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ABSTRACT
Multi-level marketing is a marketing approach that moti-
vates its participants to promote a certain product among
their friends. The popularity of this approach increases due
to the accessibility of modern social networks, however, it
existed in one form or the other long before the Internet
age began (the infamous Pyramid scheme that dates back
at least a century is in fact a special case of multi-level mar-
keting). This paper lays foundations for the study of reward
mechanisms in multi-level marketing within social networks.
We provide a set of desired properties for such mechanisms
and show that they are uniquely satisfied by geometric re-
ward mechanisms. The resilience of mechanisms to false-
name manipulations is also considered; while geometric re-
ward mechanisms fail against such manipulations, we exhibit
other mechanisms which are false-name-proof.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
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1. INTRODUCTION
Social networks are everywhere: our e-mail and phone ad-

dress books, our family relatives, and our business connec-
tions, all define either explicit or implicit social networks.
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Social networks have existed long before the Internet, but
their recent web-based form, as exhibited by companies like
Facebook, Twitter, or LinkedIn, made them more tangible.
In their new manifestation, social networks have become an
attractive playground for viral marketing: the dream of any
marketer is that her products will be promoted via “word of
mouth” (which relies on social networks). In order to make
that dream a reality, various forms of marketing have been
advocated. The so-called affiliate marketing, direct mar-
keting, and multi-level marketing all refer to (overlapping)
approaches that facilitate viral marketing. In this paper, we
shall adhere to the term multi-level marketing, as it seems
to be the least restrictive one.

The fundamental idea behind multi-level marketing is that
Alice, who already purchased the product, is rewarded for
referrals, i.e., for purchases made by Bob as a result of Alice’s
promotion. The reward mechanism associated with multi-
level marketing may take various forms. In particular, Alice
may be rewarded for both purchases made by Bob and for
Bob’s own referrals in a recursive manner.

The potential to accumulate small rewards from each per-
son to a sizable sum is important as it allows advertisers
to attract early adopters and trendsetters that are of great
value to them. On the downside, the possibility of gath-
ering a large sum has also inspired more illicit versions of
multi-level marketing, namely pyramid schemes. These ille-
gal1 mechanisms, essentially based on the notion of indirect
referrals, are not intended to promote a real product, but
rather to collect money from the social network, although
sometimes a product is used in an attempt to cover the na-
ture of the pyramid scheme and bypass legal restrictions.
In these cases, customers seldom enjoy the actual product
being promoted (when a product is being promoted), but
are only participating in the (usually false) hope of getting
rewards from recruiting others.

Needless to say that selecting an appropriate reward mech-
anism is inherent to the design of a successful multi-level
marketing scheme. Interestingly, despite the popularity of

1The current paper does not take legal issues into consider-
ation. In particular, our analysis will not make the distinc-
tion between legitimate multi-level marketing and pyramid
schemes.
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work on information spreading and influence in social net-
works (see, e.g., the survey in [11]) the study of reward mech-
anism design in that context has been almost completely
neglected. Such study is the main subject of the current
paper.

Consider for example the following basic coupon driven
scheme. Upon purchase of the product, Alice is given
coupons that she can distribute among her friends. Then,
for any purchase made by Bob in which Alice’s coupon is
used, Alice is rewarded with appropriate rebates on future
purchases. This scheme and similar ones, are easy to imple-
ment and have become quite standard in our daily life. Note
that the coupon driven scheme does not exploit indirect re-
ferrals: Alice is not rewarded by purchases made with Bob’s
coupons or with the coupons of Bob’s referrals.

Reward mechanisms that exploit indirect referrals used
to be difficult to implement as they require some central
authority that keeps track of the referral structure. Infor-
mation technology has made this task much easier. Consider
for example the setting in which Alice promotes a product
by publishing a link to the seller’s web-site in her blog or
Facebook page. Bob can buy the product by clicking on
that link; together with the actual product, Bob receives a
link to the seller’s web-site that he can also publish in his
blog or Facebook page. The seller’s web-site can easily iden-
tify Bob as a buyer that followed Alice’s link.2 This way a
complete record of direct and indirect referrals can clearly
be maintained. This ease of implementation makes reward
mechanisms that take indirect referrals into account even
more appealing than they have been before.

Are indirect referrals really that important? We believe
so. To demonstrate their significance, suppose that Bob is a
rock music authority and that following Alice’s promotion,
he downloads a new rock song. If Bob recommends this song
in his blog, and consequently many other users download
this song, then Alice certainly played a major role in the
promotion process, even if she only had a few direct referrals.
A reward mechanism that depends only on direct referrals
is therefore bound to miss the bigger picture.

The referrals tree model.
There are many possible ways to take the social network

that forms the basis of the referral process into account.
In principle, one may wish to consider the times at which
promoting messages were sent from one user to another, to
consider referrals that were not followed up by a purchase of
the product being promoted, or even to consider the social
links along which a referral was not made. However, all of
this information may not be available to the original seller.3

We therefore take the straightforward approach of looking
only at the structure of successful referrals. For each buyer,
we mark only a single referrer for introducing the product
to her (in reality, this would typically be specified at the
time of purchase). The induced structure of referrals forms
a collection of directed trees, each rooted at a node that

2This can be implemented by associating Alice’s link with
a unique identifier. In the current paper we abstract away
this technical issue.
3In some social networks such as Facebook there is often
more explicit knowledge of social connections, but general
referral systems do not necessarily have all the information
about the underlying social structure and may not be able
to track messages in the network.

corresponds to some buyer that has purchased the product
directly from the seller. We shall refer to this tree collection
as the referrals forest, denoted T , and to the rooted trees in
T as the referrals trees. We find the assumption that T can
be maintained by the seller sufficiently weak.

