both temperature and whether or not the leaves are wet are also

important indicators to monitor Phytophtora . The following facts

explain Phytophtora monitoring (simplified for demonstration pur-
oses). It is important to highlight that rule-based reasoning 4 does

ot intended to replace rule engines [32] . The objective here is to

reate the data items that are required by the application.

• IF Air Temperature < α AND Air Humidity < β THEN Air

Stress level = low ELSE Air Stress level = high

• IF Air Stress = high AND Leaf Wetness > δ THEN Phytophtora

Disease = Can-be-infected ELSE = Cannot-be-infected

One of the responsibilities of an IoT middleware is to combine

ifferent sensors and data processing components autonomously

nd produce a data stream as illustrated in Fig. 2 . Mostly, our fo-

us is on data streams that consists of multiple data types. A data

onsumer can feed the data stream into an application for fur-

her complex processing such as visualization and modelling that

llows the data consumers to achieve their objectives. The main

hallenge is that the plant scientist may not know (or remember)

he domain knowledge listed as rules above. Further, we should

ot expect a plant scientist to write XML or Java code as part of

he configuration. An ideal IoT middleware should help the sci-

ntist (non-IT expert) to overcome these challenges by providing

ools that are easy to use. The scientist should be able to config-

re the middleware according to the problems/tasks at hand with

inimum effort. Additionally, advanced customization will be use-

ul to optimize the configuration process. Comparatively, use case

 is less complex as there is only one way to monitor the disease

above rules). For example, the sensor types and data processing

omponents need to be used are straight forward.

• Use case (1) Solution: ((S AT , S AH) ⇒ C 1 , S LW

) ⇒ C 2

As symbolized in the above statement, the IoT resource may

eed to be composed as follows. First, air temperature (S AT) and

ir humidity (S AH) need to be fed into airStressDetector component

 C 1). Then, it produces the airStress as the outcome. Then leaf wet-

ess (S LW

) and airStress need to be fed into phytophtoraMonitor

omponent (C 2). It produces the phytophtoraDisease status. The IoT

esource composition is illustrated in Fig. 5

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 127

Table 2

Common algorithmic notations.

Symbol Definition

S Complete set of sensors described in the data model.

S α S denotes the sensor and subscript α denotes the types of the sensor. Examples are listed in Table 3 .

M θ Model represent the complete ontology based semantic data model. The θ can be replaced by either c as (i.e. M c) or s (i.e. M s). c demotes the

complete model and s denotes the subset of the complete model.

T Filtered set of tasks described in the data model.

T u Task selected by the user (or sensor data consumer) where IoT middleware needs to be configured accordingly.

�β SPARQL query that selects different properties from the data model. β can be replaced by t tasks, a answers, q questions, and d data streams.

Q Filtered set of questions described in the data model (List of questions).

Q u Single question selected by the user to answer.

A Filtered set of answers described in the data model (List of answers).

A u Single answer selected by the user.

C γ (�): z C denotes the data processing components where γ is used an identifier to distinguish each different component. Arguments/ parameters accept by

each components are depicted by � as set. � may accept one or more inputs as denoted by ‘ λ# ’. The symbol # denotes the number of the input

parameter. The type of each argument is depicted by letters such as x, y (i.e. � = { λ1 x, λ2 y }). The return value is depicted by letter after ‘:’ symbol.

Examples are listed in Table 4 .

H Filtered set of solutions composed by CASCOM which are capable to producing data streams required by the user.

H u A single solution composed by CASCOM which are capable to producing data streams required by the user. Solutions is a composition of sensors and

data processing components formulated into a certain order.

D Filtered set of different data-streams that can fulfil user requirements. Data stream is a continuous flow of data which encompasses several data items.

D A single data stream is composed with number of different data items.

Πi This denotes the ith data item of a given data stream.

R Recommendation list that contains information about sensors and data processing components that are not available. Acquire such resources will help

to facilitates user requirement in the future.

P List of all the data items that are available to be captured by the IoT middleware either directly through active wrappers or by combining / composing

such data iteams with data processing components. Depending in the complexity of retrieving and generating data items, we categorize them into

number of categories.

P A single data item that is available to be captured from active wrapper.

M Additional list context information that can be discovered by the users if needed.

σ Matrix that stores the information about input / outputs of data processing components and data items in P .

Table 3

Subset of sensors.

Sensor Explanation

S AT Air Temperature

S AH Air Humidity

S LW Leaf Wetness

S CM Carbon Monoxide

S CD Carbon Dioxide

S MO Molecular Oxygen

S ME Methane

S ND Nitrogen Dioxide

Table 4

Subset of DPCs.

Sensor Explanation

C 1 (�): z airStressDetector

C 2 (�): z phytophtoraMonitor

C 3 (�): z pollutionDetector

C 4 (�): z airQualityMonitor

s

r

u

a

c

s

n

t

t

i

r

i

r

Fig. 5. Resource composition in IoT.

m

d

o

n

a

c

d

o

o

u

i

p

p
Configuration becomes a complex task in the use case 2. In this

cenario, an environmental scientist wants to measure the envi-

onmental pollution in Canberra, Australia. In comparison to the

se case 1, there are many different ways to measure and visu-

lize pollution. Different sensors and data processing components

an be combined together to fulfil the requirements of data con-

umers as listed below. Even the same Data Processing Compo-

ents (DPC) may accept different combination of input in order

o perform the same task. DPC is a black box that accept certain

ypes of inputs and produces certain types of outputs. The reason-

ng happen within a given DPC could be varies from, rules based

easoning, statistical reasoning, logical inferencing machine learn-

ng, probabilistic reasoning and so on. As an example, we used a

ule based DPC in the paper discussion.

