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In this paper, we present a bi-objective mixed-integer linear programming (BOMILP) model for planning an inspection
process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system.
The model involves two inter-related decisions: (1) which quality characteristics need what kind of inspections (i.e.
which-what decision) and (2) when the inspection of these characteristics should be performed (i.e. when decision).
These decisions require a trade-off between the cost of manufacturing (i.e. production, inspection and scrap costs) and
the customer satisfaction. Due to inevitable variations in manufacturing systems, a global robust BOMILP (RBOMILP)
is developed to tackle the inherent uncertainty of the concerned parameters (i.e. production and inspection times, errors
type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model,
a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo
methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automo-
tive industry in France.

Keywords: multi-stage production system; conformity inspection; monitoring inspection; multi-objective optimisation;
robust optimisation; differential evolution

1. Introduction

Since many production processes are technologically incapable of producing high-quality products, a quality manage-
ment system has gained increasingly high importance in many modern production systems. In most of the production
processes, incapable production techniques, defective equipment and inferior raw materials are some of the external fac-
tors resulting in quality problems (Alfares and Attia 2017). Accordingly, production managers are constantly attempting
to provide a quality control system (QCS) to obtain high-quality products in the presence of such adverse external fac-
tors. In order to secure an effective QCS under such conditions, in-line quality control measures are employed more
intensively, and if workable, automatically. For having an effective QCS, firms invest large amounts in inspection sys-
tems, and inspection planning problems stay on top of the manager’s concerns. Inspection allocation and selection deci-
sions are actually made by quality managers; however, an overall framework for their decisions when they should
decide which quality characteristics of the products need to be inspected and when to be inspected through the process
and how to be inspected (i.e. which type of inspection) is almost missing.

Decisions regarding the inspection of products to detect the nonconforming parts before being sold are made in
every production system (Sun, Ren, and Yin 2017). In particular, planning of inspection in a multi-stage production sys-
tem (MPS), in which raw materials are transformed into the final product through a series of distinct and consecutive
processing stages, has been recognised as one of the major necessities in production systems. Since an MPS presents
various possibilities for inspection, inspection activities in an MPS may be performed after some or every processing
step. Therefore, inspection planning (IP) in an MPS is to determine the must-inspect quality characteristics as well as
time and type of the inspections.

In an inspection planning process, conformity (CI) and monitoring (MI) inspections are integrated with production
processes (Mohammadi et al. 2014, 2015). CI is a collective term used for a number of activities (e.g. testing, inspection
and certification) to specify whether the final product meets designed characteristics. In other words, CI determines
whether the product has correctly been manufactured based on a process plan and it complies with design specifications.
More importantly, in CI no deviation from the design specifications is allowed and nonconforming products might be
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reproduced or reworked to bring them into conformance. Therefore, the main aim of CI is to minimise the production
cost by early detection of nonconforming products and to maximise customer satisfaction through removing defective
products before being sold (Hinrichs 2011; Etienne et al. 2017). During CI, the production process is temporarily
stopped and all products (i.e. 100% frequency) or a sample of products are inspected to verify whether the most impor-
tant quality characteristics meet design specifications. Since stopping the production process results in a significant
decrease in both yield and productivity, MI, with a lower frequency than CI, can be performed as a process status veri-
fier. By MI, critical processing features (e.g. feed speed of a drilling machine, force, temperature ant, etc.) are monitored
not to deviate from their set value (Yu and Chen 2016).

Decisions regarding the implementation of CI and/or MI highly depend on the importance of quality characteristics.
For example, CI is implemented on those quality characteristics that directly correspond to the product function, where
even a small malfunction may highly decrease the customer satisfaction. On the other hand, MI is performed to increase
the capability of the processes and to reduce the deviation from standard tolerances and ultimately, to minimise the num-
ber of defective/nonconforming products. Simultaneous implementation of both CI and MI to secure quality characteris-
tics is the most reliable way to decrease the number of defectives and, respectively, reach the highest customer
satisfaction level. However, due to recourse limitations, simultaneous implementation is mainly impractical as the total
production cost increases significantly. Therefore, a trade-off between production cost and customer satisfaction should
be made to find the most preferable inspection plan.

In addition to the elaborated concerns in planning an inspection process, lack of information about production pro-
cesses and several environmental factors imposes a degree of uncertainty to inspection planning decisions (Galbraith
1973; Ho 1989; Han et al. 2016). Although uncertainty and manufacturing variations (e.g. performance degradation and
non-conformance to specifications) are almost inevitable in practice, classical methods mainly consider deterministic
conditions during the planning of an inspection process; while manufacturing processes are stochastic in nature. Conse-
quently, a per cent of the manufactured products do not conform design specifications and the corresponding process
becomes sensitive to manufacturing variations. Traditionally, tight tolerance or higher precision manufacturing process
was being applied to cope with uncertainty, which mainly led to a huge manufacturing cost. Hence, manufacturers are
interested in less sensitive manufacturing processes. These manufacturing processes are called robust processes that are
relatively insensitive to alteration of uncertain parameters.

Finally, robust planning of an inspection process to pick out the critical quality characteristics and to determine the
type and the location of the inspections is the main problem that this paper attempts to address.

The rest of this paper is organised as follow. Section 2 reviews the relevant papers in the literature. Section 3
explains the proposed BOMILP model. Section 4 describes the global robust optimisation approach. The solution algo-
rithm is explained in Section 5. The experimental results of the real industrial case are provided in Section 6, and finally
the paper is concluded in Section 7.

2. Literature review

This section updates our previous work (Mohammadi et al. 2015) by adding more relevant papers published in inspec-
tion planning problem. Inspection planning problems have been studied by many researchers since the 1960s. A basic
conceptual model was proposed by Lindsay and Bishop (1964) and the authors considered perfect inspection accuracy
for workstations of attribute data (WAD), in which all rejected items are scrapped. They also assumed that the inspec-
tion station could only check the outcome of the immediately preceding workstation. The extension of their study was
proposed by White (1966), in which the rejected items are replaced with conforming ones. Hurst (1973) first planned an
inspection process by considering both inspection errors type I and type II. Peters and Williams (1984) proposed five
heuristic decision rules to find the location of the inspections. This work was extended later by Yum and McDowell
(1987) in form of a mixed-integer linear programming model by adding the consideration of a rework activity.
Chakravarty and Shtub (1987) investigated the impact of set-up and inventory costs on inspection strategies such as ‘all
or none’ versus ‘partial’ inspection. The authors proposed a shortest path heuristic algorithm to determine the strategic
location of inspections and production lot sizes. Barad (1990) provided a solution-oriented technique based on the con-
cept of break-even quality level. Viswanadham, Sharma, and Taneja (1996) mathematically modelled the location prob-
lem of inspections in an MPS and developed two stochastic search algorithms for solving the problem, one based on
simulated annealing (SA) and the other on genetic algorithm (GA). Similarly, Bai and Yun (1996) developed a cost
model and an algorithm to find optimal locations of inspections and inspection level in an MPS. Lee and Unnikrishnan
(1998) proposed a mathematical model to solve the inspection allocation problem in an MPS, in which various parts
with distinctive machinery steps are processed and inspections can be performed on one of the several inspection sta-
tions with corresponding inspection errors. Verduzco, Rene Villalobos, and Vega (2001) presented real-time inspection
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allocation that is based on the information gained by inspecting one additional component. They modelled the selection
of which components to be inspected as an information maximisation problem. Besides, a modified knapsack greedy
heuristic method was used to find near-optimal solutions to this optimisation problem within the required time
constraints.

Regarding the integration of the production process and the inspection plan, Lee and Kim (2001) proposed an opti-
misation model to integrate the inspection planning and scheduling using simulation-based genetic algorithms. The per-
formance measures based on the process plan combinations calculated by a simulation module instead of process plan
alternatives and the calculated measures are fed into a GA in order to improve the solution quality until the scheduling
objectives are satisfied. Emmons and Rabinowitz (2002) studied the planning of the layout and operation of an inspec-
tion process used to detect malfunctioning processors in an MPS. Their planning involved three inter-related decisions:
(i) overall inspection capacity, (ii) assignment of inspection activities to the inspectors and (iii) scheduling of the inspec-
tor’s tasks. Kogan and Raz (2002) proposed a mathematical model of managing the intensity, sequence and timing of
inspections in an N-stage production system with M inspection activities possible at each stage in order to minimise the
sum of inspection costs and penalties caused by undetected defects. Shiau (2002, 2003a) studied the inspection resource
assignment problem in an MPS by considering the inspection errors. They considered a limited number of inspections
to be assigned through the production process. The author also considered the inspection errors that happen due to rapid
changes of tolerances to satisfy the customer requirements.