It should be clarified that the referrals forest corresponds
to a single multi-level marketing campaign (typically associ-
ated with a single product). Moreover, social network users
that did not purchase the product are not represented in
T even if some of their friends attempted at promoting the
product to them. For ease of presentation, we assume that
T is fully known when the rewards are to be distributed,
although all the mechanisms explored in this paper are also
suited for incremental payments performed online. It will
also be convenient to identify the buyers with their corre-
sponding nodes in T , denoting the reward of (the buyer
corresponding to) node u under the referrals forest T by
RT (u).

Constraints on the reward mechanism.
The reward mechanism is essentially a function that maps

the referrals forest T to the non-negative real rewards of its
nodes. However, not every such function should be consid-
ered; specifically, we impose three constraints on the reward
mechanisms. The first one is the subtree constraint : RT (u)
is uniquely determined by Tu, namely, by the subtree of T
rooted at u. This is sensible, as each user u can really be
credited only for bringing in users she promoted the product
to, either directly (the children of u in T ) or indirectly (lower
level descendants of u). Moreover, a dependence of RT (u)
on the position of u within T (rather than on Tu only) may
result in an undesirable behavior on behalf of u: in some
cases u is better off delaying the purchase of the product
after receiving a referral in hope for a “better” offer, i.e., for
a referral that would place u in a better position within T .

One of the consequences of the subtree constraint is that
there is no point in dealing with the referrals forest T in
full, but rather focus on trees which are rooted at the nodes
whose reward we are trying to calculate. In other words, the
reward mechanism is completely specified by the function
R(T ) that maps the rooted tree T to the non-negative real
reward of its root (which may be an internal node within
the whole referrals forest).

The second constraint that we impose on the reward mech-
anism is the budget constraint : the seller is willing to spend
at most a certain fraction φ ≤ 1 of her total income on re-
warding her buyers for referrals. Given that the price of the
product is π, this means that the total sum of rewards given
to all nodes is at most φ · π|T |. We assume without loss of
generality that π and φ are scaled so that φ · π = 1. Thus,∑

u∈T

R(Tu) ≤ |T | .

The third constraint is the unbounded reward constraint :
there is no limit to the rewards one can potentially receive
even under the assumption that each user has a limited circle
of friends in the underlying social network (imposing a lim-
ited number of direct referrals). Formally, the unbounded
reward constraint dictates that there exists some positive
integer d (a property of the reward mechanism) such that
for every real R, there exists some tree T of maximum de-
gree d (i.e., every node has at most d children) such that
R(T ) ≥ R. In particular, this constraint implies that the
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reward mechanisms we consider must take indirect referrals
into account.

Our results.
We begin our exploration of reward mechanisms with a

well known family of mechanisms, namely, geometric reward
mechanisms. Under these mechanisms, the contribution of
a node to the rewards of its ancestors in the referrals tree
decreases exponentially (by a fixed factor) with the distance
from these ancestors. Three desired properties of geometric
reward mechanisms are listed: additivity, child-dependence,
and depth-level-dependence. We show that these three prop-
erties fully characterize the family of geometric mechanisms
in the sense that any mechanism that satisfies all three prop-
erties must be a geometric mechanism. (This may explain
why pyramid schemes typically rely on geometric reward
mechanisms or some close variant of them.) We go on to
show that none of the properties is redundant: if any one of
the three is left out, alternative reward mechanisms can be
found that possess the remaining three.

We then look at one more important property of reward
mechanisms, namely, resilience to false-name manipulations
(a.k.a. Sybil attacks). The geometric mechanism family
turns out to be susceptible to manipulations by users that
can create false identities. In fact, we show that mecha-
nisms that are resilient to false-name manipulations cannot
guarantee a user some constant fraction of the reward of
even its least influential child. Moreover, it turns out that
even if one replaces the child-dependence and depth-level-
dependence properties with the much weaker monotonicity
property, resilience to false-name manipulations is still im-
possible. On the positive side, we present and analyze two
reward mechanisms that maintain resilience to false-name
manipulations; the two mechanisms differ in their level of
resilience and ease of implementation.

Related work.
The general idea of diffusion of opinions and conventions

in societies has for long been a topic of study in the social
sciences [15, 9] and got attention by game theorists (e.g.,
[20]) and AI researchers (e.g., [16]) among others, quite a
while ago. The effects of the social structure on emergent
behavior and norms has also been studied, e.g., in [14, 17].

The more explicit algorithmic questions that arise when
one considers an endeavor such as viral marketing have been
posed more recently. The original question of how to select
a good set of influential users has appeared in a seminal
paper by Domingo & Richardson [8], and has later been ex-
plored (with various related models) in a series of papers,
e.g. [7] and many other following works [10, 3, 5]. These
generally assume that the spread of information in the so-
cial network occurs through some contagion model (i.e., that
a user is more likely to be “infected” with an idea if more
of her neighbors are) in which users do not explicitly exert
effort. The rigorous study of incentive design for facilitat-
ing diffusion or product adoption was typically left without
proper explicit treatment, and all works we are aware of in
the context of viral marketing do not try to influence the
amount of effort exerted to spread the information further.

The issue of incentives in social networks has however re-
ceived attention in other particular contexts. For example,
fair distribution of costs/gains of members in a network, us-
ing standard power indices from cooperative game theory,

such as the Shapley and Banzhaf values has been a subject
of study (see e.g., [13, 4, 2]). However, these do not provide
a general rigorous study of reward mechanisms for social
distribution. Kleinberg & Raghavan [12] consider a setting
that is perhaps the most similar in spirit to our own, in
which they elicit effort from agents that forward queries in
a social network. Unlike our setting, they allow each agent
that receives the query and forwards it to offer its own re-
ward for a successful answer. The final rewards are only
allocated along the path to the agent that gave the answer
as each agent along the way receives the reward for passing
the answer back along the path. A similar reward mecha-
nism (that was more structured) was used by the team from
MIT that won the DARPA network challenge [1].

