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Abstract—Relatively tiny examples have demonstrated the po-
tential of Cognitive IoT (CIoT) in its full-stack, namely semantic
modelling, learning and reasoning over sensors data, and machine
learning, to uncover and expose actionable insights via advanced
user interfaces. In this paper, we make the case for the feasibility
of CIoT in all of its dimensions. We devise a CIoT architecture
that integrates thousands of sensors present in our buildings
in order to learn the buildings’ behaviour and intuitively assist
users in diagnosing and mitigating undesired events. With our
architecture, we place emphasis on the scalability and flexibility
that reduce the configuration effort. The solution shows the
potential of CIoT to create highly scalable, adaptable and
interactive IoT systems functioning for buildings and capable
of addressing the challenges encountered in the realm of Homes,
Smart Cities and Industry 4.0.

Index Terms—Cognitive IoT, fog and cloud computing, au-
tomated analytics, semantic modeling, learning and reasoning,
augmented reality.

I. INTRODUCTION

To materialize the benefits of the Internet of Things (IoT),
improved infrastructures, architectures, and advanced analytics
are needed to cope with the increasing volume, dynamicity,
heterogeneity and distribution of IoT systems and data. In
particular, existing architectures and analytics for IoT systems
face stringent requirements to efficiently deal with the variety
of IoT devices and the subsequent big data volumes. To
address these requirements, IoT architectures need to adapt
to the changing modus operandi of IoT systems, and support
the easy deployment of advanced analytics—when for example
on-line requirements are desired to extract deep insights. This
has proven to be increasingly challenging. The exploitation of
cognitive computing [1] in conjunction with IoT—also known
as Cognitive IoT (CIoT) [2], [3]—enhances existing IoT
systems by providing them with self-learning and self-adaption
capabilities that faciliate scalability, and insight extraction in
large scale systems with many thousands of devices. This pro-
vides CIoT systems with the mechanisms to usher in an era of
unprecedented changes by empowering things with embedded
intelligence that leads to improved optimization of processes,
and ultimately to substantial benefits in all application areas—
from manufacturing, to healthcare, to buildings etc.

The application of CIoT paradigm to buildings is pertinent
for the objective of validating both its feasibility and viability.
Buildings are large and complex IoT systems equipped with a
multitude of diverse devices, in the order of tens of thousands.
Their complexity is further exacerbated by their peculiarities
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as each building has a specific configuration of its devices,
which challenges the deployment of analytics at large scale.

We take advantage of the advanced instrumentation to
extend current approaches for improved operation of buildings,
and demonstrate the potential of CIoT for energy management
by optimizing energy consumption with the ultimate objective
of reducing the CO2 [4], whilst providing the users with
better comfort. This equates Cognitive Buildings to the next
generation of Smart Buildings that are capable of automati-
cally processing, and extracting actionable insights from data
generated by diverse buildings.

In this paper, we propose a CIoT architecture that combines
the strength in scalability provided by recently developed IoT
architectures with the self-learning and self-adaptation capa-
bilities obtained from cognitive systems. The application of
these architectures to buildings further represents an interesting
test bed that enables the replication of the developed solutions
to other areas. This is particularly evidenced by the fact that
buildings encompass all the large-scale characteristics present
in many IoT systems.

We review the state of the art in section II for CIoT
in general, and for common IoT and CIoT architectures, in
particular. Subsequent to the architectures, section III provides
the trends and challenges relative to buildings, and make the
case for their possible adaptation to the context of IoT systems,
more broadly. Then, in section III-B we tackle scalability
in big data analytics, and in section III-C we motivate the
dynamic operations of IoT systems from buildings perspec-
tives. In section IV-A we address semantic integration, self-
learning and adaption of IoT systems, particularly of buildings.
Finally, we apply our methodology to our use case for thermal
comfort monitoring, where we address several buildings, the
implementation details, along with the obtained performance.

II. STATE OF THE ART

A. Cognitive IoT
Cognitive IoT is the extension of IoT, where IoT systems

are equipped with cognitive computing approaches allowing
them to learn and reason over data, and extract deep actionable
insights, while building a network where the physical world
and the digital world are blended. Through this mechanism,
the cognition of IoT systems endows them with the freedom to
intelligently and autonomously operate. Subsequently, the IoT
systems not only learn and reason based on the experiences
that they gain from their interactions with their counterparts
and their environments in general, but their learning and
reasoning abilities are improved at the cadence of the new
information that they acquire.
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Fig. 1: Cloud-, edge-, and fog-centric architectures

In spite of its evident potential, research in CIoT is still at its
earliest stages. The work in [5] led to a cognitive management
framework for smarter cities. Their objective is to improve
sustainability of cities by operating IoT systems in tandem
with cognitive capabilities. Their cognitive approach identifies
and connects the objects that are relevant for the application in
question. In [6], the authors develop and present concepts and
examples of applications pertaining to IoT. They, particularly,
propose a cognitive system allowing for cooperation between
various devices. By drawing inspiration from human cognition,
the authors in [7] integrate the operational process of human
cognition into the system design for better IoT systems. The
exploitation of IoT in the context of Smart Home has been
demonstrated in [8], where the authors present an innovative
smart home system that enables emotion detection.

