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a b s t r a c t 

We face the problem of gait recognition by using a robust deep learning model based on graphs. The 

proposed graph based learning approach, named Time based Graph Long Short-Term Memory (TGLSTM) 

network, is able to dynamically learn graphs when they may change during time, like in gait and ac- 

tion recognition. Indeed, the TGLSTM model jointly exploits structured data and temporal information 

through a deep neural network model able to learn long short-term dependencies together with graph 

structure. The experiments were made on popular datasets for action and gait recognition, MSR Action 

3D, CAD-60, CASIA Gait B, “TUM Gait from Audio, Image and Depth” (TUM-GAID) datasets, investigating 

the advantages of TGLSTM with respect to state-of-the-art methods. 
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. Introduction 

Using gait as a biometric is a relatively new area of study. The

ait is defined as: “A particular way or manner of moving on foot”.

t has been receiving growing interest within the computer vi-

ion community and a number of gait metrics has been developed.

ompared to other biometrics, gait has some unique characteristics

4] . The most attractive feature of gait as a biometric trait is its un-

btrusiveness, i.e., the fact that, unlike other biometrics, it can be

aptured at a distance and without requiring the prior consent of

he observed subject. Gait also has the advantage of being diffi-

ult to hide, steal, or fake. Anyway, gait recognition is still a very

hallenging problem: it relies on video sequences taken in con-

rolled or uncontrolled environments; it is not invariant to the cap-

uring viewpoint; it changes over time and is affected by clothes,

ootwear, walking surface, walking speed, and emotional condition

24] . 

Surely, among other issues, a critical step in gait recognition is

eature extraction, i.e., the extraction, from video sequences that

how a walking persons, of signals that can be used for recogni-

ion. This step is very important since there are numerous con-
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eivable ways to extract signals from a gait video sequence, e.g.,

patial, temporal, spatio-temporal, and frequency-domain feature 

xtraction. Therefore, one must ensure that the feature extraction

rocess compacts as much discriminatory information as possible. 

In this paper, we propose to extract information from unstruc-

ured data such as video frames, generating structured description

n terms of skeletons of persons and basic human actions that are

resent in the scene. 

Skeletons were adopted for object recognition with success in

he past [8] ; actually, different approaches adopt skeleton features

o classify an action. Wang et al. [45] divides the skeleton in five

omponents and uses the spatial and temporal dictionaries of the

omponents to represent actions. Vemulapalli et al. [43] uses rota-

ions and translations to represent the 3D geometric relationships

f body components in Lie group, and then employs Dynamic Time

arping (DTW) and Fourier Temporal Pyramid (FTP) to model the

emporal dynamics, while GRUNTS [2] uses the structured feature

f the skeleton to the temporal segmentation of the human action.

Some approaches use skeletal joints feature to learn a super-

ised model. For example, Wu and Shao [47] adopts a deep for-

ard neural network to estimate the emission probabilities of the

idden states in HMM. Other approaches include Recurrent Neural

etwork (RNN) to directly classify sequences without any segmen-

ation: Grushin et al. [19] uses LSTM-RNN for robust action recog-
based graph deep learning approach to gait recognition, Pattern 
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nition and achieves good results on KTH dataset, Baccouche et al.

[1] proposes a LSTM-RNN to recognize actions regarding the his-

tograms of optical flow as inputs. LSTM-RNNs employed in the last

two cited approaches are both unidirectional with only one hidden

layer, while Lefebvre et al. [25] proposes a bidirectional LSTM-RNN

with one forward hidden layer and one backward hidden layer for

gesture classification. Du et al. [15] , considering that human ac-

tions are composed of the motions of human body components,

reports a method that uses a RNN in a hierarchical way. 

To highlight the inner structure in data, we focus on process-

ing streams of structured data by recursive neural networks [17] ,

where the temporal processing which takes place in recurrent neu-

ral networks is extended to the case of graphs by connectionism

models and where prior knowledge can be inserted to facilitate the

interpretation of learnt structured data [18,33] . 