• Use case (2) Solution 1: (S , S , S , S , S) ⇒ C
CM CD MO ME ND 4
• Use case (2) Solution 2: (S CD , S ND) ⇒ C 3
• Use case (2) Solution 3: (S AT , S CD , S ME) ⇒ C 4

In such circumstances, it is important to consider context infor-

ation (e.g. accuracy, reliability) and cost of data acquisition (e.g.

ata communication time and computation time). The availability

f more than one option allows a data consumers to make the fi-

al decision on which solution to be used depending on the cost

nd context factors. Both hardware and software costs need to be

onsidered. Additionally, data consumers may need to discover ad-

itional context information [25] . Depending on the requirements

f the data consumers and application requirements, the required

utput data stream may vary. Sample data streams, in relation to

se case 1, are listed below.

• Output 1: airTemperature [double], airHumidity [double],

airStress [string],

leafWetness [double], PhytophtoraDisease [boolean]

• Output 2: PhytophtoraDisease [boolean], location [string], bat-

teryLevel[double]

Previously, we explained that the objective of IoT middleware

s to produce data streams so the users can inject them into ap-

lications. We assume that these applications will accept multi-

le different data streams as illustrated in Fig. 6 . The ideology is

128 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

Fig. 6. Each application may accept different data streams and provide outputs at

different detail levels.

Fig. 7. The Context-Aware Sensor Configuration Model (CASCoM).

Fig. 8. A part of QA-TDO shows how we developed the QA model. It is important

to note the pattern (i.e. Task → Concept → Question).

s

t

u

a

f

d

t

d

s

a

d

t

c

a

v

f

l

l

a

m

p

t

a

a

a

a

f

t

e

d

t

p

o

I

i

p

e

t

k

a

(

C

p

w

p

r

5 A solution is a combination of sensors and data processing components that

can be composed together in order to satisfy the user requirements.
that when these applications are provided with more data items,

they will perform better or provide additional featured / results.

However, each application will have a minimum number of data

items that it would accept in order to perform the primary task it

promises to deliver. For example, if the application 2 (in Fig. 6) is

provided with PhytophtoraDisease and location data, it will simply

mark the areas which are under risk of getting infected by Phy-

tophtoraDisease . In contrast, if the application 2 is provided with

more information such as batteryLevel, leafWetness , and airStress , it

will produces more detailed and comprehensive visualization that

may include risk level with certain confidence. Raw data values of

leafWetness , and airStress may help the application 2 to perform

these additional calculations and predictions.

In summary, we assume each application would perform one

or more tasks (e.g. PhytophtoraDisease monitoring). Each applica-

tion would accept one more different data streams. In such cir-

cumstances, each data stream may consist of different types of

data items. Additionally, different developers (or companies) or the

same developer may develop multiple applications that perform

the same tasks. Similarly, we also assume that there would mul-

tiple data processing components that would perform the same

data fusion operations though their context information may var-

ied. Due to the large number of possibilities, IoT middleware plat-

forms require an automated process to optimally serve the user

requests.

4. Architectural design

Based on the challenges we identified in Section 3 , we designed

a model, which is supported by a tool, to overcome the difficul-

ties. Context-Aware Sensor Configuration Model (CASCOM) sim-

plifies the IoT middleware configuration process significantly. Our

proposed model allows non-technical personnel to configure IoT

middleware effortlessly. All the technical configurations are han-

dled internally behind the scenes without the users’ involvement.

Additionally, we offer several advanced features that allow opti-

mization and customizations. As depicted in Fig. 7 , CASCOM con-

sists of six phases. Some phases may or may not be visible to the

users. Phases are different from the steps needed to be followed in

the CASCOM Tool.

CASCOM Execution flow: In phase 1, data consumers (users) in-

teract with a graphical user interface that is based on a question-

answer (QA) approach, to specify their requirements. Users can an-
wer as many questions as possible. CASCOM searches and filters

he tasks that the user may want to perform. From the filtered list,

sers can select the desired task. The details of the QA approach

re presented later in this section. In phase 2, CASCOM searches

or different programming components that allow to generate the

ata stream required. In phase 3, CASCOM tries to find the sensors

hat can be used to produce the inputs required by the selected

ata processing components. If CASCOM fails to produce the data

treams required by the users due to insufficient resources (i.e. un-

vailability of the sensors), it will provide advice and recommen-

ations on future sensor deployments in phase 4. Phase 5 allows

he users to capture additional context information. The additional

ontext information that can be derived using available resources

nd knowledge are listed to be selected. In phase 6, users are pro-

ided with one or more solutions. 5 CASCOM calculates the costs

or each solution. By default, CASCOM will select the solution with

owest cost. However, users can select the cost models (discussed

ater in this section) as they required. Finally, CASCOM generates

ll the configuration files and program codes which the actual IoT

iddleware may requires [27] . Data starts streaming soon after.

Phase 1: Understand user requirements: The objective of this

hase is to help data consumers to search for a task (e.g. Phy-

ophtoraDisease monitoring) that they need to perform easily from

 large number of possibilities. For example, data consumers are

llowed to narrow down the possibilities by mentioning facts such

s domain (e.g, agriculture), and type of the task (e.g. event, visu-

lization). In order to increase the usability, CASCOM retrieves the

acts from the data consumers through a QA model (Sample ques-

ions: Do you want to visualize data?, Do you want to detect an

vent?, Do you want to monitor a disease infection? What is the

omain your task is related to?). When a user answer a question,

he remaining questions will be dynamically selected based on the

revious answer. An extract of the proposed Question and Answer

riented Task Description Ontology (QA+TDO) is presented in Fig. 8 .

n QA+TDO, tasks can be explained by any concept as depicted

n C 1, C 2, etc. in Fig. 8 . Each concept should have a ‘hasQuestion’

roperty which links to a question (i.e. Q 1, Q 2 and so on). It is

xpected that new questions will be added to the QA+TDO over

ime by different domain experts and contributors as part of the

nowledge modelling process so the non-technical users can take

dvantage of them. In QA+TDO, C are answers to the questions.

e.g, If Q 1 = What is the domain your task is related to?, then

 5 is ‘domain’ and an individual of C 5 can be ‘agriculture’ .). This

rocess is presented in algorithmic perspective in Algorithm 1 ,

hich takes the data model as the input and outputs the user

referred task. The design philosophy of this algorithm is that it

epeatedly allow the user to select questions and answer them.