The use of wireless sensor networks allowed [9] to demon-
strate the feasibility of CIoT. Their development expands on
the requirements, and the issues related to adaptive systems
and their architectures, and they present the corresponding
intra-cognitive and inter-cognitive communications. The con-
fluence of semantic computing, cognitive computing, and per-
ceptual computing can help power future systems, particularly
in the context of IoT is examined in [10].

These works illustrate several aspects of CIoT in early
stages. However, large scale application and experimentation
that demonstrate the full potential remain to be seen.

B. IoT Architectures

Several reference architectures for IoT have been developed
both from academic and industrial perspectives. For exam-
ple, the Industrial Internet Consortium Reference Architecture
(IIRA) [11], IOT-A [12], ETSI oneM2M [13], AIOTI-HLA
[14] and ITU-T IoT Architecture [15] are the leading concepts
for the development of a reference model. Their objective
is on the one hand to support the existence of a common
understanding of the IoT, and on the other hand to provide
a reference architecture that seeks to establish a common
foundation for the development of interoperable IoT systems.

A common trait among the reference architectures is a-three
tier pattern, which consists of:

• The edge tier abstracts data from edge nodes, where the
characteristics depend on the specific use cases.

• The platform tier is responsible for consolidated pro-
cesses and analysis of the data coming from the edge.

Semantic Modelling 

and Reasoning
Knowledge

Decision making

Action/Adaptation

Sensing Components

Machine Learning

Physical systemsPhysical 

World

Cyber

World

Social

World

Fig. 2: Knowledge module in the CIoT architecture [7]

• The enterprise tier implements domain-specific appli-
cations, decision support tools and provides interfaces to
end-users including operation specialists.

A differentiator for IoT architectures is the location of
the analytics in the IoT system as shown in Fig. 1. IoT
architectures accommodate the requirements of big and fast
data processing in order to extract deep insights from the
data by using cognitive computing capabilities into the IoT
architectures.

• Cloud-centric architectures are useful when large
amounts of data need to be joined to extract insights,
and when the real-time and bandwidth constrained are
not imposed.

• Edge-centric architectures are particularly suitable to
real-time requirements and to satisfy privacy concerns.
But, their local knowledge limits the derivable insights.

• Fog-centric architectures address the challenges posed
by on-the-fly decision making requirements on heteroge-
neous and distributed systems, and when data integration
between these systems is particularly needed.

C. Cognitive IoT Architectures

Different cognitive system architectures exist, including
SOAR [16] and LIDA [17]—prominent agent-based frame-
works. A cognitive architecture is sketched in [18] for build-
ings that utilises these frameworks. The common element of
these architectures is a combination of reasoning, reinforced
learning and emotional concepts (joy, fear, anger etc.) to enable
the system to learn behaviours with rewards. It encodes the
taken actions as rules that will be used in subsequent actions.

We argue that the strict focus on recreating human behaviour
has several limitations in IoT. First, mapping emotional con-
cepts to IoT is not simple, nor is its pertinence for decision
making proven. Second, reasoning assumes that the systems
behave in discrete and deterministic modes reducing the deci-
sion making process to binary decision rules. Third, reinforced
learning neglects a priori knowledge available on the physical
processes and the relevant external variables. IoT systems are
usually driven by control strategies and many of the physical
processes are well known. Common model-predictive control
approaches for example use these physical models to predict
the behaviour of these systems [19].

Also some cognitive IoT architectures exist like Fig. 2 [7].
They are knowledge-centric and their knowledge corpus is the
central element of the cognitive computing system in the cyber



2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2755376, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 3

world that connects the physical world with the social world.
The cognitive computing system is made of three components:

• Sensing components: acquire the critical information,
relevant to the context of the physical systems, and
allows the elaboration of the semantic meta model of the
physical world.

• Semantic modelling and reasoning: uses the sensed
information to build semantic models, which will serve
afterward to the elaboration of physical and semantic
reasoning.