Finally, our work also deals with the issue of Sybil attacks
that have appeared in many other contexts such as reputa-
tion mechanisms [6], combinatorial auctions [18], and social
choice [19].

2. PRELIMINARIES
Unless stated otherwise, all trees addressed in this paper

are assumed to be finite and directed from the (unique) root
towards the leaves. A typical tree will be denoted by T ;
its root is denoted by r. We use the standard (directed)
tree notions of parent, child, leaf, descendant, and ancestor
in their natural sense; the parent of a (non-root) node u
in T is denoted pT (u). The degree of node u ∈ T , denoted
degT (u), is just the number of children u has in T . Given two
nodes u, v ∈ T such that u is an ancestor of v, we define the
distance from u to v, denoted δT (u, v), as the number of hops
(i.e., edges) along the unique path in T leading from u to v;
the distance from u to itself is defined to be δT (u, u) = 0. If
δT (u, v) = k > 0, then we refer to u as the kth ancestor of v.
We denote the subtree of T rooted at u by Tu. The height
of T , denoted h(T ), is defined to be the maximum distance
from r to any leaf in T ; the height of u in T , denoted hT (u),
is simply h(Tu). The depth of u in T , denoted depT (u), is
the distance δT (r, u) from the root of T to u. When the tree
T is clear from the context, we may omit the subscripts and
simply write p(u), deg(u), δ(u, v), h(u), and dep(u).

A reward mechanism is a function that maps a non-
negative real reward R(T ) to every finite rooted tree T . We
think of T as a (subtree of a) referrals tree and of R(T ) as the
reward of the root r of T . (Recall that defining the reward in
that manner is made possible due to the subtree constraint
requiring that the reward of a node in the referrals forest
depends only on its subtree.) The profit of r is actually
R(T )− π as r paid π ≥ 1 for purchasing the product when
she joined the referrals forest. By the budget constraint, it
is assumed that

∑
u∈T R(Tu) ≤ |T |. The unbounded reward

constraint guarantees the existence of some positive integer
d such that for every real R, there exists some tree T of max-
imum degree d such that R(T ) ≥ R. The notation RM(·)
is used when it is important to emphasize that the function
R(·) is associated with the reward mechanism M.

3. THE GEOMETRIC MECHANISM
In this section we focus on the following family of reward

mechanisms, referred to as geometric mechanisms. Given
two constants 0 < a < 1 and b > 0 such that b + 1 ≤ 1/a,
the reward from a referral tree T under the (a, b)-geometric
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mechanism is defined to be

R(T ) =
∑
u∈T

adep(u) · b .

The constraints on a and b ensure that the amount con-
tributed by each node to the reward of its ancestors will
not exceed 1. This simple mechanism is very popular with
pyramid schemes; as we will show soon, this is no coinci-
dence. Let us begin by defining and discussing three basic
properties of reward mechanisms:
Additivity (ADD): We define the operation ∪ on trees such
that if T1, T2 are trees, then T1 ∪ T2 is the tree formed by
contracting (or merging) the roots of T1 and T2. ADD is then
stated as follows: R(T ) + R(T ′) = R(T ∪ T ′).
This property suggests that if two disjoint trees are merged
at the root, then the reward of the root is exactly the sum
of the rewards of the two original trees. Generally speak-
ing this property implies that the reward to each node can
be independently attributed to the subtrees rooted at its
children.
Child Dependence (CD): The reward of the root is
uniquely determined by the rewards of its children. This
property ensures that the actual computation of the rewards
can be performed locally. In fact, we shall consider a weaker
condition for this property: If the root of T has a single
child u, then R(T ) is uniquely determined by R(Tu). This
is captured by a function χ : R≥0 → R≥0 (a property of the
mechanism) so that R(T ) = χ(R(Tu)).
Depth Level Dependence (DLD): R(T ) is uniquely deter-
mined by the number of nodes on each depth level in T .
We denote by dk the number of nodes of T at depth level
k > 0, and the infinite vector containing these numbers for
all depth levels by d = (d1, . . . , dh, 0, 0, . . . ), where h is the
height of the tree. Let D be the set of all such vectors, i.e.,
the set of all infinite vectors over Z≥0 with a strictly positive
prefix followed by a countably infinite suffix of zeros. Then
DLD implies that there exists some function f : D → R≥0 (a
property of the mechanism) such that R(T ) = f(d).
This property essentially means that the credit for a referral
depends solely on how direct (or better said, indirect) this
referral is.

Theorem 1. A reward mechanism satisfies DLD, ADD, and
CD if and only if it is a geometric mechanism.

To prove the theorem, we will need the definition of the
following additional property:
Summing Contributions (SC): There exists a sequence
{ck}k≥1 of non-negative reals such that

R(T ) =
∑
u∈T

cdep(u) =

∞∑
k=1

#nodes at depth level k · ck .

That is, SC implies that each node in the tree T contributes
some independent amount to the root, and that amount de-
pends only on its depth. The following lemma reveals the
connection between this property and the ones we have al-
ready defined.

Lemma 2. A reward mechanism satisfies SC if and only
if it satisfies DLD and ADD.