Our method, following the ideas proposed in [23,38] , is based

on a deep RNN that learns not only the skeletal joints features but

also the information extracted from the changes in adjacency ma-

trices over time. Indeed, graphs are almost always dynamic - they

change shape and size - as time passes. Thus, an important part of

the richness and complexity of a graph is how it changes through

time; new connections are formed and old ones are broken all the

time. It is the first time, at our knowledge, this feature is being

considered for the problem of gait analysis and we are confident it

increases its accuracy and robustness. 

The model we report is named Time based Graph Long Short-

erm Memory (TGLSTM); it jointly exploits structured data and

temporal information through a deep neural network model able

to learn long short-term dependencies together with graph struc-

ture. We demonstrate the advantage of the proposed method

in both action and gait recognition, investigating the advantages

of TGLSTM with respect to state-of-the-art methods on popular

datasets like MSR Action 3D, CAD-60, CASIA Gait B, “TUM Gait from

Audio, Image and Depth” (TUM-GAID) datasets. 

The rest of the paper is structured as follows:

Section 2 presents the structured features extraction used in

the learning step; in Section 3 we describe the proposed Time

based Graph Long Short-Term Memory (TGLSTM) model; in

Section 4 , we show the robustness of the TGLSTM in action recog-

nition and gait recognition. Lastly, some conclusions are drawn

also along with conducted evaluations. 

2. Graph representation 

The representation of the meaningful features captured at each

frame has an important role in our approach. The steps to con-

struct a graph from each frame are the following: 

1. Each frame is segmented over time to extract the foreground as

the moving object against a learnt background model; 

2. A skeleton is constructed for each foreground; 

3. Each skeleton is polygonally approximated to extract features

and attach them to the graph/skeleton edges 

Details about each step will be provided in the following sub-

sections. 

2.1. Background subtraction 

The preferable walking in gait recognition is in a direction per-

pendicular to the optical axis of the capturing device since the side

view of walking individuals discloses the most information about

their gait. Anyway, since gait recognition should be invariant to the

capturing viewpoint, the walking subject has to be separated from

its background through a selective method for background subtrac-

tion producing a foreground for each frame. Background subtraction
Please cite this article as: F. Battistone, A. Petrosino, TGLSTM: A time 
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rom colour video data is a widely studied problem, as witnessed

y several recent surveys [5–7,11,32,39,49] . 

Among others, the SC-SOBS algorithm [30] , extension of the

OBS algorithm [28] , is considered one of the most powerful selec-

ive method for background subtraction. The SC-SOBS builds a neu-

al background model of the image sequence by learning in a self-

rganizing manner image sequence variations, seen as trajectories

f pixels in time. SC-SOBS can handle scenes containing moving

ackgrounds, gradual illumination variations, and camouflage, can

nclude into the background model shadows cast by moving ob-

ects, and achieves robust detection for different types of videos

aken with stationary cameras, and robustness against false detec-

ions [29] . 

SC-SOBS model can be described as follows. Given the colour

mage sequence { I 1 , . . . , I T } , at each time instant t we build and

pdate a neuronal map for each pixel p , consisting of n × n weight

ectors cm 

i, j 
t ( p ) , i, j= 0, ..., n -1, which will be called the colour

odel for pixel p and will be indicated as CM t ( p ) : 

M t ( p ) = 

{
cm 

i, j 
t ( p ) , i, j = 0 , . . . , n − 1 

}
. (1)

At each time step t, colour background subtraction is achieved by

omparing each pixel p of the t -th sequence frame I t with the cur-

ent pixel colour model CM t−1 ( p ) , to determine the weight vector

M 

C 
t ( p ) that best matches it: 

(BM 

C 
t ( p ) , I t ( p )) = min 

i, j=0 , ... ,n −1 
d(cm 

i, j 
t−1 

( p ) , I t ( p )) , (2)

The metric d ( · , · ) is chosen as the Euclidean distance in the

SV colour hexcone. The colour background subtraction mask for

ixel p is then computed as 

 

C 
t ( p ) = 

{
1 if NCF t ( p ) ≤ 0 . 5 

0 otherwise 
, (3)

here the Neighborhood Coherence Factor is defined as NCF t ( p )=
 �p | / | N p | [14] . 