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 129

Algorithm 1 Question-answer based task filtering.

Require: (M).

1: Output: T u
2: M ← Load data into model

3: while T u != NULL do

4: Q ← executeQuery (�q , M)

5: Q u ← Ask user to select a question from Q

6: Add Q u to �

7: A ← executeQuery (�a , M)

8: A u ← Ask user to select a answer from A

9: Add A u to �

10: T ← executeQuery (�t , M)

11: T u ← Ask user to select a task from T

12: if T u != NULL then

13: return T u
14: end if

15: end while

A

u

E

o

a

u

t

b

u

b

i

n

d

t

i

p

S

a

s

p

f

q

r

t

c

s

s

t

C

h

a

h

b

p

s

f

s

i

d

d

m

r

Algorithm 2 Resources composition and recommendation.

Require: (M), (T u)

1: Output: H , R

2: M ← Load data into model

3: D ← executeQuery (�d , T u , M)

4: //D = { Π1 , Π2 , Π3 ...Πn }
5: for all D ∈ D do

6: for all Πi ∈ D do

7: if Πi == output of a sensor S α in the set S then

8: add S α to H u

9: else

10: if Πi == output of a component C γ in the set C then

11: add C γ to H u

12: composeF ur ther (C γ , H u)

13: else

14: add λ# to R

15: end if

16: end if

17: end for

18: end for

19:

20: Function composeF ur ther (C γ , H u)

21: for all λ# ∈ � of C γ do

22: if λ# == output of a sensor S α in the set S then

23: add S α to H u

24: break

25: else

26: if Πi == output of a component C γ in the set C then

27: add C γ to H u

28: composeF ur ther (C γ , H u)

29: else

30: add λ# to R

31: end if

32: end if

33: end for

t

d

o

t

n

e

d

q

t

t

w

m

T

t

s

n

m

p

a

r

m

t

j

S

d

a
s a result, the algorithm will generate a SPAQRL statement and

pdate it every time when a user selects and answers a question.

very time a user answers a question, the number of possible

ptions offered to the users will get reduced as the new Q&A will

lways add more constraints to the query.

Let us briefly explain the Algorithm 1 . CASCOM first allows

sers to select a question as demoted in Q u . Next CASCOM uses Q u

o query its knowledge-base. The results are denoted as A . Next,

oth question and answers is amended to a single query � . � is

sed to query the knowledge-base and resulted tasks are denoted

y T . This process repeats until users find the tasks they are look-

ng for T u .

Phase 2 and 3: Select sensors and data processing compo-

ents: CASCOM requires all the information related to sensors and

ata processing components to be stored in a repository. We ex-

ended the Software Component Ontology [9] (SCO) as presented

n Fig. 9 in order to model information about data processing com-

onents. Further, we modelled sensor descriptions using semantic

ensor Ontology (SSN) [10] . In this phase, the software components

re selected in such a way that they can together produce the data

tream required to perform the task selected in phase 1. For exam-

le, in order to monitor PhytophtoraDisease , first CASCOM searches

or a software component that can be used to produce the re-

uired data. It first finds PhytophtoraDisease Detector . The inputs it

equires are air stress and leaf wetness . Phase 3 selects the sensors

hat produce the output that matches the inputs of the selected

omponent. Leaf wetness can be measured directly using hardware

ensors. However, air stress cannot be detected using any physical

ensor. This requires CASCOM to execute phase 2 again in order

o find a software component that produces air stress . Then CAS-

OM finds Air Stress Detector which takes air temperature and air

umidity as inputs and produces air stress as the output. Further,

ir temperature and air humidity can be sensed directly through

ardware sensors. The IoT middleware configuration process will

e completed once the required sensors and data processing com-

onents are identified. The remaining phases are optional.

CASCOM performs validation as illustrated in Fig. 10 . During the

ensors and data processing components composition process, dif-

erent criteria are evaluated (e.g. data types: int, boolean / mea-

urement units: Celsius, Fahrenheit) in order to verify whether the

nputs and outputs are compatible. The above mentioned proce-

ures are presented in algorithmic perspective in Algorithm 2 .

This algorithms takes the data model (demoted by M) and the

ata stream elements of the user preferred task as the inputs (de-

oted by T u). First, it finds out what are the output data stream

equired by the user preferred task (denoted by D). Then, it at-
empts to generate that data stream by composing sensors and

ata processing components (from line 5–18). The design philos-

phy behind the search and composition is that priority is given

o prepare the output data stream using direct sensor outputs (de-

oted by S α). If this is not possible (e.g. when a certain data el-

ment cannot be directly sensed), the algorithm will search for a

ata processing component which may be able to produce the re-

uired output (denoted by C γ). If it succeeds, then the inputs of

he selected data processing component will be searched (using

he composeFurther (C γ , H u)). As illustrated in Fig. 5 , this process

ill continue until the algorithms finds ways to produce the ele-

ents in the required output data stream.

Phase 4 (Optional): Provide advice and recommendations:

hrough comparing SSN ontology and SCO, this phase identities

he resource insufficiencies and provides advice to the data con-

umers regarding future sensor deployments and software compo-

ent acquisition. This phase provides alternative advice if there are

ultiple ways to address the insufficiencies (e.g. use case 2). As

resented in Algorithm 2 , resource insufficiencies are also detected

nd identified during the resource composition process. A list of

esource insufficiencies is prepared and returned as R .