Additionally, Shiau (2003b) studied an inspection-allocation planning (IAP) problem for MPS, in which the produc-
tion recourses are restricted and the limited number of inspections is considered for solving the IAP problem. This paper
solved the IAP problem using a unit cost model, in which manufacturing capability, inspection capability and specified
tolerances are simultaneously considered. Rau and Chu (2005) considered inspection allocation problems for an MPS
with two types of workstations, workstation of attribute data (WAD) and workstation of variable data (WVD), in which
three strategies are adopted to treat nonconforming parts (i.e. repair, rework and scrap). They developed a profit model
for optimally allocating inspections and a heuristic solution method to solve the model. Hanne and Nickel (2005) devel-
oped a multi-objective inspection planning model considering objectives with respect to quality (No. of defects), project
makespan and costs within a software development (SD) project. The developed model of SD processes includes differ-
ent phases as coding, inspection, test, and rework and comprises the assignment of operations to the operators and the
generation of a project schedule. By integrating the production process and the inspection planning, Shiau, Lin, and
Chuang (2007) declared that higher performance of a production industry can be realised if the process and the inspec-
tion plans become integrated to cope with the limited manufacturing resources. They also developed a GA for solving
large-sized problems. In another work, Ferreira, Almeida, and Cavalcante (2009) proposed an optimisation model to
determine the inspection intervals for MI in case of equipment’s failure.

Colledani and Tolio (2006) proposed an approach to evaluate the overall performance of a system considering both
quality and production logistics. The results obtained by the application of the method provided new insight in the rela-
tions among the two areas and paved the way to the joint design of production logistics and QCSs. In a similar work,
Colledani and Tolio (2012) presented a general theory to combine quality, maintenance and production control contexts
in an MPS in order to analyse the production rate of conforming products in manufacturing systems with progressively
deteriorating machines and preventive maintenance. In addition, due to increasing pressure on high precision manufac-
turing and development of on-line measurement technologies, Colledani, Ebrahimi, and Tolio (2014) presented an inte-
grated quality and production logistics model to profitably manage the trade-off between selective and adaptive
assembly systems in emerging sectors, such as micro-production, biomedical and e-mobility industry. In another work,
Colledani et al. (2014) proposed the production quality as a new paradigm aiming at going beyond traditional six-sigma
approaches. Their new paradigm is extremely relevant in various technology intensive and emerging strategic manufac-
turing sectors. They claimed that the traditional six-sigma techniques show strong limitations in highly changeable pro-
duction contexts, characterised by small batch productions, customised, or even one-of-a-kind products, and in-line
product inspections. Therefore, innovative and integrated quality, production logistics and maintenance design, manage-
ment and control methods as well as advanced technological enablers have a key role to achieve the overall production
quality goal. Finally, they revised problems, methods and tools to support this paradigm.

Mohammadi et al. (2014) developed an optimisation framework for process inspection planning of an MPS with
multiple quality characteristics. They developed a single-objective mixed-integer programming model to minimise the
sum of manufacturing and warranty costs. By summing up, the warranty cost might be dominated by the manufacturing
cost in cases when the warranty cost is low. This domination may lead to transferring higher number of scraps to the
customers and consequently lower customer satisfaction. The authors also investigated the effect of uncertainty in
misadjustment and attempted to provide a robust inspection plan. Mousavi et al. (2015) proposed an intuitionistic fuzzy
grey model for selecting an inspection plan among different inspection scenarios considering conflicting criteria as
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inspection cost and customer satisfaction. Accordingly, they introduced a distance-based decision model for the
multi-attributes analysis by considering the concepts of intuitionistic fuzzy sets (IFSs), grey relations and compromise
ratio approaches. Their approach needs a priori set of inspection scenarios to be selected. Having such a priori set is
impossible when the decision-maker has not enough knowledge about the manufacturing and inspection processes as
well as the consequence of each decision. There is also no guarantee that the priori set consists of an optimal feasible
inspection plan. Their approach can be applied on the Pareto solutions obtained by the proposed mathematical model in
Section 3.4.

Regarding the uncertainty of input parameters, Kanyamibwa and Ord (2000) developed a form of the loss function
considering variability of a production process, decision loss, and costs of sampling and inspection. Specifically, they
considered monitoring a production process, which may undergo continuous mean shift and variance deterioration dur-
ing a production run. Kallgren et al. (2003) reviewed the present status of the role of measurement uncertainty in con-
formity assessment. Macii, Carbone, and Petri (2003) studied a theoretical analysis aimed at estimating the growth in
decisional risks due to both random and systematic errors. Also, they provided some useful guidelines about how to
choose the test uncertainty ratio of industry-rated measurement instruments in order to limit the risk of making wrong
decisions below a maximum preset value. Pajula and Ritala (2006) illustrated through a case study, how the control a
structure design that has been affected by uncertainty and how the corresponding dynamic problem is defined and
solved with rather regular tools. The interested readers are referred to the recent review of impact of uncertainty in pro-
duction inspection done by Desimoni and Brunetti (2011).

From the other aspects, some researchers have considered uncertainty in terms of risk in manufacturing processes.
Bassetto, Siadat, and Tollenaere (2011) presented the concept of risk typology and its use in the management of process
control deployment at a fab-wide level. They provided a comprehensive method based on the failure mode effect and
criticality analysis (FMECA) to control failures that count throughout an organisation. Khan and Haddara (2003) pre-
sented a new methodology for risk-based maintenance-inspection planning. They proposed a comprehensive and quanti-
tative methodology that comprises three main modules; namely, risk estimation module, risk evaluation module and
maintenance-inspection planning module.

Regardless of the context, several approaches have been developed to cope with the inherent uncertainty of the input
parameters (see Zahiri, Tavakkoli-Moghaddam, and Pishvaee 2014; Zahiri, Torabi, and Tavakkoli-Moghaddam 2017;
Zahiri, Zhuang, and Mohammadi 2017), out of which, the robust design has been shown to be the most effective tech-
nique in a manufacturing process to better address the manufacturing variations and uncertainty of the corresponding
input parameters (Chen et al. 1996; Xiaoping and Chen 2000; Gyung-Jin and Lee 2002; Beiqing and Du 2006;
Hans-Georg and Sendho 2007; Arvidsson and Gremyr 2008; Torben, Arvidsson, and Gremyr 2009; Khalaj, Makui, and
Tavakkoli-Moghaddam 2012; Mechri et al. 2013; Trosset 1997).

Almost all of the above-reviewed papers have only focused on allocating the inspection activities during the produc-
tion process without considering other decisions, such as picking out the critical quality characteristics to be inspected
and selecting the type of inspection activities (i.e. MI and/or CI). Despite the literature, this paper integrates the inspec-
tion plan with the production process to simultaneously pick out the critical quality characteristics and to determine the
type and the location of the inspections. Additionally, this paper takes into account the uncertainty of the input parame-
ters and investigates the effect of uncertainty on the final decisions. Comprehensively, this integration problem under
uncertainty is presented as a new robust bi-objective MILP model with a trade-off between production cost and cus-
tomer satisfaction as two conflicting objective functions. To the best of our knowledge, there is no model in the litera-
ture that is able to effectively and efficiently address all of these challenges. The proposed model and the solution
approaches are validated through a real industrial case from one of the leading automotive industries in France. Finally,
the sensitivity of the objective functions to the uncertain parameters is investigated to draw valuable managerial
insights.

Showing the gaps of the literature, the main contributions of this paper, which differentiate our efforts from those
already published on the subject, are as follows:

• Effectively integrating inspection plan with the production plan by performing inspection activities during the pro-
cess instead of having an acceptance or a rejection check at the end. This integration minimises the production
cost by early detection of the nonconforming products.

• Considering the monitoring inspection alongside the conformity inspection to monitor the processing parameters
and avoid the creation of nonconforming products.

• Proposing a new bi-objective mixed-integer linear programming (BOMILP) model for planning an inspection
process.