Here | · | refers to the set cardinality, N p ={ q : | p − q | ≤ h } is a

D spatial neighborhood of p having width (2 h +1) ∈ N (in the ex-

eriments h = 2), and �p is the set of pixels q belonging to N p that

ither have in their background model a best match that is close

nough to their value I t ( q ) or are shadows. 

An update of the colour neuronal map is performed in order to

dapt the colour background model to scene modifications. 

At each time step t , the weight vectors of CB t−1 in a neighbor-

ood of the best matching weight vector BM 

C 
t ( p ) are updated ac-

ording to weighted running average. 

In details, if BM 

C 
t ( p ) is found at position p in CB t−1 , then weight

ectors of CB t−1 are updated according to 

B t ( q ) = (1 − αC 
t ( p )) CB t−1 ( q ) + αC 

t ( p ) I t ( p ) ∀ q ∈ N p , (4)

here N p = { q : | p − q | ≤ k } is a 2D spatial neighborhood of p hav-

ng width (2 k + 1) ∈ N (in the reported experiments k = 1). Moreover,

C 
t ( p ) = γ · G ( q − p ) · ( 1 − M t ( p ) ) , (5)

here γ represents the learning rate, G (·) = N (·; 0 , σ 2 I) is a 2D

aussian low-pass filter with zero mean and σ 2 I variance (in the

eported experiments σ 2 = 0.75). The αC 
t ( p ) values in Eq. (5) are

eights that allow to smoothly take into account the spatial re-

ationship between current pixel p (through its best matching

eight vector found at position p ) and its neighboring pixels in I t 
through weight vectors at position q ∈ N p ), thus preserving topo-

ogical properties of the input in the neural network update (close

nputs correspond to close outputs). In [30] , M t ( p ) is the back-

round subtraction mask value M 

C 
t ( p ) for pixel p , computed as in

q. (3) . 
based graph deep learning approach to gait recognition, Pattern 
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a  

Fig. 1. A frame of the sequence (a); binary image where the foreground is the sil- 

houette (b); the graph obtained by skeletonization and polygonal approximation (c). 
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In the usual case that a set of K initial sequence frames is avail-

ble for training, the above described initialization and update pro-

edures on the first K sequence frames are adopted for training the

eural network background model, to be used for detection and

pdate in all subsequent sequence frames. For a deeper explana-

ion of the mathematical ground behind the choice of colour model

arameters, the interested reader is referred to [30] . 

.2. Skeleton 

Each frame-based detected foreground is skeletonized to pro-

uce a unit width skeleton. We adopt the skeletonization method

37] that does not require the iterated application of topology pre-

erving removal operations, and does not need checking a con-

ition specifically tailored to end point detection. Indeed, skele-

onization is accomplished on the distance transform (DT) of the

bject, computed according to the (3,4) distance [3] . Thus, end

oints are automatically identified when the so called centers of

aximal discs are found in DT. The skeletal pixels are all found

n one raster scan inspection of DT. The set of the skeletal pixels

etected in DT has all the properties expected to characterize the

keleton of the object except for unit thickness. Indeed, the set of

he skeletal pixels is 2-pixel thick in correspondence of regions of

he object with thickness given by an even number of pixels. Thus,

 reduction to unit width is obtained by using templates able to

rase the marker from suitable skeletal pixels [34] . Finally, a prun-

ng step is also taken into account to simplify the structure of the

esulting skeleton by removing some peripheral branches corre-

ponding to scarcely elongated regions. The elongatedness of each

bject region can be measured by analyzing the skeleton branch

apped into it and a threshold on elongatedness can be set de-

ending on the specific application. 

.3. Polygonal approximation and building the graph for each frame 

Several approaches exist in the literature to compute the polyg-

nal approximation of a digital curve. We use the split type ap-

roach [35] because it is convenient when working with open

urves, like the individual skeleton branches. This type of algo-

ithm can be described as follows. The two extremes of the input

pen curve are taken by all means as vertices of the polygonal ap-

roximation. The Euclidean distance of all points of the curve from

he straight line joining the two vertices is computed. In particular,

ach point of the skeleton at position ( x, y ) and with distance value

 can be interpreted as a point in the 3 D space with coordinates

 x, y, k ). Then, the Euclidean distance d of a point C in the 3 D space

rom the straight line joining two points A and B , is calculated by

sing the following expression: 

 

2 = ‖ AC‖ 

2 − P ABC ∗
P ABC 

‖ AB ‖ 

2 
(6) 

here ‖ AC ‖ is the norm of the vector AC, and P ABC is the scalar

roduct between vectors AB and AC. 