Proof. We start with some useful notation. Let d>k

denotes the infinite vector d after the first k elements have
been removed, i.e., d>k = (dk+1, dk+2, . . . ). We denote by

m ◦ d the infinite vector that starts with the element m
and continues with the elements of the infinite vector d, i.e.,
m ◦ d = (m, d1, d2, . . . ). Finally, we denote the all-zeros

infinite vector by ~0 = (0, 0, . . . ).
The direction in which SC implies DLD and ADD is trivial.

We shall establish the converse direction using an inductive
argument. Specifically, we prove by induction on k that for
every k ≥ 0, there exist non-negative reals c1, . . . , ck and an
additive function4 gk : D → R≥0 such that

R(T ) =

k∑
i=1

ci · di + gk(d>k) .

The base of the induction, for k = 0, is satisfied by setting
g0(d) = f(d), where f is the function promised by DLD. The
additivity of g0 is then guaranteed by ADD.

For the inductive step, we assume that there exist some
non-negative reals c1, . . . , ck−1 and an additive function
gk−1 : D → R≥0 such that

R(T ) =

k−1∑
i=1

ci · di + gk−1(d>k−1) .

The assertion for k is established by setting

ck = gk−1(1 ◦~0) ; and

gk(d) = gk−1(1 ◦ d)− ck .

To verify that the function gk is indeed additive, we employ
the additivity of gk−1, observing that

gk(d+ e) = gk−1(1 ◦ (d+ e))− ck
= gk−1(2 ◦ (d+ e))− gk−1(1 ◦~0)− ck
= gk−1(1 ◦ d) + gk−1(1 ◦ e)− 2 · ck
= gk(d) + gk(e) .

The proof of the inductive step can now be completed due
to the inductive hypothesis since

f(d)

=

k−1∑
i=1

ci · di + gk−1(d>k−1)

=

k−1∑
i=1

ci · di + gk−1(dk ◦ d>k)

=

k−1∑
i=1

ci · di + gk−1(1 ◦ d>k) + gk−1((dk − 1) ◦~0)

=

k−1∑
i=1

ci · di + gk(d>k) + ck + (dk − 1) · ck

=

k∑
i=1

ci · di + gk(d>k) .

The lemma follows by taking k = h(T ) as every additive

function g must satisfy g(~0) = 0 (by definition, g(~0) = g(~0+
~0) = 2 · g(~0)).

Theorem 1 is established by showing that the contribution
values ck form a geometric progression.
4In this context a function g : D → R≥0 is said to be additive
if g(d+ d′) = g(d) + g(d′), where the summation in d+ d′ is
coordinate-wise.

212



Lemma 3. A reward mechanism satisfies SC and CD if and
only if it is a geometric mechanism.

Proof. It is trivial to show that a geometric mechanism
satisfies both properties, so we focus on the converse direc-
tion. Let us restrict our attention to a specific class of trees:
For n > 1 and m > 0, we denote by T (n,m) the tree con-
sisting of n + m nodes organized as a path of length n − 1
emerging from the root with the last node in this path hav-
ing m children, all of which are leaves. Refer to Figure 1 for
illustration.

Recall that SC implies the existence of constants c1, c2, . . .
that determine the contribution of nodes at each depth level
to the reward of the root. We first argue that ck must be
strictly positive for every k ≥ 1. To that end, suppose that
ck∗ = 0 for some k∗ ≥ 1 and consider the trees T (k∗,m)
and T (k∗,m′) for some m,m′ > 0, m 6= m′. SC implies
that R(T (k∗,m)) = R(T (k∗,m′)) since ck∗ = 0. By CD, we
conclude that the same holds for T (k∗ + 1,m) and T (k∗ +
1,m′), namely, R(T (k∗+1,m)) = R(T (k∗+1,m′)), because
both the root of T (k∗+ 1,m) and that of T (k∗+ 1,m′) have
a single child whose reward is R(T (k∗,m)) = R(T (k∗,m′)).
This implies that ck∗+1 must also be 0 and by induction,
that ck = 0 for every k ≥ k∗. But this contradicts the
unbounded reward constraint: if ck = 0 for every k ≥ k∗,
then no tree T of maximum degree d can provide a reward
greater than 2 · dk

∗
.

So, assume hereafter that ck > 0 for every k ≥ 1. In
attempt to simplify the analysis, we shall impose another
assumption on the contribution values ck. Specifically, we
assume that each ck is rational, so that ck = xk/yk for some
positive integers xk and yk. We later on outline how this
assumption can be lifted.

Let us compare the reward that is given to the root node
in two specific T (n,m) trees (recall that a T (n,m) tree has
one node at each level 0 to n− 1, and m nodes at level n):

R(T (k − 1, xk · yk−1 + 1))

=

k−2∑
i=1

ci + (xk · yk−1 + 1) · ck−1

=

k−1∑
i=1

ci + xk−1 · xk

=

k−1∑
i=1

ci + xk−1 · yk · ck

= R(T (k, xk−1 · yk)) . (1)

Now, observe that CD implies that if R(T (n,m)) =
R(T (n′,m′)), then R(T (n + 1,m)) = R(T (n′ + 1,m′)). By
applying this observation to Equation 1, we conclude that

R(T (k, xk · yk−1 + 1)) = R(T (k + 1, xk−1 · yk)) .

SC then implies that

k−1∑
i=1

ci + (xk · yk−1 + 1) · ck =

k∑
i=1

ci + (xk−1 · yk) · ck+1 ,

hence xk · yk−1 · ck = (xk−1 · yk) · ck+1. It follows that

(ck)2 = ck−1 · ck+1 , (2)

which implies a geometric progression (ck is the geometric
mean of ck−1 and ck+1).

Figure 1: T (n,m) for n = 4 and m = 10.