Lets consider use case 2. Its objective is to determine environ-

ental pollution in a city. As presented in Section 3 , there are

hree different solutions that that can be used to achieve this ob-

ective. Assume, in our IoT system, we only have access to sensors

 CD and S ME . However, those two sensors are not capable of pro-

ucing data that is required by any of the exiting DPCs, namely C 3
nd C . Therefore, this phase of our model recommends users to
4

130 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

Fig. 9. Extracts of different ontological data models used in CASCOM: QA-TDO, SCO [9] , and SSN ontology [10] . The colour coding refers to different prefixes. Prefixes in

abbreviated Internationalized Resource Identifiers (IRIs).

Fig. 10. IoT Resource compositions need to be validated before presented to the

users. Semantic meanings as well as syntactic definition (e.g. programming level

data types) need to matched and compatible.

m

h

c

c

m

s

e

N

i

[

t

w

m

e

g

c

r

i

o

g

c

C

a

o

I

p
deploy either sensors S ND or S AT . Such deployments will fulfil the

data requirements of above components.

Phase 5 (Optional): Additional context discovery: With the

help of knowledge modelled in ontologies, this phase discovers

context information that can be derived by using sensor data. Ad-

ditional context information such as sensor location and sensor

battery life may be required by applications in order to perform

complex tasks such as geographical visualization and developing

energy-aware sensing schedules. Therefore, discovering additional

context is important. Each application may have a compulsory set

of inputs that it needs to perform the primary task, though they
ay accept additional context information in order to provide en-

anced results.

First, all the data items directly retrieved through sensors (we

all them parameters and denoted by P) are added to a list of

ontext information denoted by M . Such pieces of context infor-

ation are referred to as primary context [25] . Each wrapper has

et of data items (i.e. parameters) it can produce. Set of param-

ter produce by each active wrapper is noted by { P

0 , P

1 , P

2 ... P

n } .
ext, these primary context parameters are composed with all ex-

sting DPCs (denoted by C) to check whether secondary context

25] can be produced. If possible, such secondary context parame-

ers are also added to the list of context information denoted M as

ell. The context discovery procedures are presented in algorith-

ic perspective in self-explanatory Algorithm 3 . Further, We can

xplain the context discovery procedure using the Fig. 11 . This al-

orithm works independently from users’ preferences. Further, it

an also be preprocessed. The design philosophy behind this algo-

ithm is that it attempts to identify all possible secondary context

nformation that can be generated by combining all the possible

utputs of sensors as well as data processing components. This al-

orithm is only required to run when a new sensor or data pro-

essing component appears or when existing resource disappears.

Phase 6 (Optional): Context-based cost calculation: In CAS-

OM, the main objective is to identify the required IoT resources

t a conceptual-level. In the first 5 phases, we achieve this main

bjective. In phase 6, we focus on identifying actual IoT resources.

t is important to note that there can be multiple DPCs that can

erform similar tasks. Further, there are large numbers of sensors

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 131

Algorithm 3 Context discovery.

Require: (List of Active Wrappers).

1: Output: M

2: P = { P

0 , P

1 , P

2 ... P

n }
3: P

0 ← List data items available through active wrappers

4: add P

0 to M

5: for all P

i ∈ P

n do

6: for all C ∈ C do

7: for all λ# ∈ C do

8: if λ# == any P in the set P

i then

9: add � to λ# of C in σ
10: end if

11: end for

12: end for

13: for all C ∈ C do

14: if All λ# of C == � then

15: add output of C to P

i +1

16: add � to λ# of C in σ
17: end if

18: end for

19: end for

20: for all C ∈ C do

21: if All λ# of C == � then

22: add output of C to M

23: end if

24: end for

Fig. 11. Primary and secondary context discovery.

a

I

c

s

p

p

t

fi

c

c

t

[

d

5

l

a

m

T

o

F

v

t

a

b

c

a

f

l

a

t

s

k

s

m

c

6

c

u

6

c

J

p

d

u

W

N

i

p

[

a

t

q

t

l

o

c

s

D

S

e

r

6

t

w

u

p

m

t

o

t

6 jena.apache.org/documentation/tdb .
vailable with overlapping and sometimes redundant functionality.

n such situation, data consumers may want to decide the exact

riteria that IoT resources selection process should consider.

CASCOM performs ontological reasoning to find out all possible

olutions. Each solution may combine different sensors and data

rocessing components where their costs may different. For exam-

le, different types of sensors can be used to monitor environmen-

al pollution as illustrated in Fig. 4 . Cost does not always refer to

nancial terms (e.g, sensors: energy, bandwidth, latency; data pro-

essing: memory requirement, processing time). By default, all the

ontext parameters are treated equally. However, users can define

heir priorities for each context property in comparative fashion

23] . If the users want more reliable sensors, the reliability can be

efined with more priority, but it may increase the cost.

. Description generation tool

In our proposed model, the description of IoT resources and re-

ated knowledge play a significant role. Today, even though there

re sophisticated tools that can be used to develop ontologies and

odel instances such as Protege [20] , they are very complex to use.

he learning curve of these tools are significant. The user interface
f Protege tool, with CASCOM data model opened, is presented in

ig. 12 (a). As it is clearly visible, the Protege user interface looks

ery complex to someone who has never used it before and hard

o understand where to even begin.

In CASCOM, we expect data processing components, sensors,

nd domain knowledge to be collectively described and modelled

y developers, domain experts, and non-technical personnel (e.g.

apabilities, inputs, output, etc.). However, not even all developers

re familiar with semantic modelling tools such as Protege . There-

ore, we built a very simple form-based tool where anyone can

earn and use it with very limited effort. They can fill the form

nd the tool will model the according to CASCOM ontology behind

he scenes. More importantly, this tool can be used to add IoT re-

ource descriptions to existing knowledge models. Our form-based

nowledge modelling tool in presented in Fig. 12 (b). This tool con-

ists of number to separate tabs where each tab allows users to

odel certain type of knowledge (e.g. describe a data processing

omponent, describe sensors, add domain knowledge, etc.).