4 M. Mohammadi et al.
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• Making trade-off between two important targets in almost all industries as manufacturing cost and customer satis-
faction. These targets have been formulated as the objective functions of the proposed mathematical model.

• Taking into account the uncertainty of the input parameters by developing a global robust approach based on the
Taguchi loss function and the Monte Carlo simulation method.

• Studying a real industrial case from a leading automotive industry in France to validate the performance of the
proposed model and the robust solution approach.

• Developing a tailored meta-heuristic algorithm, namely differential evolution (DE), to solve the real industrial case.
• Investigating the sensitivity of the objective functions to the input parameters and extracting valuable managerial
insights.

3. Problem description and mathematical formulation

This section, first, describes the problem and main operational decisions; and second, develops the mathematical formu-
lation based on a BOMILP model.

3.1 Problem description

Consider a flow shop production system consisting of N serial stages with unlimited buffers, in which in-process parts
pass through all stages 1 to N sequentially and inspections are performed at m stages where m ≤ N. The in-process parts
are transported between stages manually and the transportation does not create any non-conformity in the part. It should
be noted that each stage can be an operation and a set of operations can be performed on the same machine. At each
stage, a unique operation is performed on the part and a new quality characteristic is created in the part. The output of
this stage is transferred to an inspection station or to the next processing stage. Suppose that a part consists of K quality
characteristics and all these characteristics are created during the production process. A part is ‘nonconforming’ if at
least one quality characteristic does not meet the design specifications. If a CI is performed between stages i and i + 1,
there is an opportunity to detect the nonconforming parts originated from the i-th stage or at some of the earlier stages.
The detected nonconforming parts are scrapped and no further rework is allowed. On the other hand, if an MI is per-
formed between stages i and i + 1, the processing features are monitored after a specific number of parts. An inspection
activity may involve two types of errors: misclassification of a conforming part as nonconforming (error type I) and
nonconforming one as conforming (error type II).

Adopted from Mohammadi et al. (2015), this paper plans the inspection process through two main decisions as (1)
which quality characteristics need what kind of CI or/and MI inspections (i.e. which-what decision) and (2) when the
inspection of these characteristics should be performed (i.e. when decision). For the first decision, although those charac-
teristics that have more impact on the product functionality and significantly affect the customer satisfaction should be
picked out, but all the characteristics cannot be inspected while the inspection cost is highly increased. The second deci-
sion about the location of the inspections is also challenging, in which the inspection of a characteristic can be done
only at particular stages throughout the production process. For example, the process cannot be stopped or accessibility
to and measuring that characteristic is impossible unless in some further stages (Mohammadi et al. 2015). In addition,
finding and removing nonconforming parts at initial stages is desired where nonconforming parts do not unnecessarily
go through further operations and the cost of production is consequently decreased. Hence, it is more sensible to detect
non-conformity immediately after its originating stage and before the next operation starts, but the number of inspection
stations and the process interruptions as well as the total cost of inspection are increased. As an example, consider a sit-
uation that each characteristic is inspected immediately after its creation. Since each inspection activity includes three
steps as: (1) removing the part from the machine, (2) inspecting and (3) setting up the part for the next operation; these
steps are unnecessarily repeated for each characteristic. On the other hand, when a set of characteristics is inspected at a
same allowable stage, the removing and setting up steps are needed only once (Mohammadi et al. 2015). Therefore,
making right and optimal which-what and when decisions are challenging and that this paper aims at coping with this
challenge. Figure 1 shows the flowchart of the inspection planning decisions.

3.2 Assumptions

The considered assumptions of the proposed BOMILP are listed as follows:

• The production system contains N manufacturing stages arranged serially, wherein one part type is processed with
K identical quality characteristics;
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• Different quality characteristics may be processed in a same manufacturing stage;
• Non-conformities are generated only at the manufacturing processes and other activities (e.g. movement, set-up
and inspection activities) do not make non-conformity;

• Each manufacturing stage has a failure rate of producing nonconforming parts;
• Two types of conformity (CI) and monitoring (MI) inspections are considered, while considering MI for a manu-
facturing stage decreases the failure rate of that stage;

• CI subjects to both errors type I and II;
• The frequency of MI is fixed;
• MI affects the mean value of the process capability statistics such as Ppk;
• Detected nonconforming items from CI are directly scrapped and no rework or repair operation is considered;
• A unit scrap cost is imposed to the system in case of detecting a nonconforming part. The scrap cost depends on
both the number of manufacturing stage and the quality characteristics;

• The production system reaches a steady state and system breakdown is not assumed;
• Input parameters of the problem are considered to be uncertain;
• In the robust model, we consider misadjustment that affects Cpk and Ppk as well as failure and scrap rates.

3.3 Notations

Necessary notations for the proposed mathematical formulation are provided as follows:

Sets
p; p0 2 1; 2; . . .;P þ 1f g Set of operations
k 2 1; 2; . . .;Kf g Set of different quality characteristics

Parameters
fr1pk Failure rate of operation p for characteristic k with monitoring inspection
fr2pk Failure rate of operation p for characteristic k without monitoring inspection
dpk Detection rate of conformity inspection assigned to operation p for characteristic k
αpk Type I error of conformity inspection assigned to operation p for characteristic k
βpk Type II error of conformity inspection assigned to operation p for characteristic k (βpk = 1 – dpk)
nT Total number of parts fed to the production process

Figure 1. Inspection planning flowchart.
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pcp Unit production cost per time for operation p
ptp Production time of operation p
scp Scrap cost of parts immediately after operation p
nck Cost of nonconforming part in the market due to characteristic k
fmpk Fixed cost of an MI station after operation p for characteristic k
fcpk Fixed cost of a CI station after operation p for characteristic k
vmpk Unit variable cost of MI per time performed after operation p for characteristic k
vcpk Unit variable cost of CI per time performed after operation p for characteristic k
mtpk Time of MI performed after operation p for characteristic k
ctpk Time of CI performed after operation p for characteristic k
fsp Fixed space cost per part of establishing inspection stations just after operation p
fp0p 1 if two operations p′ and p are dependent; and 0, otherwise
ψpk 1 if characteristic k belongs to operation p; and 0, otherwise
mfk Monitoring frequency for characteristic k
cfk Conformity frequency for characteristic k
Gk Relative importance of characteristic k
M A big number

Decision variables
NPpk Number of nonconforming parts due to characteristic k from operation p
YCpk 1 if operation p needs CI for characteristic k; and 0, otherwise
YMpk 1 if operation p needs MI for characteristic k; and 0, otherwise
XCk

p0p 1 if CI of operation p′ for characteristic k is performed immediately after operation p (p′ ≤ p);
and 0, otherwise

XMk
p0p 1 if MI of operation p′ for characteristic k is performed immediately after operation p (p′ ≤ p);

and 0, otherwise
Np Number of parts entering operation p
NMpk Number of MI performed between operations p and p + 1 for characteristic k
NCpk Number of CI performed between operations p and p + 1 for characteristic k
NSp Is 1 if there is an inspection station between operations p and p + 1
Spk Number of the scrapped part between operations p and p + 1 due to characteristic k
Sp Total number of the scrapped parts between operations p and p + 1
OFVτ The τ-th objective function value

3.4 Mathematical formulation

This section develops the proposed BOMILP model by mathematically representing the which-what and when decisions.
The first objective function of the model minimises the total manufacturing cost which includes costs associated with
production (TCP), scrap (TCS) and inspection (TCI). Total inspection cost contains total fixed inspection cost (TCIF)
and total variable inspection cost (TCIV), where TCI = TCIF + TCIV. The second objective function minimises the cus-
tomer satisfaction. Since customer satisfaction is typically a qualitative factor, in this paper, minimising the total war-
ranty cost (TCW) is considered to capture customer satisfaction. Warranty cost is the cost when a nonconforming part
reaches the customer and the company has to compensate the damages.

Through an inspection process plan, two different strategies can be adopted as well. First, a strategy considers that
all characteristics need inspection and at most one kind of inspection (i.e. MI or CI) should be performed. Second, by
relaxing some restrictions of the first strategy, it is considered that none, one or both of MI and CI (i.e. MI or/and CI)
can be performed for each characteristic. Hereafter, the first and second strategies are called MI-or-CI and MI-and-CI
strategies, respectively.