Recall that our proof thus far only works if all ck’s are
rational numbers. We can extend the proof to irrational
numbers if we add a requirement on the continuity of the
function that determines the rewards of a parent from the
reward of its children. If the ck’s are not rational, it is
possible to approximate them as closely as one wishes with
rational numbers xk/yk and with the extra assumption, the
derivation above results in an equation similar to Equation 2
which is modified with terms that represent the error in the
approximation of ck. As this error can be made arbitrarily
small, Equation 2 holds even for irrational values.

Another appealing property of geometric mechanisms is
that the contribution of descendants to their ancestor de-
creases with distance. This reflects the fact that the ancestor
gets less credit for more distant indirect referrals.

It is important to point out that each of the three proper-
ties we used to characterize the family of geometric mecha-
nisms is needed, i.e., if we remove one of the three properties
then there exists another mechanism (outside the geometric
family) for which the remaining three hold. This is estab-
lished in the full version of this paper.

4. SYBIL ATTACKS
Our goal in this section is to develop reward mechanisms

which are not vulnerable to forging identities on behalf of the
users. Let us begin by introducing the notions of a split and
a local split. Consider some tree T and some node v ∈ T and
let u1, . . . , uk be the children of v in T . Intuitively speaking,
a split of v refers to a scenario in which v presents itself
as several nodes — a.k.a. replicas — thus modifying the
(sub)tree Tv that determines its reward (possibly turning it
into several trees), while keeping Tu1 , . . . , Tuk intact. A local
split refers to the special case of a split in which u1, . . . , uk
are forced to share the same parent in the resulting tree.

Formally, we say that the tree collection {T̃ 1, . . . , T̃m} can
be obtained from Tv by a split of v if
(1) for every 1 ≤ i ≤ k, there exists a single 1 ≤ j(i) ≤ m

such that ui ∈ T̃ j(i); and

(2) T̃
j(i)
ui = Tui for every 1 ≤ i ≤ k.

The nodes in(
T̃ 1 ∪ · · · ∪ T̃m

)
−
(
T̃ j(1)
u1
∪ · · · ∪ T̃ j(k)

uk

)
are referred to as the replicas of v under that split. By
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definition, ui must be a (direct) child of some replica of v
for every 1 ≤ i ≤ k as otherwise, at least one of the subtrees
rooted at u1, . . . , uk must have been changed, thus violating
condition (2). Refer to Figure 2 for an illustration of a split.
The split is called local if u1, . . . , uk are all children of the
same replica of v.

The semantic of the aforementioned split is as follows. The
user corresponding to v forges some new identities that cor-

respond to its replicas in T̃ 1, . . . , T̃m. Some of these replicas
purchase the product via referrals from pT (v) — they form

the roots of the trees T̃ 1, . . . , T̃m; the rest of the replicas
purchase the product via the referrals of other replicas that
already purchased it. The referrals to u1, . . . , uk are then
made from the appropriate replicas, so that eventually Tv is

replaced by the trees T̃ 1, . . . , T̃m, the roots of which are all
children of pT (v).

It is assumed that ui does not distinguish between the
original v and its new replicas. Therefore the new referral
(made from a replica of v rather than from v itself) looks
to ui like a referral from v and she relies on it to purchase
the product just like she did with the referral from v in
the original scenario. Under local splits, this assumption is
lifted as all children of v purchase the product from the same
replica that may have the identity of v herself.

What’s in it for v? Clearly, v has to invest π ×#replicas
in introducing the new replicas (purchasing new copies of
the product). However, she now collects the rewards from
all her replicas, which sums up to

m∑
i=1

∑
replica u of v in T̃ i

R(T̃ iu) .

Thus, the profit5 of v changes from R(Tv)− π to

m∑
i=1

∑
replica u of v in T̃ i

R(T̃ iu)− π ×#replicas ;

the split is called profitable for v if this change is positive.
This leads to the definition of the following two properties
of reward mechanisms.
Split Proof (SP): A reward mechanism satisfies SP if it does
not admit a profitable split for any node v in any tree T .
Local Split Proof (LSP): A reward mechanism satisfies
LSP if it does not admit a profitable local split for any node
v in any tree T .

The geometric mechanisms presented in Section 3 do not
satisfy SP. In fact, they do not even satisfy LSP (see Sec-
tion 4.1). A simple mechanism that do satisfy SP is the sin-
gle level mechanism defined by fixing RMsl(T ) = α · deg(r)
for some constant α ≤ 1, however, this mechanism does not
adhere to the unbounded reward constraint.

In Section 4.1 we establish two negative results regarding
the design of split-proof mechanisms. On the positive side,
we devise two mechanisms which are resilient to false-name
manipulations. The first one, presented in Section 4, satisfies
the stronger property SP, however, it is complicated to im-
plement and not very appealing. The second one, presented
in Section 4.3, satisfies only LSP, but it is more natural and
much easier to implement.

5Here, we assume that a user has no usage in more than one
copy of the product. This is a valid assumption, e.g., in the
context of information goods.

4.1 Negative Results
Let us now exhibit two negative results (proofs are de-

ferred to the full version of the paper) regarding the design
of split-proof mechanisms. The first result shows that the
reward guaranteed to a node in a split-proof mechanism can-
not be a constant fraction of even its least influential child.

Lemma 4. A reward mechanism that satisfies LSP cannot
guarantee a node some fraction 0 < α ≤ 1 of the reward of
its least rewarded child.

Next, we show that even a family of reward mechanisms
much wider than geometric mechanisms is still not split-
proof. This requires the introduction of another property
which is clearly satisfied by every geometric mechanism, yet,
cannot replace any of the characterizing properties listed in
Theorem 1.
Monotonicity (MONO): If the tree T can be obtained from
the tree T ′ by removing some leaf, then R(T ) < R(T ′).