. Implementation and experimentation

This section presents implementation details of our proof of

oncept development and evaluation from both computational and

sability perspectives.

.1. Testbed

For proof of concept deployment and evaluation, we used a

omputer with Intel(R) Core i7 CPU and 16GB RAM. We used the

ava programming language to develop the CASCOM tool and em-

loyed the open source Apache Jena API to manipulate semantic

ata. We used a Jena TDB-backed

6 approach to store the data. The

ser interface has been developed using the Java Swing framework.

e modelled sensor descriptions according to the Semantic Sensor

etwork Ontology (SSN) [10] . Further, we modelled data process-

ng components (DPC) descriptions according to the Software Com-

onent Ontology Plus (SCO+). The proposed SCO+ is based on SCO

9] , but additionally supports modelling context information such

s accuracy and reliability as presented in Fig. 9 .

To evaluate the proposed model, we developed a software tool

hat is illustrated in Fig. 13 . First, data consumers can select a

uestion that they can answer from the drop down box. Then,

hey are allowed to answer the question. Possible answers will be

isted in the next panel. Next, consumers can either answer an-

ther question by clicking Answer More button. In contrast, they

an click Search Tasks button to search possible sensing tasks. Pos-

ible sensing tasks will be listed at the bottom of the next panel.

ata consumers can select the sensing task they want and click

earch Solution button. CASCOM will automatically generate differ-

nt compositions of IoT resource that can perform the sensing task

equested by the consumer.

.2. Methodology

We evaluated CASCOM using both qualitative and quantita-

ive methods. We analysed and compared our proposed solution

ith respect to the existing GSN configuration model [1] . First, let

s present our quantitative evaluation strategy (i.e. computational

erformance). In Fig. 14 a, we examined the feasibility of CASCOM

odel in term of how much data storage capacity is required as

he knowledge-base grows. In Fig. 14 b, we examined the feasibility

f CASCOM by measuring the variability of the data model loading

ime as the knowledge-base grows. Next, in Fig. 14 c, we evaluated

http://jena.apache.org/documentation/tdb

132 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

Fig. 12. Semantic Data Modelling Tools: (a) Protege and (b) proposed IoT resource description tool.

Fig. 13. User interface of the software tool that supports CASCOM.

(a)

(b)

(c)

(d)

'
'

&$

(e) (f)

Fig. 14. CASCOM performance evaluations.

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 133

t

w

r

c

u

m

o

a

e

d

(

a

s

G

t

w

d

i

c

c

S

b

r

t

f

(

e

p

y

c

o

I

7

w

m

f

k

t

i

fi

[

t

w

o

I

i

t

c

i

a

s

d

a

m

c

p

p

h

a

m

i

w

d

c

p

a

p

G

e

C

p

s

G

G

t

i

o

t

t

t

h

C

i

a

d

d

t

i

o

M

c

C

t

a

p

t

t

b

t

d

a

s

d

i

7

b

b

s

(
he variability of query processing time, related to searching tasks,

hen the knowledge-base grows. In Fig. 14 d, we examined how IoT

esource composition and secondary context discovery query pro-

essing time varied as the knowledge-base grows. In order to eval-

ate CASCOM’s computational performance, we generated a data

odel, according to the ontology presented in Fig. 9 , that consists

f large amount of IoT resource descriptions.

Now, let us present our qualitative evaluation strategy (i.e us-

bility). We used three use-case scenarios for this evaluation. In

ach use case, the user was required to configure the IoT mid-

leware in such a way that it produces a specific data stream:

1) monitor Phytophtora disease , (2) monitor environmental pollution ,

nd (3) monitor and analyse crowd movement (indoor) . Further, we

elected three types of users: (1) IT experts who were familiar with

SN configuration process , (2) IT experts who was were familiar with

he GSN , and (3) non-IT experts .

For the usability study, we created a similar data model, but

ith a small number of IoT resource descriptions. Details of these

ata sets are presented below. For each use case, a set of basic

nstructions and programming guidelines that explains the GSN

onfiguration process were given. First, we asked the users to

onfigure the GSN middleware without the support of CASCOM.

econdly, we asked the users to configure the GSN middleware

y using CASCOM. We measured the time taken by each user and

esults are presented in Fig. 14 e. In this evaluation, we considered

he time taken by both users as well as by the computer to per-

orm resource selection and composition. Further, 31 participants

15 IT expert who were not familiar with the GSN, 15 non-IT

xperts, and 1 IT expert who was familiar with GSN configuration

rocess) were involved in this experiment. In Fig. 14 f, we anal-

sed different phases of the configuration process separately and

ompared the current approaches with the CASCOM approach. In

rder to make the results comparable, we assumed the users are

T experts who know the GSN configuration process.

. Results, discussion and lessons learned

As shown in Fig. 14 a, the storage requirement grows linearly 7

hen the knowledge-base grows. In semantic modelling, the data

odel loading time is proportionate to the data model size. There-

ore, as expected, loading time also grows linearly when the

nowledge-base grows as shown in Fig. 14 b. However, it is impor-

ant to note that the actual data model size and the actual load-

ng time vary based on the data modelling technique used (e.g.

le-based, database-based) and the semantic framework employed

6] (e.g. Jena, Sesame). The amount of time that is required to load

he CASCOM data model into memory is less than 200 s even

hen it contains 10 0,0 0 0 8 descriptions. Similarly, Jena-TDB takes

nly 1GB to model and store 10 0,0 0 0 IoT resource descriptions. 9

n similar conditions, task searching query can return the results

n less than 1.5 s as show in Fig. 14 c. Further, resource composi-

ion can also be completed in 2.5 s as shown in Fig. 14 d. When we

onsider real world deployments, it is very unlikely that a single

nstance os GSN middleware would host over a 10 0,0 0 0 sensors

nd data processing components connect to it. Based on these re-

ults we can conclude that CASCOM is feasible to use in real-world

eployment.