3.4.1 Objective functions

The objective functions of the model are mathematically formulated as Equations (1) and (2), respectively. Hereafter,
the first and second objective functions are called as internal and external costs, respectively.
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OFV 1 ¼ min TCW þ TCW þ TCIF þ TCIVf g (1)

OFV 2 ¼ min TCWf g (2)

where,

TCW ¼
XP
p¼1

pcpptpNp (3)

TCW ¼
XP
p¼1

scpSp (4)

TCIF ¼
XP
p¼1

XK
k¼1

fcpkNCpk þ
XP
p¼1

XK
k¼1

fmpkNMpk þ
XP
p¼1

fspNSpNp (5)

TCIV ¼
XP
p¼1

XK
k¼1

cfkctpkvcpkNpXC
k
p0p þ

XP
p¼1

XK
k¼1

mfkmtpkvmpkNpXM
k
p0p (6)

TCW ¼
XP
p¼1

XK
k¼1

Gknck NPpkYCpkbpk þ NPpk � YMpk

� �
(7)

3.4.2 Constraints

The constraints of the model have been provided as Constraints (8) to (18).

XP
p¼p0

fp0pXC
k
p0p ¼ wp0kYCp0k 8p0; k; p0 �P (8)

XP
p¼p0

fp0pXM
k
p0p ¼ wp0kYMp0k p0; k; p0 �P (9)

YCp0k þ YMp0k ¼ wp0k p0; k (10)

NPpk ¼ Np � YMpkfr
1
pk þ Np � YCpkfr

2
pk p; k; p�P (11)

Spk � XCk
p0p � NPp0k � dpk

h i
þ XCk

p0p � Np � apk � XCk
p0p � NPp0k � apk

h i
� XCk

p0p � NPp0k � bpk
h i

p; p0; k; p; p0 �P

(12)

Sp �Spk p; k; p�P (13)

Np ¼ Np�1 � Sp�1 p; p�P þ 1 (14)

N0 ¼ nT (15)

8 M. Mohammadi et al.
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NMpk �
XP
p0¼1

XMk
p0p 8p; k; p�P (16)

NCpk �
XP
p0¼1

XCk
p0p p; k; p�P (17)

M � NSp �
XP
p0¼1

XK
k¼1

XCk
p0p þ XMk

p0p

� �
p; p0; k; p; p0 �P (18)

Equations (8) and (9) ensure that CI and MI of a quality characteristic should be done for all part just in one inspec-
tion stage, respectively. Equation (10) forces that one kind of inspection is needed for each quality characteristic. This
equation is directly related to the MI-or-CI strategy. Equation (11) relates that the failure rate of an operation to the
decision whether the MI is considered for that characteristic or not. Constraints (12) and (13) calculate the number of
scraps after each inspection stage based on type I and type II errors. Constraints (14) and (15) determine the in-process
part after each operation, where the number of parts is decreased in presence of any inspection due to scrap detection
and removal. Equations (16) and (17) calculate total number of MIs and CIs throughout the whole production system.
Constraint (18) calculates different inspection stage among the whole process.

3.4.3 Linearisation

As it can be seen, the objective functions and some of the constraints include non-linear terms and this issue makes the
model difficult to solve. In order to address that, a linearisation technique is applied to linearise the non-linear terms. In
this technique, the product of each pair of variables is replaced by a new auxiliary variable and three extra constraints
are added to the model for each pair. It must be noted that this technique is used when at least one of the variables is
binary variable. For example, consider a binary variable X and a real variable Y. The problem is to linearise the product
of these two variables (i.e. X × Y). Therefore, a new real auxiliary variable Z is considered. Next, the term X × Y is
replaced by Z in the whole model. Finally, the following three constraints should be added accordingly.

Z�M � X ;

Z� Y ;

Z� Y �M 1� Xð Þ:
Necessary auxiliary variables are provided as follows.

Auxiliary variables
A

k
p0p Linear form of XCk

p0p � Np0

B
k
p0p Linear form of XMk

p0p � Np0

D
k
p0p Linear form of XCk

p0p � NPp0k
Epk Linear form of NPpk × YCpk

Fpk Linear form of NPpk × YMpk

Lp Linear form of NSp × Np

Upk Linear form of Np × YCpk

Vpk Linear form of Np × YMpk

3.4.4 Proposed BOMILP model under the MI-or-CI strategy

After adding the linearisation constraints (i.e. Constraints (23) to (46)), the final proposed BOMILP model under the
MI-or-CI strategy is proposed as follows.
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BOMILP (MI-or-CI):

MinOFV 1 ¼ PP
p¼1

pcpptpNp þ
PP
p¼1

scpSp þ
PP
p¼1

PK
k¼1

fcpkNCpk

þ PP
p¼1

PK
k¼1

cfkctpkvcpkAp þ
PP
p¼1

PK
k¼1

fmpkNMpk þ
PP
p¼1

PK
k¼1

mfkmtpkvmpkBp þ
PP
p¼1

fspLp

(19)

MinOFV 2 ¼
XP
p¼1

XK
k¼1

Gknck Epkbpk þ Fpk

� �
(20)

s.t.
Constraints (8)–(11), (13)–(18)

NPpk ¼ Vpkfr
1
pk þ Upkfr

2
pk 8p; k; p�P (21)

Spk � D
k
p0p � dpk

h i
þ A

k
p0p � apk � D

k
p0p � apk

h i
� D

k
p0p � bpk

h i
8p; p0; k; p; p0 �P (22)

A
k
p0p �M � XCk

p0p 8p; p0; k; p; p0 �P (23)

A
k
p0p �Np0 8p; p0; k; p; p0 �P (24)

A
k
p0p �Np0 �M 1� XCk

p0p

� �
8p; p0; k; p; p0 �P (25)

B
k
p0p �M � XMk

p0p 8p; p0; k; p; p0 �P (26)

B
k
p0p �Np0 8p; p0; k; p; p0 �P (27)

B
k
p0p �Np0 �M 1� XMk

p0p

� �
8p; p0; k; p; p0 �P (28)

Vp0k �M � YMp0k 8p; p0; k; p; p0 �P (29)

Vp0k �Np0 8p; p0; k; p; p0 �P (30)

Vp0k �Np0 �M 1� YMp0k
� � 8p; p0; k; p; p0 �P (31)

Up0k �M � YCp0k 8p; p0; k; p; p0 �P (32)

Up0k �Np0 8p; p0; k; p; p0 �P (33)

Up0k �Np0 �M 1� YCp0k
� � 8p; p0; k; p; p0 �P (34)

D
k
p0p �M � XCk

p0p 8p; p0; k; p; p0 �P (35)

D
k
p0p �NPp0k 8p; p0; k; p; p0 �P (36)

D
k
p0p �NPp0k �M 1� XCk

p0p

� �
8p; p0; k; p; p0 �P (37)

Ep0k �M � YCp0k 8p0; k; p0 �P (38)

10 M. Mohammadi et al.
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Ep0k �NPp0k 8p0; k; p0 �P (39)

Ep0k �NPp0k �M 1� YCp0k
� � 8p0; k; p0 �P (40)

Fp0k �M � YMp0k 8p0; k; p0 �P (41)

Fp0k �NPp0k 8p0; k; p0 �P (42)

Fp0k �NPp0 �M 1� YMp0k
� � 8p0; k; p0 �P (43)

Lp �M � NSp 8p; p�P (44)

Lp �Np 8p; p�P (45)

Lp �Np �M 1� NSp
� � 8p; p�P (46)

XCk
p0p;XM

k
p0p;NSp; Yp; YCp0k ; YMp0k 2 0; 1f g 8p; p0; p; p0 �P (47)

Spk ; Sp;D
k
p0p;NMpk ;NCpk ;A

k
p0p;B

k
p0p;NPpkEp0k ;Ep0k ;Lp;Np � 0 8p0; p; k; p0; p�P (48)

where, Constraints (47) and (48) are domain constraint.

3.4.5 Proposed BOMILP model under the MI-and-CI strategy

This section develops a BOMILP under the MI-and-CI strategy.