Lemma 5. A reward mechanism that satisfies MONO and
ADD cannot satisfy SP.

4.2 A Split-Proof Mechanism
In this section we present a split-proof reward mechanism,

denotedMsplit. Informally, the mechanismMsplit is defined
in two stages: in the first stage, we define a simple base
mechanism, denoted Mbase; Msplit is then defined with re-
spect to the maximum profit a node can make underMbase

from splits.

MechanismMbase.
The base mechanism Mbase is defined by setting

RMbase(T ) to be the maximum h ∈ Z≥0 such that T exhibits
as a subtree, a perfect binary tree6 B rooted at r whose
height is h. In that case we say that B realizes RMbase(T )
(see Figure 3). If there are several perfect binary trees that
can realize RMbase(T ), then it will be convenient to take the
first one in a lexicographic order based on a breadth-first-
search traversal and consider it as the perfect binary tree
that realizes RMbase(T ).

A node u ∈ T is said to be visible in T if it belongs to
the perfect binary tree that realizes RMbase(T ); otherwise,
u is said to be invisible in T . This definition is extended
as follows: given some ancestor v of u in T , u is said to
be visible (respectively, invisible) to v if u is visible (resp.,
invisible) in Tv. Note that if u is invisible to v, then it is
also invisible to pT (v) (assuming of course that v 6= r). The
contrary is not necessarily true: u may be visible to v but
invisible to pT (v). By definition, for every node u ∈ T and
for every j ∈ Z≥1, it holds that u admits either 2j or 0
visible depth-j descendants.

The mechanism Mbase can be redefined by setting

RMbase(T ) =
∑

visible u∈T

2−δT (u,r) .

This alternative view of mechanismMbase calls for the defi-
nition of contributions: a node u ∈ T contributes 2−k to the
reward of its kth ancestor v, k ≥ 1, if u is visible to v; oth-
erwise, u does not contribute anything to the reward of v.

6A perfect binary tree is a rooted tree in which all leaves are
at the same distance from the root and all non-leaves have
exactly two children.
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(b) T̃ 1 and T̃ 2

Figure 2: The tree collection {T̃ 1, T̃ 2} can be obtained from Tv by a split of v. The white circles depict the

children of v in T (2(a)) and their positions in T̃ 1 and T̃ 2 after the split (2(b)). The gray circles in 2(b) depict
the replicas of v under that split.

Figure 3: The tree T and the perfect binary tree that
realizes RMbase(T ) (nodes depicted by gray circles).

Let CMbase(u, v) denote the contribution of u to the reward
of v under Mbase. The reward of a node can now be cal-
culated by summing the contributions that its descendants
make to it. This implies that Mbase satisfies the budget
constraint: the total contribution made by a node u ∈ T
to all its ancestors is bounded from above by the geometric

sum
∑δ(u,r)
j=1 2−j < 1, hence, by changing the summation,

we conclude that
∑
v∈T RMbase(Tv) < |T |.

MechanismMsplit.
The mechanism Msplit is defined by setting RMsplit(T )

so that it reflects the maximum profit that r can get under
Mbase from splits. More formally, let S be the collection of
all tree collections that can be obtained from T by a split of
r. Then Msplit is defined by setting

RMsplit(T )

= sup
T̃={T̃1...,T̃m}∈S

{ m∑
i=1

∑
repl. v of r in T̃ i

RMbase(T̃ iv)


− π ·

(∣∣∣T̃ 1 ∪ · · · ∪ T̃m
∣∣∣− |T |)} .

To avoid cumbersome notation, we shall denote ρ(T̃ ) ≡∑m
i=1

∑
replica v of r in T̃ i RMbase(T̃ iv) and

⋃
T̃ ≡ T̃ 1∪· · ·∪T̃m

so that RMsplit(T ) = supT̃ ∈S{ρ(T̃ )−π ·(|
⋃
T̃ |−|T |)}. Refer

to Figure 4 for illustration.
We first observe that RMsplit(·) is well defined by show-

ing that we may assume without loss of generality that S is
finite. To that end, we argue that it is sufficient to consider

T̃ ∈ S such that every replica of r in T̃ is of degree at least
2, which means that there are less than degT (r) replicas in
total, and hence there are finitely many different options

for T̃ . Indeed, assume that v is a replica of r in some tree

T̃ ∈ T̃ so that degT̃ (v) < 2 and let T̃ ′ be the tree obtained

from T̃ by removing v and turning its sole child (in case
that degT̃ (v) = 1) into a child of pT̃ (v) or into the new root

if v is the root of T̃ . Note that by the definition of splits,

T̃ ∪ {T̃ ′} − {T̃} can also be obtained from T by a split of

r. Since degT̃ (v) < 2, we know that RMbase(T̃v) = 0. More-

over, every descendant u of v in T̃ must be invisible to the

ancestors of v in T̃ (which are also replicas of r), hence u
does not contribute anything to the rewards of these ances-
tors under Mbase. The argument is established by recalling
that the total contribution of v to the rewards of its ances-
tors in T̃ is smaller than 1 ≤ π, which means that it was not
worthwhile for r to generate the replica v.

We say that the tree collection T̃ ∈ S realizes RMsplit(T )

if RMsplit(T ) = ρ(T̃ )− π · (|
⋃
T̃ | − |T |). If there are several

tree collections that can realize RMsplit(T ), then it will be
convenient to choose one (arbitrarily) and consider it as the
tree collection that realizes RMsplit(T ).