In semantic data modelling, model size, storage requirement,

nd query times depend on the number of descriptions that are

odelled in a given store. Let us consider the data model de-
7 Graphs in logarithmic scale.
8 10 0,0 0 0 means we have modelled 10 0,0 0 0 sensor descriptions, data processing

omponents, and tasks related knowledge descriptions each.
9 In our synthetic data generation process, we assume each data processing com-

onent accepts three inputs and produce one output.

a

e

o

i

icted in Fig. 9 . In this model (as well as in our simulations), we

ave used only a part of the SSN ontology, because the other parts

re irrelevant for the composition process. However, if we want to

odel using the full SSNO, the model size would grow depend-

ng on how much more information (i.e. nodes and edges) that we

ant to include in order to describe a given set of IoT resources.

As also presented in Fig. 14 e, non-IT experts required extremely

etailed guidelines (compared to IT experts) to perform the

onfiguration as they are not familiar with the activities such as

rogramming. They also required direct verbal assistant from the

uthors. In addition, it was revealed that non-IT experts and IT ex-

erts who are not familiar with GSN were unable to configure the

SN at all without guidelines. In contrast, simple guidelines that

xplain the GUI allowed all users to complete the given task, using

ASCOM, within a fairly similar amount of time. Though the com-

lexity of the user requirement (i.e. configuration related to each

cenario) makes visible impact on configuration time in the current

SN approach, it diminishes when users use CASCOM to configure

SN. Fig. 14 e shows that CASCOM allows to considerably reduce

he time required for configuration of data processing mechanism

n IoT middleware. Specifically, CASCOM allowed the three types

f users to complete the given task approximately 40, 110 and 210

imes faster (respectively) in comparison to the existing approach.

According to Fig. 14 f, even IT experts who know GSN can save

ime by using CASCOM up to 86%. Specially, time taken for defining

he Virtual Sensor Definition (VSD) and Virtual Sensor (VS) class

ave been significantly reduced. 10 Both files can be generated by

ASCOM autonomously within a second even for complex scenar-

os. However, the time taken to find data processing components

nd sensors (and wrappers) depends on the size of the semantic

ata model.

As CASCOM models knowledge according to ontologies, users

o not need to memorise domain knowledge (i.e. which sensor data

ypes are required to perform a certain task?). This is an significant

mprovement over the existing approach. Due to the employment

f semantic technologies, CASCOM is extensible into any domain.

ore importantly, adding new sensor descriptions and data pro-

essing component descriptions to the data model overtime allows

ASCOM to compose new solutions. Ontological reasoning allows

o deal with inconsistent usage of domain specific terminologies

mong domain experts. Ontologies helped in CASCOM to deal with

erforming validating task in composition of data components. Al-

ernative to ontologies, we could have used a configuration file

hat explains which programming components and sensors need to

e used to produce the required data stream for a given applica-

ion (e.g. template-base approach). However, such an approach will

rastically reduce the interoperability and flexibility. In IoT, ideal

pproaches should be able to dynamically compose and configure

ensors and data processing components as it is impossible pre-

ict their availability at give time (new sensors and data process-

ng components may available to use).

.1. Revisiting challenges

In this section, we summarise how the challenges and draw-

acks identified in the related work section are being addressed

y our proposed solution. Main weakness in the existing solutions,

uch as Microsoft SensorMap [18] and Linked Sensor Middleware

LSM) [29] , is that they are user driven and not scalable and . Users

re expected to conduct discovery and composition by themselves

ither using naked eye (i.e. looking at the user interface provided)

r limited keyword-based search facilities. In contrast, CASCOM is
10 VSD, VS are both configuration files that need to be dealt with when configur-

ng GSN middleware. More details are available in [1] .

134 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

[

[

[

[

[

a knowledge driven approach where users only required to input

very high level user requirement. The discovery and composition

is done autonomously based on the knowledge model. As CAS-

COM models knowledge according to ontologies, users do not need

to memorise domain knowledge. This is an significant improve-

ment over the existing approach such as Microsoft SensorMap and

Linked Sensor Middleware (LSM). Our results also show that knowl-

edge driven approach allowed users to accomplish their task much

faster than the user driven approaches.

Additionally, we successfully demonstrated how hardware re-

sources and software resources can be composed into work flows

to achieve certain tasks. This is an advancement over existing ap-

proaches such as web service composition [14,17] where only soft-

ware services are composed together.

8. Conclusions and future work

In this paper, we proposed a semantic knowledge driven IoT

resource discovery and composition engine to assist sensor data

consumers to retrieve the data they want quickly and effortlessly.

In particular, we focus on facilitating non-technical users to use

IoT middleware platforms without spending too much time on

learning technical details. To achieve this, we developed an IoT

middleware configuration model called CASCOM. CASCOM makes

the configuration process much easier by providing a sophisticate

graphical user interface to express user requirements. Through a

proof of concept implementation, we evaluated CASCOM both in

term of usability and computational complexity. The results shows

that the proposed model is significantly useful for non-technical

personal to use IoT middleware platforms to retrieve data. CAS-

COM engine is highly flexible and scalable due to its knowledge

driven nature where we can add more descriptions about data

processing components and sensors over time. We have also

done computational evaluations to demonstrate the feasibility

and scalability of our proposed model. In additions to its primary

role, CASCOM is capable of discovering secondary context through

processing primary context information.

In the future, we would like to incorporate privacy aspects into

the model. Currently, CASCOM is not considering any privacy vio-

lations that may occur when data processing components and sen-

sors are composed together. It is important to evaluate and verify

all consumer requests received by an IoT middleware to make sure

that data owners’ privacy are protected at all times. More impor-

tantly, for some consumer tasks (e.g. monitor and analyse crowd

movement (indoor)), privacy would be a greater concern than for

others (e.g. monitor Phytophtora disease).