The point with the largest distance is taken as a new vertex,

rovided that such a distance overcomes an a priori fixed thresh-

ld θ (for this work, θ = 1 . 5 , as we aim at a faithful approximation

36] ). If a new vertex is detected, such a vertex divides the curve

nto two sub-curves, to each of which the above split type algo-

ithm is applied. The splitting process is repeated as long as points

re detected having distance larger than θ from the straight lines

oining the extremes of the sub-curves to which the points belong.

.4. Graph construction 

When the recursion is completed, a graph with n vertexes

nd m undirected edges is represented as a pair G 

g = { J g , A 

g } , g =
Please cite this article as: F. Battistone, A. Petrosino, TGLSTM: A time 
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 , . . . , F and F number of frames, with J g ∈ R 

n ×3 and A 

g ∈ R 

n ×n ( m

lements greater than zero) where nodes are the points detected

s vertexes and edges are the segments that best approximates the

urves in the skeleton (see Fig. 1 ). Note that Fig. 1 (b) has been

ropped to the smallest area safely including the foreground once

he binarized version of Fig. 1 (a) has been obtained, so as to re-

uce the amount of data to process. 

Specifically, J g in R 

3 ×n represents the set of vertexes that have

een detected by polygonal approximation. Each vertex has three

oordinates, ( x, y, DT (3, 4) ( x, y )), where x and y are the spatial coor-

inates of the vertex while DT (3, 4) ( x, y ) is the value of DT in posi-

ion ( x, y ). The third coordinate describes the thickness of the ob-

ect region in correspondence to the skeleton point; indeed, graphs

ith similar structure may correspond to objects with different

hapes. 

While A 

g in R 

n ×m represents the topology of the graph, where

 

g 
ic 

= A 

g 
jc 

= 1 if the c th edge starts from the i th node and ends at

he j th node. 

. The TGLSTM model 

The Time based Graph L STM (TGL STM) model has been de-

igned on the basis of recurrent neural networks concepts ( Fig. 2 ).

he network is composed of some LSTM nodes alternating to Fully

onnected layers such that in input a frame based skeleton graph

s fed and in output the action represented by the graph is pro-

ided. 

Differently from other RNN models working on action se-

uences, the model works in a frame-by-frame manner. 

.1. LSTMs layer 

Long Short Term Memory (LSTM) networks [22] are a special

ind of RNN, capable of learning long-term dependencies. It gets

our neural layers (unlike the basic RNN, that has only a layer),

hat is interacting in a very special way. Indeed, LSTMs have special

nits called memory blocks. The memory blocks contain memory

ells with self-connections storing the temporal cell state of the

etwork in addition to special multiplicative units called gates to

ontrol the flow of information. A LSTM has three sigmoid gates to

rotect and control the cell state: forget gate, input gate and output

ate . 

At the first step the LSTM decides which information to throw

way from the cell state. This decision is made by a sigmoid layer

alled the forget gate . It checks the previous output h t−1 and the

nput x t to return a value in [0,1] for each sample in the cell state

 t−1 . This output is described by: 

f t = σ (W f · [ h t−1 , x t ] + b f ) (7)

here σ is a sigmoidal activation function ( σ (x ) = 1 / (1 + e −x ) ), W f 

nd b f are the weights and bias of the forget gate. 

In the next step the LSTM decides what new information are

toring in the cell state. It has two layers: a sigmoid layer called
based graph deep learning approach to gait recognition, Pattern 
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Fig. 2. The TGLSTM model. 
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the input gate that decides which values going to update, 

i t = σ (W i · [ h t−1 , x t ] + b i ) ; (8)

and a tanh layer ( tanh (x ) = (exp(−x ) − exp(x )) / (exp(−x ) +
exp(x )) ) that creates a vector of new candidate values, C ′ t , that

could be added to the state. 