Excessive contributions.
It is easy to see that Msplit satisfies the subtree con-

straint and the unbounded reward constraint (Mbase al-
ready satisfies the unbounded reward constraint and the
rewards under Msplit dominates those of Mbase). More-
over, by definition, Msplit satisfies SP, i.e., a node cannot
increase its profit by splitting (recall that the mechanism
takes every possible split into account). The difficult part is
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(a) T (b) T̃ 1

Figure 4: The tree T and a possible split of its root r (into a single tree T̃ 1). The gray circles in 4(b) depict
the replicas of r under that split. If π = 1, then this split realizes RMsplit(T ) = 2 + 3 + 4− 2 · π = 7.

to show that Msplit satisfies the budget constraint, that is,∑
v∈T RMsplit(Tv) ≤ |T |.
The first step towards fulfilling this task is to extend

the notion of contribution to the reward mechanismMsplit.

Consider some node u ∈ T and some ancestor v of u. Let T̃
be the tree collection obtained from Tv by a split of v that

realizes RMsplit(Tv) and let T̃ be the tree in T̃ that contains

u. By definition, several replicas of v in T̃ may be ancestors

of u (in T̃ ); denote these replicas by v1, . . . , v`. The contri-
bution of u to v underMsplit, denoted CMsplit(u, v), is then
defined to be

CMsplit(u, v) =
∑̀
j=1

CMbase(u, vj) . (3)

We argue that∑
v∈T

RMsplit(Tv) ≤
∑
u∈T

∑
ancestors v of u

CMsplit(u, v) . (4)

At first glance, inequality (4) may be surprising as its right
hand side does not take into account contributions made by
replicas that do not exist in T . However, Msplit is defined
with respect to the profit (rather than reward) that a node
can get under Mbase from splits. The total contribution of
a node to all its ancestors under Mbase is smaller than 1,
hence each replica of node u contributes less than 1 to the
rewards of the other replicas of u (it does not contribute
anything to any other node in T ). Inequality (4) follows
since π is assumed to be larger than 1. Our goal in what
follows is to show that∑

u∈T

∑
ancestors v of u

CMsplit(u, v) ≤ |T | . (5)

In attempt to establish inequality (5), it may seem nat-
ural to bound the total contribution that each node makes
to its ancestors, showing that this is at most 1, as we did
with Mbase. Unfortunately, this does not work: If the con-
tribution CMsplit(u, v) of node u to its ancestor v under
Msplit, as defined in equation (3), is composed fromMbase-
contributions to several (more than one) replicas of v, then
CMsplit(u, v) > CMbase(u, v). Consequently, the total con-
tribution that u makes to the rewards of all its ancestors
underMsplit may exceed 1. This obstacle requires a careful
accounting argument that we now turn to describe.

Consider some node u ∈ T . Let Γ(u) denote the set of all
ancestors v of u in T such that CMsplit(u, v) > 0. Assuming
that Γ(u) 6= ∅, let ϕ(u) be the node v ∈ Γ(u) that maximizes

δT (v, u). Now, consider some node v ∈ Γ(u). Let T̃ be the
tree collection obtained from Tv by a split of v that realizes

RMsplit(Tv), let T̃ be the tree in T̃ that contains u, and let

ṽ be the highest ancestor of u in T̃ such that u is visible to

ṽ. Note that ṽ must be a replica of v in T̃ since v ∈ Γ(u).
Moreover, δT̃ (ṽ, u) ≥ δT (v, u) and the contribution of u to

v’s reward under Msplit is CMsplit(u, v) =
∑δ

T̃
(ṽ,u)

j=δT (v,u) 2−j .

Thus, the parameter δT̃ (ṽ, u) plays an important role in the
calculation of CMsplit(u, v) — denote it by ∆(u, v), so that

CMsplit(u, v) = 21−δT (v,u) − 2−∆(u,v).

Deficits and surpluses.
Recall that CMbase(u, v) = 2−δT (v,u) and that such a con-

tribution would have resulted in the desired bound of 1 on
the total contribution of node u to all its ancestors. In-
formally speaking, if ∆(u, v) > δT (v, u), then u exhibits a
deficit. On the other hand, if ϕ(u) = v, then u does not con-
tribute anything to the rewards of the ancestors of v, which
leaves us with a small surplus. Our argument will rely on
covering the total deficits with the total surpluses.

Formally, given some nodes u ∈ T and v ∈ Γ(u), define

deficit(u, v) = CMsplit(u, v)− CMbase(u, v)

= 2−δT (v,u) − 2−∆(u,v)

and

surplus(u) = 2−∆(u,ϕ(u)) .
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Using these notions, we have∑
v∈Γ(u)

CMsplit(u, v)

=
∑

v∈Γ(u)

21−δT (u,v) − 2−∆(u,v)

≤
δT (ϕ(u),u)∑

k=1

2−k +
∑

v∈Γ(u)

2−δT (v,u) − 2−∆(u,v)

= 1− 2−δT (ϕ(u),u) +
∑

v∈Γ(u)

deficit(u, v)

= 1− deficit(u, ϕ(u))− surplus(u)

+
∑

v∈Γ(u)

deficit(u, v)

= 1− surplus(u) +
∑

v∈Γ(u)−{ϕ(u)}

deficit(u, v) .

We establish the fact that Msplit satisfies the budget con-
straint by showing that∑

u∈T

∑
v∈Γ(u)−{ϕ(u)}

deficit(u, v) ≤
∑
u∈T

surplus(u) , (6)

thus “covering” the deficits with the surpluses. This is done
in the following manner.