Acknowledgments

Dr. Charith Perera’s work has been funded by The Australian

National University, The Commonwealth Scientific and Industrial

Research Organisation (CSIRO), and European Research Council Ad-

vanced Grant 291652 (ASAP).

References

[1] K. Aberer , M. Hauswirth , A. Salehi , Infrastructure for data processing in large-s-
cale interconnected sensor networks, in: International Conference on Mobile

Data Management, 2007, pp. 198–205 .
[2] L. Atzori , A. Iera , G. Morabito , The internet of things: A survey, Comput. Netw.

54 (15) (2010) 2787–2805 .
[3] A. Baggio, Wireless Sensor Networks in Precision Agriculture, Technical Re-

port, Delft University of Technology The Netherlands, 2009 . http://www.sics.
se/realwsn05/papers/baggio05wireless.pdf [Accessed on: 2012-05-10].

[4] S. Bandyopadhyay , M. Sengupta , S. Maiti , S. Dutta , Role of middleware for in-

ternet of things: A study, Int. J. Comput. Sci. Eng. Surv. 2 (2011) 94–105 .
[5] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Kranenburg, S. Lange, S. Meiss-

ner (Eds.), Enabling Things to Talk: Designing IoT solutions with the IoT Ar-
chitectural Reference Model, Database Management & Information Retrieval,

Springer-Verlag, Berlin Heidelberg, 2013 .
[6] C. Bizer , A. Schultz , The berlin sparql benchmark, Int. J. Semantic Web Inf. Syst.
5 (2) (2009) 1–24 .

[7] J. Bronsted , K. Hansen , M. Ingstrup , Service composition issues in pervasive
computing, Pervas. Comput. IEEE 9 (1) (2010) 62–70 .

[8] R. Buyya , C.S. Yeo , S. Venugopal , J. Broberg , I. Brandic , Cloud computing and
emerging {IT} platforms: Vision, hype, and reality for delivering computing as

the 5th utility, Future Generat. Comput. Syst. 25 (6) (2009) 599–616 .
[9] F.E. Castillo-Barrera , R.C.M. Ramirez , H.A. Duran-Limon , Knowledge capital-

ization in a component-based software factory: a semantic viewpoint, in:

LA-NMR, 2011, pp. 105–114 .
[10] M. Compton , P. Barnaghi , L. Bermudez , R. Garca-Castro , O. Corcho , S. Cox ,

J. Graybeal , M. Hauswirth , C. Henson , A. Herzog , V. Huang , K. Janowicz ,
W.D. Kelsey , D.L. Phuoc , L. Lefort , M. Leggieri , H. Neuhaus , A. Nikolov , K. Page ,

A . Passant , A . Sheth , K. Taylor , The ssn ontology of the w3c semantic sensor
network incubator group, Web Semantics 17 (0) (2012) 25–32 .

[11] J. El Hadad , M. Manouvrier , M. Rukoz , Tqos: Transactional and qos-aware se-

lection algorithm for automatic web service composition, Serv. Comput. IEEE
Trans. 3 (1) (2010) 73–85 .

[12] J. Gubbi , R. Buyya , S. Marusic , M. Palaniswami , Internet of things (iot): A vi-
sion, architectural elements, and future directions, Future Generat. Comput.

Syst. 29 (7) (2013) 1645–1660 . Including Special sections: Cyber-enabled
Distributed Computing for Ubiquitous Cloud and Network Services &

Cloud Computing and Scientific Applications Big Data, Scalable Analytics, and

Beyond.
[13] S. Hodges , S. Taylor , N. Villar , J. Scott , D. Bial , P. Fischer , Prototyping connected

devices for the internet of things, Computer 46 (2) (2013) 26–34 .
[14] S. Khemakhem, K. Drira, M. Jmaiel, Semantic matching to achieve software

component discovery and composition, Technical Report, Laboratory for Anal-
ysis and Architecture of Systems, 2012 . http://hal.archives-ouvertes.fr/docs/00/

79/62/46/PDF/paper12.pdf [Accessed on: 2013-02-05].

[15] K. Kritikos , D. Plexousakis , Requirements for qos-based web service description
and discovery, IEEE Trans. Serv. Comput. 2 (4) (2009) 320–337 .

[16] P. Leitner , W. Hummer , S. Dustdar , Cost-based optimization of service compo-
sitions, Serv. Comput. IEEE Trans. 6 (2) (2013) 239–251 .

[17] E. Maximilien , M. Singh , A framework and ontology for dynamic web services
selection, Internet Comput. IEEE 8 (5) (2004) 84–93 .

[18] S. Nath , J. Liu , F. Zhao , Sensormap for wide-area sensor webs, Computer 40 (7)

(2007) 90–93 .
[19] H. Noguchi , T. Mori , T. Sato , Automatic generation and connection of program

components based on rdf sensor description in network middleware, in: Intel-
ligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006,

pp. 2008–2014 .
[20] N. Noy , M. Sintek , S. Decker , M. Crubezy , R. Fergerson , M. Musen , Creating

semantic web contents with protege-20 0 0, Intel. Syst. IEEE 16 (2) (2001)

60–71 .
[21] C. Pahl , An ontology for software component matching, in: Proceedings of the

6th International Conference on Fundamental Approaches to Software Engi-
neering, in: FASE’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 6–21 .

22] S. Patidar , D. Rane , P. Jain , A survey paper on cloud computing, in: Advanced
Computing Communication Technologies (ACCT), 2012 Second International

Conference on, 2012, pp. 394–398 .
[23] C. Perera , A. Zaslavsky , P. Christen , M. Compton , D. Georgakopoulos , Contex-

t-aware sensor search, selection and ranking model for internet of things mid-

dleware, in: IEEE 14th International Conference on Mobile Data Management
(MDM), Milan, Italy, 2013, pp. 314–322 .