BOMILP (MI-and-CI):

MinOFV 1 ¼
XP
p¼1

pcpptpNp þ
XP
p¼1

scpSp þ
XP
p¼1

XK
k¼1

fcpkNCpk þ
XP
p¼1

XK
k¼1

cfkctpkvcpkAp þ
XP
p¼1

XK
k¼1

fmpkNMpk

þ
XP
p¼1

XK
k¼1

mfkmtpkvmpkBp þ
XP
p¼1

fspLp (19)

MinOFV 2 ¼
XP
p¼1

XK
k¼1

Gknck Epkbpk þ Fpk

� �
(20)

s.t.
Constraints (8), (9), (11), (13)–(18), (21)–(48)

YCp0k þ YMp0k � 2wp0k 8p0; k (49)

4. Global robust optimisation

As mentioned in Section 1, the lack of information about production processes and several environmental factors imposes
a degree of uncertainty to the planning parameters, which directly affect other decisions relating to the inspection process
(Galbraith, 1973; Ho, 1989). In most of the manufacturing industries, a minimum level of uncertainty is inevitable. There
are several parameters in the proposed BOMILP model that are affected by environmental factors and may fluctuate over
the time. These parameters are production and inspection times, errors type I and II of the inspection activities, dispersion
and misadjustment of the production processes. It should be noted that uncertainty in errors type I and II directly affects
the number and cost of scraps and indirectly influences the warranty cost. In addition, uncertainty in dispersion and
misadjustment of a process affects the failure rate and the number of scraps as depicted in Figures 2 and 3, respectively.
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Hence, manufacturers are interested in less sensitive manufacturing processes to the uncertain parameters. These manufac-
turing processes are called robust processes, which are relatively insensitive to alteration of the uncertain parameters. The
main goal of this section is to take into account the uncertainty in the BOMILP’s parameters and to design a global robust
BOMILP (RBOMILP) model.

In order to design a robust inspection process, two methods have been proposed as follows (Das 2000; Beyer,
Olhofer, and Sendhoff 2002):

• Optimising the expected value of the objective function under different alterations in the uncertain input
parameters.

• Minimising the variance of the objective function under different alterations in the uncertain input parameters.

It is noteworthy that not only the expectation-based measure does not sufficiently take care of fluctuations of the
objective function while these fluctuations are symmetric around the average value, but also a purely variance-based
measure does not also take the absolute value of the solution into account. Hence, an optimisation problem minimising
both expected value and variance of the objective function is desired to search the robust optimal solution. For these
purposes, the Taguchi method is applied as the objective function (50) that should be minimised (Gyung-Jin et al.
2006). First, the necessary notations are provided below:

Parameters
MCR Number of Monte Carlo runs
ω Weight factor of standard deviation in the Taguchi method
CPp Process Capability. A simple and straightforward indicator of process capability
CPkp Process Capability Index. Adjustment of CP for the effect of a non-centred distribution
ρMI Uncertainty factor of the process misadjustment under MI
ρCI Uncertainty factor of process misadjustment under CI
qr Uncertainty factor of process dispersion

Figure 2. Uncertainty in dispersion.

Figure 3. Uncertainty in misadjustment (Mohammadi et al. 2015).

12 M. Mohammadi et al.
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ρTP Uncertainty factor of production time
ρTMI Uncertainty factor of MI time
ρTCI Uncertainty factor of CI time
ρe_I Uncertainty factor of type I error
ρe_II Uncertainty factor of type II error

Variables
lOFV s

Expected value of the τ-th objective function
rOFV s Standard deviation of the objective function
R_OFVτ Robust value of the τ-th objective function

R OFV s ¼ lOFV s
þ xrOFV s 8s ¼ 1; 2 (50)

The alteration range for each uncertain parameter has been provided as Table 1.
where P z� Zf g is the cumulative probability of standard normal distribution. In order to alter the uncertain parame-

ters over their alteration range, a Monte Carlo simulation technique is performed.

5. Proposed solution algorithm

In order to solve the proposed RBOMILP model with uncertain parameters, the solution algorithm should be capable to
obtain optimal or near-optimal non-dominated Pareto solutions within a reasonable time. There are several methods in
the literature for providing an optimal solution for small-sized and single-objective problems, such as simplex and
dynamic programming-based optimisation algorithms (Taha 2006; Shukla, Tiwari, and Ceglarek 2013). However, most
of real problems not only are in higher sizes and solving them by mathematical programming approaches takes the huge
computational time (Rostami, Dantan, and Homri 2015; Niakan, Vahdani, and Mohammadi 2014; Vahdani and
Mohammadi 2015; Azizmohammadi et al. 2013; Mohammadi, Dehbari, and Vahdani 2014; Mohammadi et al. 2016),
but also they need to be treated as the multi-objective problems (MOPs).

Traditionally, there are several methods available in the literature for solving MOPs as such as goal programming
(Brandenburg 2015), weighted sum method (Mohammadi, Tavakkoli-Moghaddam, and Rostami 2011), and the iso-re-
source–cost solution method (Zeleny 1998). A negligible drawback of these methods is that none of them treats all the
objectives simultaneously, except the iso-resource–cost solution method, which is a basic requirement in most MOPs
(Abbass, Sarker, and Newton 2001). Accordingly, the solutions may be far away from the optimal ones. Despite the sin-
gle-objective problems, solving MOPs lead to a set of optimal alternative solutions and no other solutions in the search

Table 1. Alteration range of the uncertain parameters.

Parameters Uniform alteration range

Misadjustment frMI
pk 1� P z� 3� CPp

� �þ P z� � 3� CPp

� �
; 1� P z� 3� CPp � qMI

� �þ P z� � 3� CPp � qMI

� �� 	

frCIpk 1� P z� 3� CPKp

� �þ P z� � 3� CPKp

� �
; 1� P z� 3� CPKp � qCI

� �þ P z� � 3� CPKp � qCI
� �� 	

Dispersion
frMI
pk

1� P z� 3� CPp

1�qr

n o
þ P z� � 3� CPp

1�qr

n o
; 1� P z� 3� CPp

1þqr

n o
þ P z� � 3� CPp

1þqr

n oh i

frCIpk

1� P z� 3� CPKp

1�qr

n o
þ P z� � 3� CPKp

1�qr

n o
; 1� P z� 3� CPKp

1þqr

n o
þ P z� � 3� CPKp

1þqr

n oh i

ptp ptp 1� qTPð Þ; ptp 1þ qTPð Þ� 	
mtpk mtpk 1� qTMIð Þ;mtpk 1þ qTMIð Þ� 	
ctpk ctpk 1� qTCIð Þ; ctpk 1þ qTCIð Þ� 	
αpk apk 1� qe�Ið Þ; apk 1þ qe�Ið Þ� 	
βpk bpk 1� qe�IIð Þ; bpk 1þ qe�IIð Þ� 	
Misadjustment

& Dispersion frMI
pk

1� P z� 3� CPp

1�qr

n o
þ P z� � 3� CPp

1�qr

n o
; 1� P z� 3� CPp

1þqr
� rMI

n o
þ P z� � 3� CPp

1þqr
� rMI

n oh i

frCIpk

1� P z� 3� CPKp

1�qr

n o
þ P z� � 3� CPKp

1�qr

n o
; 1� P z� 3� CPKp

1þqr
� rCI

n o
þ P z� � 3� CPKp

1þqr
� rCI

n oh i
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space are superior to (dominate) them when all objectives are simultaneously considered. The literature calls these
alternative solutions as Pareto-optimal solutions. Having a set of solutions instead of a single solution provides flexibil-
ity for the decision-maker (Mohammadi, Jula, and Tavakkoli-Moghaddam 2017).

Recently, evolutionary algorithms (EAs) have been well applied for solving MOPs (Zhalechian et al. 2016; Asl-Najafi
et al. 2015; Zahiri et al. 2014; Mohammadi, Torabi, and Tavakkoli-Moghaddam 2014). EAs have some advantages com-
paring to traditional mathematical programming approaches. For instance, in the mathematical programming approaches, a
real concern is that the functions must be convex/concave and/or continuous, whereas, these are not necessary in EAs
(Abbass, Sarker, and Newton 2001). Although EAs are successful in solving MOPs, the proposed algorithms in the litera-
ture vary a lot in terms of their solutions and the way of benchmarking them with other existing algorithms. By the other
words, there is no unique method for MOPs resulting to a good set of solutions for all problems.