 

′ 
t = tanh (W C · [ h t−1 , x t ] + b C ) . (9)

The state is updated according to the combination of both layers

as follow: 

 t = f t ∗ C t−1 + i t ∗ C ′ t (10)

where f t and i t are respectively the weights of the old and new

states at time t . Finally, the LSTM decides what it is going to out-

put. This output will be based on its cell state, but will be a filtered

version. 

To resolve this task a LSTM adopts two layer: the first layer is

the output gate that through a sigmoid activation function decides

which cell states should be going to output; the second layer is a

tanh layer that produces some values in [ −1 , 1] over the new cell

state and modulates the output of the sigmoid gates. These layers

are described by: 

o t = σ (W o [ h t−1 , x t ] + b o ) (11)

h t = o t ∗ tanh (C t ) (12)

3.2. Weight regularization with LSTM 

An issue with LSTMs is that they can easily overfit training data,

reducing their predictive skill over testing dataset. Weight regular-

ization ( L 1 or L 2 ) on the weights within LSTM nodes is a technique

for reducing overfitting and improving model performance. To re-

solve this problem different solutions have been reported: 

• Insert of a droup-out layer; 
• Adding noise to input; 
• Adding noise to weights; 
• Early training stop. 

After testing all the previous solutions, the most clever and ef-

ficient strategy has been that of adding Gaussian (with σ = 0 . 2 )

noise to LSTM weights. 

3.3. Fully connected layer 

To design a recursive network able to process graphs, a Con-

volutional network based on graph is adopted as Fully Connected

layer. The same has been reported in [23] , although we used a dif-

ferent design based on the works reported in [13,21] . Provided in

input the g -th graph G 

g = { J g , A 

g } , a fully connected layer can be

seen as mapping function such that 

F C l (J g , A 

g ) = ReLU( ̂  A H l−1 W l ) (13)

where: 
Please cite this article as: F. Battistone, A. Petrosino, TGLSTM: A time 
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• ˆ A is the re-normalized adjacency matrix, i.e. ˆ A = 

˜ D 

− 1 
2 ˜ A ̃

 D 

− 1 
2 

• ˜ A = A 

g + I n , with I n is the identity matrix of size n × n ; 
• ˜ D ii = 

∑ 

j 
˜ A i j with 0 ≤ i ≤ n and 0 ≤ j ≤ n ; 

• W l is the weight matrix related to the l -th FC layer; 
• H l is computed as 

H l = 

{
J g l = 0 

LST M l−1 (G 

g ) l � = 0 

(14)

where LST M l−1 (G 

g ) represents the output related to the g -th

graph as produced by the LSTM at the previous layer of the

actual FC layer; 
• ReLU ( · ) is the activation function defined as 

ReLU(x ) = max (0 , x ) . (15)

.4. TGLSTM structure 

The TGLSTM is characterised by Fully Connected layer ( FC l )

lternating with Long Short Term Memory ( LSTM l ), with l =
 , . . . , L − 1 . Specifically, we adopted L = 4 and layers FC 0 , FC 1 e FC 2
re governed by Eq. (13) and are respectively characterised by 200,

20 and 200 neurons. Also, the recursive layers LSTM 0 , LSTM 1 e

STM 2 have respectively neurons in number equal to 200, 220 and

00. Layer FC out , differently from previous layers, map the network

utput to classes, according to the following Equation 

 C out = (LST M 2 · W out ) (16)

here LST M 2 ∈ R 

20 0 , 20 0 is the output of the second LSTM layer,

 out ∈ R 

200 ,m are the weights and m is the number of classes (i.e.

ctions in the action recognition or subjects to be identified in gait

ecognition). 

. Experimental results 

The TGLSTM has been coded in Python with the auxiliary of the

ollowing open source libraries: 

• TensorFlow, that allows to develop neural networks with GPU

parallelism; 
• Scikit-learn, that includes a great variety of machine learning

functions; 
• Numpy, that is a Python scientific library; 
• OpenCV, that includes structures and functions for image pro-

cessing. 