[24] C. Perera , A. Zaslavsky , P. Christen , D. Georgakopoulos , Ca4iot: Context aware-
ness for internet of things, in: IEEE International Conference on Conference on

Internet of Things (iThing), Besanon, France, 2012, pp. 775–782 .
25] C. Perera , A. Zaslavsky , P. Christen , D. Georgakopoulos , Context aware comput-

ing for the internet of things: A survey, Commun. Surv. Tut. IEEE 16 (1) (2013)

414–454 .
26] C. Perera , A. Zaslavsky , P. Christen , D. Georgakopoulos , Sensing as a service

model for smart cities supported by internet of things, Trans. Emerg. Telecom-
mun. Technol. (ETT) 25 (1) (2014) 81–93 .

[27] C. Perera , A. Zaslavsky , M. Compton , P. Christen , D. Georgakopoulos , Context
aware sensor configuration model for internet of things, in: Proceedings of the

12th International Semantic Web Conference (Poster & Demo) (ISWC), Sydney,

Australia, 2013, pp. 253–256 .
[28] D.L. Phuoc , M. Hauswirth , Linked open data in sensor data mashups, in: In

Proceedings of the 2nd International Workshop on Semantic Sensor Networks
(SSN09), volume 522, CEUR Workshop at ISWC 2009, Washington DC, USA,

2009, pp. 1–16 .
29] D.L. Phuoc , H.N.M. Quoc , J.X. Parreira , M. Hauswirth , The linked sensor mid-

dleware - connecting the real world and the semantic web, in: International

Semantic Web Conference (ISWC), 2011 .
[30] Z. Song , A. Cá andrdenas , R. Masuoka , Semantic middleware for the internet of

things, in: Internet of Things (IOT), 2010, 2010, pp. 1–8 .
[31] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelffle, Vision and Challenges for

Realising the Internet of Things, Technical Report, European Commission Infor-
mation Society and Media, 2010 . http://www.internet- of- things- research.eu/

pdf/IoT _ Clusterbook _ March _ 2010.pdf [Accessed on: 2011-10-10].

32] K. Taylor , L. Leidinger , Ontology-driven complex event processing in hetero-
geneous sensor networks, in: Proceedings of the 8th Extended Semantic Web

Conference on the Semanic Web: Research and Applications - Volume Part II,
in: ESWC’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 285–299 .

http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0002
http://www.sics.se/realwsn05/papers/baggio05wireless.pdf
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0013
http://hal.archives-ouvertes.fr/docs/00/79/62/46/PDF/paper12.pdf
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0030
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0032

C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136 135

[

[

[

[
33] T. Teixeira , S. Hachem , V. Issarny , N. Georgantas , Service oriented middle-
ware for the internet of things: A perspective, in: ServiceWave, in: Proceed-

ings of the 4th European conference on Towards a service-based internet,
Springer-Verlag, Poznan, Poland, 2011, pp. 220–229 .

34] Q. Wu , Q. Zhu , Transactional and qos-aware dynamic service composition
based on ant colony optimization, Future Generat. Comput. Syst. 29 (5) (2013)

1112–1119 . Special section: Hybrid Cloud Computing.
35] A. Zaslavsky , C. Perera , D. Georgakopoulos , Sensing as a service and big data,
in: International Conference on Advances in Cloud Computing (ACC-2012),

Bangalore, India, 2012, pp. 21–29 .
36] Z. Zheng , Y. Zhang , M. Lyu , Investigating qos of real-world web services, Serv.

Comput. IEEE Trans. 7 (1) (2014) 32–39 .

http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30201-5/sbref0036

136 C. Perera, A.V. Vasilakos / Knowledge-Based Systems 109 (2016) 122–136

ersity, UK. Previously he worked at the Information Engineering Laboratory, ICT Center,

zation (CSIRO). Perera received his BSc (Hons) in Computer Science from Staffordshire
inistration from University of Wales, Cardiff, UK and PhD in Computer Science from The

earch interests include the Internet of Things, smart cities, mobile and pervasive comput-

 member of both IEEE and ACM. Contact him at charith.perera@ieee.org.

er Science, Electrical and Space Engineering, Lulea University of Technology, Lulea, Swe-

ram Committee Chair for many internation conferences. He also served or is serving as
ch as IEEE TNSM, IEEE TSMC-partB, IEEE TITB, IEEE JSAC special issues of May 2009, Jan.

agazine. He is founding Editor-in-Chief of the International Journal of Adaptive and Au-
rnational Journal of Arts and Technology (IJART). He is also General Chair of the Council

ces for Innovation.
Charith Perera is a Research Associate at The Open Univ

Commonwealth Scientific and Industrial Research Organi
University, Stoke-on-Trent, UK and MBA in Business Adm

Australian National University, Canberra, Australia. His res

ing, context-awareness, and ubiquitous computing. He is a

Athanasios V. Vasilakos is a professor at Dept of Comput

den. He has served as General Chair, and Techinical Prog
Editor or/and Guest Editor for many technical journals, su

2011, March 2011, ACM TAAS and IEEE Communications M
tonomous Communications Systems (IJAACS) and the Inte

of Computing and Communications of the European Allian

	A knowledge-based resource discovery for Internet of Things
	1 Introduction
	1.1 Motivation
	1.2 Main contributions

	2 Background and related work
	2.1 Background
	2.2 Related work

	3 Research challenges
	4 Architectural design
	5 Description generation tool
	6 Implementation and experimentation
	6.1 Testbed
	6.2 Methodology

	7 Results, discussion and lessons learned
	7.1 Revisiting challenges

	8 Conclusions and future work
	 Acknowledgments
	 References