5.1 Differential evolution (DE) algorithm

In this paper, we apply a well-known EA called differential evolution (DE) algorithm (Storn and Price 1997; Rahimi et al.
2016) for solving the proposed RBOMILP model. The approach showed promising results when compared with the impe-
rialist competitive algorithm (Mohammadi, Jolai, and Rostami 2011), simulated annealing (Lin and Ying 2015), particle
swarm optimisation (Fathi et al. 2016) and genetic algorithm (Mohammadi et al. 2014), for solving the RBOMILP
problem. Due to space limitations, this comparison is not included in the paper.

Like other evolutionary computational algorithms, DE involves the evolution of a population of solutions with a size
of PS using mutation, crossover and selection operators (Calégari et al. 1999). The initial population is often randomly
generated over the variables domain. Each solution vector in the population has to be selected once as the target vector
so that totally PS competitions take place in one generation. A new solution vector is generated by the DE’s mutation
operator, in which the weighted difference between two population vectors is added to the third vector. Hence, this algo-
rithm is named as differential evolution. Note that these three vectors are randomly selected and must be different from
the target vector; therefore, PS must be at least 4. Let ei, i ¼ 1; . . .;PS, be the target vector, a mutated vector is gener-
ated according to Equation (51).

li ¼ ev1 þ F ev2 � ev3ð Þ; (51)

where v1, v2, and v3 are mutually different random indices taking from {1, 2, …, PS}, and are not equal to i. F in Equation
(51) is a constant real value ∈ [0, 2], which controls the amplification of the differential variation (i.e. ev2 – ev3) between the
second and third randomly chosen population vectors. Each mutated vector shares its information with a target vector using
the crossover operation in order to create new solution si ¼ si1; . . .; sij; . . .; siD

� �
as the condition set (52).

sij ¼ lij if rand jð Þ�CR and j ¼ rnbrðiÞ
eij if rand jð Þ[CR and j 6¼ rnbrðiÞ



; (52)

where rand( j) is the j-th component of a D-dimensional uniform random number ∈ [0, 1] and rnbr(i) is a randomly cho-
sen index ∈ {1, … ,D} to ensure that at least one mutated dimensional value is used in the new created solution.

If the newly created solution dominates the target vector in terms of both objective functions, then the new solution
is replaced by the target vector in the next generation. After each generation, the non-dominated solutions are extracted
from the population by applying a non-dominance technique (Niakan, Vahdani, and Mohammadi 2015).

5.2 Non-dominance technique

Suppose that there are τ objective functions. When the following conditions are satisfied, the solution x1 dominates
another solution x2. If x1 and x2 do not dominate each other, they are placed in the same front.

(1) For all the objective functions, solution x1 is not worse than another solution x2.
(2) For at least one of the k objective functions x1 is exactly better than x2.
Front number 1 is made by all solutions that are not dominated by any other solutions. This front is called Pareto

frontier. Also front number 2 is built by all solutions that are only dominated by solutions in front number 1.

5.3 Termination criteria

The algorithm can be terminated with a pre-specified maximum number of generations and/or a pre-specified maximum
number of function evaluations. Figure 4 shows the flowchart of the DE algorithm, and Figure 5 illustrates how Taguchi

14 M. Mohammadi et al.
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and Monte Carlo methods are applied to take uncertainty of the parameters into account and calculated the robust
objective functions.

6. Case study

6.1 Experiment design

In order to validate the correctness of the proposed RBOMILP model and the evolutionary solution algorithm, a real
industrial case is studied from one of the leading automotive industries in France. This case is a hydraulic pump with
15 quality characteristics. Figures 6 and 7 show the solid frame of the part and labelled quality characteristics which
need to be inspected, respectively (Mohammadi et al. 2015). Accordingly, some required deterministic information (i.e.
without misadjustment) of the industrial case are tabulated in Table 2, in which the first to sixth columns explain the
name of operations, the production time, the process capability Cp, the process performance Ppk and the failure rates
with and without monitoring inspection, respectively. Finally, the last column shows the allowable places (AP) that the

Figure 4. Main flowchart of the DE algorithm.

Figure 5. Taguchi and Monte Carlo methods in calculating OFVs.
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Figure 6. Solid frame of the industrial part.

Figure 7. Labelled operations of the industrial part.

Table 2. Information of the industrial case.

Operation number Operation name

Details

PT Cp Ppk FR1 FR2 AP

1 Rough milling PL100 0.148 2.00 1.50 1.97e-9 6.79e-6 1→13
2 Rough milling PL100 0.166 2.00 1.50 1.97e-9 6.79e-6 2→14
3 Rough milling PL101 0.133 2.00 1.66 1.97e-9 6.35e-7 3→15
4 Boring CY110 0.154 1.60 1.33 1.58e-6 6.60e-5 4→10
5 Rough drilling CY108 & CY109 0.090 2.00 1.66 1.97e-9 6.35e-7 5→10
6 Chamfering CY108 & CY109 0.250 2.00 1.66 1.97e-9 6.35e-7 6→6
7 Chamfering CY100 & CY101 0.257 1.50 1.20 6.79e-6 3.18e-4 7→15
8 Boring CY100 0.257 1.50 1.20 6.79e-6 3.18e-4 8→15
9 Boring CY101 0.122 1.66 1.30 6.35e-7 9.61e-5 9→12
10 Rough drilling CY102 & CY103 0.109 1.66 1.40 6.35e-7 2.66e-5 10→12
11 Rough drilling CY111 0.134 1.66 1.40 6.35e-7 2.66e-5 11→15
12 Boring CY108 & CY109 0.122 1.30 1.10 9.61e-5 9.66e-4 12→15
13 Boring CY102 & CY103 0.122 1.30 1.00 9.61e-5 2.69e-3 13→15
14 Boring CY111 0.117 1.66 1.33 6.35e-7 6.60e-5 14→15
15 Finish milling PL100 0.129 1.66 1.33 6.35e-7 6.60e-5 15→15
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inspections (i.e. CI and MI) can be performed at. For example, for the characteristic number 4 belonging to the opera-
tion ‘Boring CY110’, MI or CI can be performed only between operations 4 to 10. The DE algorithm is written in
MATLAB 2014 and run using a computer with Intel Pentium 4, 2.3 GHz CPU and 4 GB RAM.

6.2 Computational results

This section provides the results of the proposed global robust RBOMILP model. After applying the DE algorithm on the
data of the hydraulic pump, the Pareto frontier of the RBOMILP model under the MI-and-CI strategy has been provided
as Table 3 for both deterministic and uncertain models. In the deterministic model, all the parameters are deterministic
and no uncertainty is imposed to the model. In the uncertain model, the parameters are manipulated in their correspond-
ing alteration range as Table 1. In Table 3, the first column shows the number of Pareto solutions. The second and the
third columns represent the values of the first and the second objective functions for the deterministic model. Similarly,
the fourth and the fifth columns show the values of the first and the second objective functions for the uncertain model.
Accordingly, 21 and 6 Pareto solutions were obtained for deterministic and uncertain models, respectively.

The results of Table 3 have been illustrated in Figure 8, wherein dash and solid lines represent the Pareto frontier of
the deterministic and the uncertain models, respectively. The inspection plans for different six Pareto solutions of the
uncertain model have been depicted in Figure 9. As it can be seen, the solutions with the lower value of the first objec-
tive function, e.g. solutions number 5 and 6, represent the inspection plans with less number of MI and CI inspections.
The reason is that the total internal cost (i.e. OFV1) is decreased by reducing the total cost of inspections (i.e. TCI),
while the lower the inspection cost, the lower the number of inspection stations during the production process. On
the other hand, solutions with the lower values of the warranty cost (i.e. OFV2) represent those inspection plans wherein
the minimum nonconforming parts reach the customers. Accordingly, more numbers of inspections are performed in the
inspection plans with lower values of OFV2. These different plans show the conflict of the total internal cost and the
warranty costs and highlight the applicability and validity of the proposed RBOMILP.

Since in the real industrial case, the cost of CI is the same for all the quality characteristics, a quality characteristic under-
goes the CI if that characteristic corresponds to an operation with low value of process capability CP. Accordingly, the
operations with the lowest CP undergo CI one by one once the trade-off between two objective functions is met and the
global minimum solution is found. The order of the process capability for different operations is
CP12 = CP13 < CP7 = CP8 < CP4 = CP9 = CP10 = CP11 = CP14 = CP15 < CP1 = CP2 = CP3 = CP5 = CP6. Accordingly, the
quality characteristics created by operations number 7, 8, 12 and 13 are more likely to undergo CI in every inspection plan.