Consider some node v ∈ T and let T̃ be the tree collection
obtained from Tv by a split of v that realizes RMsplit(Tv);

consider some tree T̃ ∈ T̃ . Fix some replica ṽ of v in T̃
and let h be the height of the perfect binary tree that re-

alizes RMbase(T̃ṽ). Given some 1 ≤ ` ≤ h, let Dṽ,` be the

set of descendants u of ṽ in T̃ that satisfy: (1) ṽ is the

highest ancestor of u in T̃ to which u is visible; and (2)
∆(u, v) = δT̃ (ṽ, u) = `. It is interesting to point out that dif-
ferent nodes u in Dṽ,` may have different values of δT (v, u),
although they all have the same value of δT̃ (ṽ, u) = `.

A crucial observation is that for every two nodes u ∈ T
and v ∈ Γ(u), there exists a unique choice of ṽ and ` such
that u ∈ Dṽ,`. Let D+

ṽ,` be the set of all nodes u ∈ Dṽ,`
such that v = ϕ(u), i.e., those nodes that do not contribute
to the reward of any ancestor of v. Let D−ṽ,` = Dṽ,` −D+

ṽ,`.
Inequality (6) is established by proving the following lemma.

Lemma 6. The nodes in Dṽ,` satisfy∑
u∈D−

ṽ,`
deficit(u, v) ≤

∑
u∈D+

ṽ,`
surplus(u).

Proof. Denote D− = D−ṽ,` and D+ = D+
ṽ,`. Recall that

v has either 2 or 0 children which are visible to pT (v); the
latter implies that D− = ∅, so assume in what follows that
the former holds and let v1, v2 be the children of v in T
which are visible to pT (v). Let D−i = D− ∩ Tvi for i = 1, 2.
By definition, D− = D−1 ∪D

−
2 and D−1 ∩D

−
2 = ∅. Moreover,

all nodes u in D−i have the same value of δT (vi, u) — denote
it by ki.

Recall that deficit(ui, v) = 2−ki−1 − 2−` for every node
ui ∈ D−i . Since |D−i | = 2ki , we conclude that∑

ui∈D
−
i

deficit(ui, v) = 2ki
(

2−ki−1 − 2−`
)

=
1

2
− 2ki−`

and ∑
u∈D−

deficit(u, v) = 1− 2k1−` − 2k2−` .

On the other hand, surplus(u) = 2−` for every node u ∈ D+.
Since |D+| = 2` − |D−1 | − |D

−
2 | = 2` − 2k1 − 2k2 , it follows

that ∑
u∈D+

surplus(u) = 2−`
(

2` − 2k1 − 2k2
)

= 1− 2k1−` − 2k2−`

which establishes the assertion.

4.3 Resilience to Local Splits
The mechanism presented in Section 4.2 is resilient to

splits, but it is far from being intuitive. Moreover, users
who recruit a large number of buyers may find that they are
not rewarded for many of them (due to limited visibility).
We therefore briefly describe another mechanism (in fact, a
family of mechanisms) — this time with resilience only to
local splits — that is much simpler than the one we have
previously shown.

The mechanism Mlocal is similar to the geometric mech-
anism (with some choice of parameters 0 < a < 1 and b > 0
such that b+ 1 ≤ 1/a), only that here, we ignore the contri-
butions coming from one of the subtrees rooted at r’s chil-
dren, say, the largest subtree. More formally, let v1, . . . , vk
be the children of r in T and assume without loss of gener-
ality that |Tv1 | ≥ · · · ≥ |Tvk |. Then,

RMlocal(T ) =
∑

u∈Tv2∪···∪Tvk

adepT (u) · b .

Note that a node with one child obtains no reward.
It is easy to see thatMlocal satisfies the subtree constraint

and the unbounded reward constraint. Moreover, since the
rewards under Mlocal are dominated by those of a geomet-
ric mechanism, it also satisfies the budget constraint. The
following lemma establishes the resilience of Mlocal to local
splits.

Theorem 7. The reward mechanismMlocal satisfies LSP.

Proof Proof sketch. Let r be the root of T and let
v1, . . . , vk be its children. By definition, in any local split
of r, the nodes v1, . . . , vk are children of the same replica
of r. A straightforward calculation shows that r does not
gain anything from replicas that do not have v1, . . . , vk as
descendants, hence it suffices to consider local splits that
replace T with a tree T ′ obtained by identifying the root
of T with the (sole) leaf of some directed path P . (In that
case, the replicas of r are the nodes of P .) The design of
Mlocal implies that the total reward of r from such a local
split remains RMlocal(T ) which obviously turns the split into
a non-profitable move.

5. CONCLUSIONS
We have presented a theoretical framework for multi-level

marketing mechanisms. Our framework gives host to many
possible reward mechanisms, with varying properties. A full
characterization of the geometric mechanism family, which
is recognized in particular with Pyramid schemes, is estab-
lished. While we find that geometric mechanisms are not re-
silient to false-name manipulations, we have instead shown
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two different mechanisms that can withstand such manipu-
lations.

There are many open avenues for future work. First, many
different characterizations can be found for the mechanisms
that we presented. It is possible to think of other intuitive
properties and attempt to substitute them for the ones we
have defined. In addition, the split-proof mechanisms that
we have shown may be hard to implement (they are hard
to explain to users and deny rewards for some of the refer-
rals that are made). It will be nice to find mechanisms that
improve these aspects as well. It will also be interesting to
explore other models for marketing in the context of social
networks, including models that take the underlying struc-
ture of the network into account, and perhaps other details
such as the percentage of successful referrals and the timing
of messages. Finally, we believe that much can be learned
from experimental evaluation, or even deployment of mecha-
nisms that we have suggested. User trials can reveal defects
in these reward schemes, and show how readily human users
are willing to accept them.
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