Two different sets of experiments have been conducted. Firstly,

e demonstrate the robustness of TGLSTM for action recognition

roblem. Lastly, the performance of TGLSTM are shown for gait

ecognition. In both cases, popular datasets have been adopted and

omparisons with state-of-the-art are reported and commented. 

.1. Evaluation of robustness for action recognition 

We evaluated the TGLSTM on the two most cited RGB-D

atasets: 
based graph deep learning approach to gait recognition, Pattern 
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Table 1 

MSR action 3D dataset results. 

Average on SubSets TGLSTM Li et al. HOJ3D GRUNTS Vemulapalli HBRNN 

33% of Training set 93.7% 91.6% 96.2% – – –

50% of Training set 95.8 % – – – – –

66% of Training set 96.6% 94.2% 97.0% – – –

Cross Subject 95.2% 72.3% 79.0 85.3% 92.5% 94.5% 
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Table 2 

CAD-60 dataset results. 

Method Precision Recall 

[50] 93.2% 84.6% 

[16] 91.1% 91.9% 

[40] 93.8% 94.5% 

[10] 93.9% 93.5% 

TGLSTM 94.4% 93.7% 

Table 3 

CASIA dataset results. 

Method Exp1 Exp2 Exp3 Average Accuracy 

[31] 70.2% 74.2% 58.6 67.7% 

[41] – – – 74.9% 

Method1 in [12] 83.1% 85.5% 80.1% 82.9% 

Method2 in [12] 83.9% 85.5% 81.7% 83.7% 

TGLSTM 86.1 % 87.8 % 85.2 % 86.4 % 
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• MSR-Action3D dataset 1 is an action dataset of depth sequences

captured by a depth camera and contains twenty actions. Each

MSR-Action3D skeleton includes 20 junction nodes: each node

is represented by a 4-tuple ( u, v, d, c ); ( u, v ) are the junction

node coordinates, d is the depth and c is the belief value (any-

way not considered in our work). Our performance have been

compared to other recent techniques for action classification

adopting depth information, like [26] , HOJ3D [43,48] , GRUNTS

[2] , HBRNN [15,44] ; 
• CAD-60 dataset 2 contains the RGB frames, depth sequences and

the tracked skeleton joint positions captured with Kinect cam-

eras. The actions in this dataset are categorized into 5 differ-

ent environments: office, kitchen, bedroom, bathroom, and liv-

ing room. Three or four common activities were identified for

each environment, giving a total of twelve unique actions. On

this dataset TGLSTM is compared with [10,16,40,50] . 

Because there is no clear definition of robustness in action and

n gait recognition, we consider a method as robust when it is

ot influenced by some conditions of environment or subject (e.g.

olour of dresses). 

For this reason we evaluate the TGLSTM on three different set-

ings: 

1. Influence of Training set size (on MSR Action 3D) 
• 33% of Training set and 66% of Testing set; 
• 50% of Training set and 50% of Testing set; 
• 66% of Training set and 33% of Testing set. 

The achieved results are shown in the first three rows of Tab. 1 ;

it figures out how the methods suffer from the training set size.

The achieved performance of TGLSTM are comparable to those

achieved by HOJ3D; 

2. Influence of subject (on MSR Action 3D): the training set is com-

posed by sequences of five actors, while the remaining actors

are adopted for testing. It is a challenging way of doing train-

ing and it is described with more details in [27] . From the ob-

tained results (last row of Table 1 ) it is clear the superiority of

TGLSTM. The HOJ3D method, that in previous experiments got

the best performance, loses in our experiments the 20% of ac-

curacy. In general, it is useful to underline the importance of

structured information, like skeletons: the methods based on

skeleton like HBRNN do not degrade their performance; 

3. Influence of external environment (on CAD-60): the dataset is

usually evaluated by splitting the activities according to the en-

vironment and the global performance of the algorithm is given

by the average precision and recall among all the environments.

We employed leave-one-out cross-validation to test each per-

son data, i.e. the model was trained on three out of four people

from whom data were collected, and tested on the fourth one

(for more details [42] ). The results in Table 2 show that TGLSTM

ranks at first place in terms of precision and at second place for

the recall. 