Table 3. Pareto solutions of the RBOMILP model under MI-and-CI strategy.

Pareto solution #

Deterministic parameters Uncertain parameters

OFV1 OFV2 OFV1 OFV2

1 6,077,043 20,900 6,288,260 44,440
2 6,076,760 30,800 5,342,750 322,410
3 6,076,160 32,340 5,219,250 1,649,230
4 6,075,560 55,220 5,130,050 2,328,370
5 5,970,993 142,670 5,029,200 5,473,050
6 5,240,900 165,440 5,014,600 6,467,010
7 5,240,300 166,980 – –
8 5,185,450 170,060 – –
9 5,164,850 171,600 – –
10 5,154,250 179,300 – –
11 5,143,650 190,740 – –
12 5,143,050 213,620 – –
13 5,138,450 302,500 – –
14 5,097,000 412,830 – –
15 5,066,400 546,150 – –
16 5,055,800 877,470 – –
17 5,054,200 1,357,290 – –
18 5,039,600 2,351,250 – –
19 4,964,950 3,630,610 – –
20 4,929,750 5,561,930 – –
21 4,910,150 6,555,890 – –
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Through an experiment, the contribution of the uncertain parameters in the increase of the objective functions was
investigated to extract those parameters that impose high sensitivity to the objective functions. The result of this experi-
ment has been depicted as Figure 10. As it can be seen, misadjustment and dispersion have the highest contribution on

Figure 8. Pareto frontiers for deterministic and uncertain models.

Figure 9. Inspection plans of the Pareto solutions for the robust BMILP_EP.

Figure 10. Effect of uncertain parameters on the objective functions.
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the objective functions’ sensitivity. In addition, misadjustment has higher effect on OFV1 rather than OFV2 and vice
versa for dispersion. Therefore, the company of producing the hydraulic pump should have better control on the misad-
justment if lower level of the internal cost is desired. It has been recommended to this company to limit the alteration
and the uncertainty of the misadjustment as much as possible. On the other hand, if increasing the customer satisfaction
(i.e. minimum warranty cost) is desired, limiting the variation of the both misadjustment and dispersion is recom-
mended. Adragna, Samper, and Pillet (2010) and Thornton (2004) have also proved the significant impact of misadjust-
ment and dispersion in calculating inertial tolerancing and process capability index.

6.3 Sensitivity analysis

Hereafter, the effect of uncertainty in different parameters on which-what and when decisions are separately investigated.
In addition, since the failure rate is affected by both misadjustment and dispersion, the effect of uncertainty in both of
these parameters is also examined on the inspection decisions. Finally, a global robust inspection plan is obtained by
considering all the parameters under uncertainty. The results are tabulated in Table 4, in which the first to third columns
show different sources of uncertainty, the inspection strategy, and the total cost of manufacturing (OFV1 þ OFV2),
respectively. The 4th to 10th columns explain the contribution per cent of each component to the total cost of manufac-
turing. Finally, the last two columns present those quality characteristics that need monitoring and conformity inspection,
respectively. It should be noted that the value inserted in the parenthesis corresponds the location where inspection
should be performed. For example, for the case of uncertainty in misadjustment under MI-or-CI, quality characteristics
1 to 6 need MI after operation 6, quality characteristics 9 to 11 need MI after operation 11, and quality characteristics
7, 8, and 12 to 15 need CI after operation 15. The first row of each inspection strategy corresponds to the deterministic
model, wherein the parameters are deterministic and no alteration is allowed.

According to Table 4, uncertainty in errors type I and II as well as dispersion has no effect on the final inspection
decisions while their results are similar to the result of the deterministic model. This issue points out that at the current
level of fluctuation intervals of errors type I and II and dispersion, the final decisions are not affected by the imposed
uncertainty. In other words, the company does not need to decrease the variation of these parameters more than their
current value, while adopting new strategies to limit the variations of errors type I and II and dispersion need a high
investment.

Figures 11 and 12 illustrate the warranty (OFV2) and internal costs (OFV1) per part for different sources of uncer-
tainty and the both inspection strategies. It is noteworthy that lower values of the internal and warranty costs, respec-
tively, correspond to higher efficiency and higher responsiveness of the production system. Higher efficiency is desired
by the manufacturers and higher responsiveness is desired by the customers. By the other words, although manufacturers
are interested in more efficient production systems, customers are likely to interact with more responsive production sys-
tems. It can be seen from Figures 11 and 12 that the MI-or-CI strategy is more responsive; however, the MI-and-CI
strategy is more efficient. In the MI-or-CI strategy, the worst cases in terms of responsiveness and efficiency belong to
the situations with no uncertainty and uncertainty in all the parameters, respectively. On the other hand, in the MI-and-
CI strategy, the worst cases in terms of responsiveness and efficiency belong to the situations with uncertainty in both
misadjustment and dispersion and uncertainty in all the parameters, respectively. Hence, parameter variations and partic-
ularly misadjustment has significant effect on the inspection decisions and needs to be precisely determined and their
alteration be decreased as much as possible.

In another analysis, the impact of each source of uncertainty (in %) has been illustrated in Figure 13, for both strate-
gies. The maximum increase percentage belongs to a situation in which all parameters are uncertain with increase up to
24% for both strategies. In addition, errors type I and II and dispersion, separately, have no impact on the internal cost
in their current values of uncertainty factor in MI-or-CI strategy. It can be also seen that impact of uncertain factors on
the internal cost for the MI-and-CI strategy is more than the MI-or-CI strategy in almost all cases. Besides, Figure 14
illustrates the same results as Figure 13 but shows the monetary values of uncertainty. For instance, when all parameters
are uncertain and we try to design a robust inspection plan, we need to spend extra 1.340€ and 1.341€ costs for the final
price of each product under MI-or-CI and MI-and-CI strategies, respectively.

Additionally, the sensitivity of robustness cost versus alteration in the uncertain parameters is investigated for the
MI-or-CI strategy as shown in Figures 15–18. It should be noted that in Figures 15–18, the lower bound of the uncer-
tainty intervals for all parameters are considered equal to their current real value and only the upper bound is changed.

Figure 15 illustrates the effect of alteration of errors type I and II on the cost of robustness. The vertical axis shows
the price of robustness per part. The vertical axis determines the increase in the errors type I and II. For instance, the
value 7 in the horizontal axis means that the errors become 7 times greater than their mean values. As it can be seen,
type I error has no effect on the robustness cost once ρe–I ≥ 5, e.g. for ρe–I = 9, the robustness cost is equal to 0.25€ per

International Journal of Production Research 19

D
ow

nl
oa

de
d 

by
 [

M
ou

nt
 S

in
ai

 H
ea

lth
 S

ys
te

m
 L

ib
ra

ri
es

] 
at

 0
2:

11
 1

4 
A

ug
us

t 2
01

7 



Ta
bl
e
4.

D
et
ai
l
of

co
st
ob
je
ct
iv
e
fu
nc
tio

n
fo
r
di
ff
er
en
t
so
ur
ce
s
of

un
ce
rt
ai
nt
y.