The achieved results show that TGLSTM results are always com-

arable, and in some cases the best ones, to other state-of-the-art
1 http://research.microsoft.com . 
2 http://pr.cs.cornell.edu/humanactivities/data.php . 

b  

Please cite this article as: F. Battistone, A. Petrosino, TGLSTM: A time 

Recognition Letters (2018), https://doi.org/10.1016/j.patrec.2018.05.004 
ethods even using the same model on both datasets (we change

nly the number of the neurons in the last fully connected layer). 

.2. Experiments on gait recognition 

We evaluated the described method on two most popular and

hallenging gait recognition datasets: CASIA Gait Dataset B and

TUM Gait from Audio, Image and Depth” (TUM-GAID) dataset. To

btain the graph for each frame, on these datasets, we apply the

teps described in Section 2 . 

CASIA Dataset B 

3 is a large database consisting of videos for

24 subjects captured from 11 different viewing angles (from 0 o 

o 180 o with the step 18 o ). All the trajectories are straight and

ecorded indoor in the same room for all people. Besides the

ariety of the viewpoints, different clothing and carrying condi-

ions are presented: wearing a coat and carrying a bag. We have

0 video sequences for each person captured from each view: 6

ormal walks without extra conditions, two walks in an outdoor

lothing and two walks with a bag. 90 o angle recordings have been

dopted and three experiments were conducted as follows: 

• Exp1 focuses only on carrying conditions. Two normal se-

quences out of six are randomly selected along with the two

carrying sequences. There are a total of 496 (124 x 4) sequences;
• Exp2 pays attention to clothing changes. Two out of six nor-

mal sequences and the two coating sequences are chosen. There

also exists a total of 496 (124 x 4) sequences; 
• Exp3 explores both above mentioned conditions together. Two

out of six normal sequences, the two carrying and two clothing

sequences form the dataset, in which 744 (124 x 6) gait samples

are included. 

Table 3 shows TGLSTM results compared with state-of-the-art

ethods [12,31,41] : TGLSTM gets always best performance. This

olds also in the case TGLSTM is compared with similar two LSTM

ased methods [12] , giving evidence of the great improvement in-
3 http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp . 

based graph deep learning approach to gait recognition, Pattern 
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Table 4 

TUMGAID dataset results. 

Method Accuracy 

2D-CNN [9] 97.7% 

3D-CNN [9] 96.7% 

RSM [20] 92.0% 

SVIM [46] 84.7% 

GVI [46] 80.4% 

[41] 97, 2% 

TGLSTM 98.4% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ducted by the adoption in our method of structured data and their

dynamic learning. 

The TUMGAID Dataset 4 contains videos for 305 subjects go-

ing from left to right and from right to left captured from the

side view. The videos show different walking conditions: 6 nor-

mal walks, 2 walks carrying a backpack, and 2 walks wearing coat-

ing shoes for each person. Although there are recordings only from

one viewpoint, the number of subjects allowed to take around half

of the people as training set and another half for evaluation, so

that the net was trained using the data for 150 subjects and tested

with the other 155 ones. The results reported in Table 4 show that

the TGLSTM performance well compare with state-of-the-art meth-

ods, like [9] , where instead of using video frames at 640 × 480, a

resolution of 80 × 60 is used and optical flow (anyway dense and

so time consuming) subsequences are passed through a CNN (non

temporal as 2D-CNN or temporal 3D-CNN) to obtain gait signatures

and a classification stage realized through an ensemble of one-vs-

all linear SVMs. 

5. Conclusions 

We have introduced for the first time a Time based Graph neu-

ral network by using LSTM layers. The TGLSTM is composed by

alternating recursive layers Long Short Time Memory (LSTM) and

Fully Connected layers that catch information from both the graph

nodes and its links. 

We have assessed its performance on human activity recogni-

tion and gait analysis and specifically on four datasets MSR Ac-

tion 3D, CAD-60, CASIA Gait B, “TUM Gait from Audio, Image and

Depth” (TUM-GAID) datasets against some baselines, showing its

superiority for supervised classification of sequences of graphs.

Concerning the problem at hand, our approach deals the activity

recognition frame-by-frame, but, in our opinion, interesting exten-

sion may consists in considering 3D volume of frames together

with sequences of graphs. 
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