S
ou

rc
e
of

un
ce
rt
ai
nt
y

S
tr
at
eg
y

T
ot
al

(O
F
V
1
+
O
F
V
2
)

D
et
ai
l
C
os
ts
(%

)
D
ec
is
io
ns

O
F
V
1
(%

of
T
ot
al
)

O
F
V
2

(%
)

M
I

C
I

T
C
P

T
C
S

T
C
IF

fo
r

C
I

T
C
IF

fo
r

M
I

T
C
IV

fo
r

C
I

T
C
IV

fo
r

M
I

T
C
W

D
et
er
m
in
is
tic

M
I-
or
-C
I

5,
16

0,
25

0
93

.2
6

0.
00

0.
00

0.
17

0.
00

6.
10

0.
47

1,
2,
4–
6(
6)

–
3,
7–

10
,1
2(
12

)
11
,1
3–

15
(1
5)

Ty
pe

I
er
ro
r

5,
16

0,
25

0
93

.2
6

0.
00

0.
00

0.
17

0.
00

6.
10

0.
47

1,
2,
4–
6(
6)

–
3,
7–

10
,1
2(
12

)
11
,1
3–

15
(1
5)

Ty
pe

II
er
ro
r

5,
16

0,
25

0
93

.2
6

0.
00

0.
00

0.
17

0.
00

6.
10

0.
47

1,
2,
4–
6(
6)

–
3,
7–

10
,1
2(
12

)
11
,1
3–

15
(1
5)

T
im

e
5,
36

9,
95

0
89

.6
2

0.
00

0.
00

0.
17

0.
00

9.
76

0.
45

1(
2)
;
3,
6(
6)

–
2,
4,
5,
7–

10
(1
0)

11
–1
5(
15

)
M
is
ad
ju
st
m
en
t

6,
08

0,
60

3
79

.1
3

0.
04

0.
06

0.
09

17
.2
0

3.
45

0.
03

1–
6(
6)

7,
8,
12
–1
5(
15

)
9–
11
(1
1)

D
is
pe
rs
io
n

5,
16

0,
25

0
93

.2
6

0.
00

0.
00

0.
17

0.
00

6.
10

0.
47

1,
2,
4–
6(
6)

–
3,
7–

10
,1
2(
12

)
11
,1
3–

15
(1
5)

M
is
ad
ju
st
m
en
t
&

di
sp
er
si
on

6,
39

6,
19

0
75

.2
3

0.
04

0.
04

0.
10

16
.3
5

8.
19

0.
05

1–
3,
5,
6(
6)

4,
7,
8,
11
–1
5

(1
5)

9,
10

(1
0)

A
ll
pa
ra
m
et
er
s

6,
50

0,
00

3
74

.0
3

0.
04

0.
06

0.
08

16
.0
9

9.
68

0.
03

1(
1)
;
2–
4(
7)

7,
8,
12
–1
5(
15

)
5,
6(
6)
;

9–
11
(1
0)

D
et
er
m
in
is
tic

M
I-
an
d-

C
I

5,
06

8,
12

0
94

.9
6

0.
00

0.
00

0.
14

0.
00

4.
14

0.
76

1,
3,
4,
7–

10
(1
0)

–
11
–1
5(
15

)
Ty

pe
I
er
ro
r

5,
07

9,
90

0
94

.7
4

0.
00

0.
00

0.
12

0.
00

4.
13

1.
02

1,
3,
4,
7–

10
(1
0)

–
11
–1
5(
15

)
Ty

pe
II
er
ro
r

5,
06

9,
06

0
94

.9
4

0.
00

0.
00

0.
13

0.
00

4.
14

0.
79

1,
3,
4,
7–

10
(1
0)

–
11
–1
5(
15

)
T
im

e
5,
17

3,
17

0
93

.0
3

0.
00

0.
00

0.
09

0.
00

6.
08

0.
80

4(
6)

–
7–
9(
12

)
12
–1
5(
15

)
M
is
ad
ju
st
m
en
t

6,
00

0,
25

3
80

.1
9

0.
04

0.
07

0.
03

17
.4
3

1.
75

0.
49

4,
9,
10

(1
0)

7,
8,
11
–1
5(
15

)
D
is
pe
rs
io
n

5,
07

9,
90

0
94

.7
4

0.
00

0.
00

0.
12

0.
00

4.
13

1.
02

1,
3,
4,
7–

10
(1
0)

–
11
–1
5(
15

)
M
is
ad
ju
st
m
en
t
&

di
sp
er
si
on

6,
25

3,
45

3
76

.9
5

0.
04

0.
05

0.
06

16
.7
2

5.
03

1.
15

3,
4,
6(
6)
;
9(
9)

7,
8,
12
–1
5(
15

)
10

,1
1(
11
)

A
ll
pa
ra
m
et
er
s

6,
40

9,
19

0
75

.0
8

0.
04

0.
05

0.
06

16
.3
2

8.
18

0.
29

2(
2)
;
4,
9(
9)

8,
12

–1
5(
15

)
10

,1
1(
12

);
7

(1
5)

20 M. Mohammadi et al.

D
ow

nl
oa

de
d 

by
 [

M
ou

nt
 S

in
ai

 H
ea

lth
 S

ys
te

m
 L

ib
ra

ri
es

] 
at

 0
2:

11
 1

4 
A

ug
us

t 2
01

7 



part. Despite error type I, error type II has no effect even for ρe–II ≅ 15. Therefore, it can be concluded that the manu-
facturer should pay more attention to error type I rather than error type II. Since ρe–I is equal to 0.2 in the industrial
case, the ρe–I is allowed to be altered and increased even up to 5 with no increase in the internal cost. On the other
words, by increasing error type I, the inspection plan remains robust. On the other hand, the inspection plan remains
robust when error type II becomes even 15 times greater.

Figure 16 depicts the alteration in the robustness cost versus increase in the production time’s uncertainty factor.
The vertical axis shows the increase percentage in the production time. It is noteworthy that by increasing the uncer-
tainty factor of the production time (ρTP) from 0 to 0.4, the which-what decision does not change and all quality charac-
teristics need MI; while for values bigger than 0.4, the which-what decision is changed as some quality characteristics

Figure 11. Warranty cost vs. different source of uncertainty.

Figure 12. Internal cost vs. different source of uncertainty.

Figure 13. Internal cost increase vs. different source of uncertainty.
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need CI. It can be stated that for values higher than 0.4, the costs of production and inspection are highly increased and
the model decides to remove more nonconforming parts from the process to avoid unnecessary operations on these
parts. Consequently, the costs of production and inspection are decreased and the way to remove the nonconforming
parts is to perform CI during the process. Therefore, for the values of ρTP higher than 0.4, the model decides to perform
CI for some of quality characteristics.

Figure 17 shows the effect of alteration in the misadjustment on the robustness cost, so that by increasing the misad-
justment, the cost of creating a robust plan is extremely increased. It is noteworthy that the value of misadjustment can
be increased up to 0.25σ with no increase in the robustness cost. Finally, Figure 18 illustrates the impact of increase in
dispersion on the cost of robustness. As it is obvious, for the values of qr lower than 0.1, the robust plan is not chan-
ged. Since decreasing dispersion in the manufacturing processes is too expensive, hence, in the real industrial case, the
company can let dispersion to alter up to 0.1.

Figure 14. Price increase per part vs. different source of uncertainty.

Figure 15. Cost of robustness vs. increase in ρe–I and ρe–II.

Figure 16. Cost of robustness vs. increase in the production time.
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7. Conclusion

This paper integrates the inspection plan with a MPS to simultaneously pick out the critical quality characteristics and
to determine the type and the location of the inspections where the planning parameters are uncertain. For this aim, a
new robust bi-objective mixed integer linear programming (RBOMILP) model was developed with a trade-off between
the production cost and the customer satisfaction as the two conflicting objective functions. The proposed RBOMILP
model decides (1) which quality characteristics needed what kind of inspection and (2) when the inspection of these
characteristics should be performed. Through the inspection plan, quality characteristics undergo two kinds of inspection
as monitoring and conformity inspections. Uncertain parameters include production and inspection times, errors type I
and II, misadjustment and dispersion of the operations. To cope with the uncertainty of the parameters, a robust optimi-
sation approach based on the Taguchi and the Monte Carlo methods were developed. The proposed model and the solu-
tion approach were validated through a real industrial case study from one of the leading automotive industries in
France. Finally, the sensitivity of the objective functions to the uncertain parameters was investigated to draw valuable
managerial insights. It was resulted the misadjustment had the most effect on the final decisions. On the other hand,
since eliminating the source of uncertainty is expensive, a maximum threshold for each parameter was extracted that
allows a level of uncertainty in the parameters. It is our hope that this study could inspire additional in-depth research
and discussions on this topic.

Considering the total production time of the parts as the third objective function and making trade-off between the
production costs, the production time and the customer satisfaction may lead to interesting knowledge about the prob-
lem. On the other hand, taking into account the failure rate of the equipment and investigating the effect of breakdown
on the production time objective function could be another further research direction. Finally, proposing the inspection
plan for a multi-product manufacturing system could be an interesting perspective on this topic.

Disclosure statement
No potential conflict of interest was reported by the authors.

Figure 17. Cost of robustness vs. increase in the misadjustment.

Figure 18. Cost of robustness vs. increase in the dispersion.
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