• Machine Learning: advanced learning algorithms build
on the existing semantic models to provide systems with
self-learning capabilities.

The derived insights from machine learning algorithms are
used to optimize the operations in the physical world by acting
on the systems to automatically adapt their behaviours. This
task takes place at the Actuation/Adaptation level.

D. Smart Building Architectures in the context of IoT

Modern IoT architectures have not been yet established in
the building sector. Recent developments aim at facilitating
the creation of open platforms that simplify data integration
and processing. Dawson et al. [20] defined a layered software
architecture that has a hardware abstraction layer to integrate
various systems, a time series layer, and a software layer.
Extension to this is given in [21] where an extensible ar-
chitecture that includes more systems is provided. A similar
architecture is proposed in [22], where an XMPP message
bus as transport layer is utilized. While these architectures
facilitate a hardware abstraction, they do not consider new
IoT concepts nor cognitive elements.

III. TRENDS AND CHALLENGES RELATIVE TO BUILDINGS

Buildings are an example of a complex IoT system that
facilitate the understanding of several technological and eco-
nomic trends and challenges, since they are common to many
IoT systems. We therefore analyze these trends and challenges
in the buildings sector and, in the process, offer our insights
into the trends and challenges associated to CIoT, in general.

A. Large scale, diversified instrumentation

a) History: The digitization of buildings started quite
early to automate climate control. Fig. 3 provides an overview
of the historical development, which started in the ’70s with
the automation of central systems such as boilers, chillers
and air handling units (AHU). This was usually done through
programmable logic controllers (PLC) to which all sensors
and actuators were individually wired. The development of
fieldbus networks at the end of the ’80s allowed to connect
all devices to one network. This simplified the installation and
the control stretched to individual rooms.

b) State of Practice: It is surprising that the integration
of buildings into the internet is still at its infancy, and most
buildings still operate in isolation. The main reason for this is
due to the fact that most operations for buildings have focused

Individually	 wired	
control	of	the
central	systems

Centralized	Control	Era
1970	- 1990

Fieldbus	Era
1990	- 2005

Distributed	fieldbus	 networks	
with	room	control	and	
management	systems

Wireless	 fieldbus	 networks	on	
room	level	and	Ethernet/IP	as	

backbone

Wireless	Era
2005	- 2015

Ethernet/IP

Large	amounts	of	sensors	will	
provide	data	that	is	processed	 in	

the	cloud	 across	portfolios.

Internet	of	Buildings	Era
>	2015

Ethernet/IP

Fig. 3: Evolution from Centralised Control to the Internet of
Buildings

on the control of systems, and, from control perspectives, no
direct benefit was derived in connecting buildings.

IoT is changing this in two ways: (1) The increasing
affordability of wireless IoT devices the instrumentation of
legacy buildings with thousands of sensors down to individual
workplace levels. This is accompanied by a diversification of
devices with completely new class of devices such as smart
mouse traps. (2) Data created by IoT systems create new
economic value and its analysis opens completely new ways
of optimizing building operations from comfort optimization
to demand driven facility maintenance.

c) CIoT Challenge: IoT will lead to a substantial in-
crease of diverse devices (multi-sensors, mobiles, wearable)
in our environment. This creates a large integration challenge
of devices into infrastructures as well as the backend analytics
systems [23]. To address these challenges, approaches to au-
tomatically integrate heterogeneous devices into the analytics
infrastructures are required.

B. Scalable Big Data Analytics

a) History: Fig. 4 shows the development of control and
analytics in buildings. Traditional buildings were primarily
automated. Since 2000, energy management systems have
been introduced and take into account the analysis of the
central systems. To enable further energy savings, it is essential
to analyze all the available data, and to fully understand
buildings behavior from supply to demand to occupant side.

b) State of Practice: It has been reported [24] that
most building systems are not optimised for the designed
energy consumption. Energy management systems are aiming
at bridging this gap. To this end, they usually use rule based
systems that require large manual effort to adapt them to the
individual buildings. To limit effort, they only monitor central
systems. But, they neglect the actual demand side of energy in
buildings and the individual rooms where the energy is spent.

c) CIoT Challenge: IoT will lead to big data that cannot
be analysed with the current manual approaches. Machine
learning is well suited to learn from large amount of data
and provide relevant insights that increase the operation
performances. Technically, advanced analytics and big data
platforms to analyze all data are available [25]. But, they
also require major efforts of highly skilled data scientists in
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Fig. 4: Development of control and analytics in buildings

configurations to exploit their potential [23]. This process must
be automated [26].

C. Dynamic and Mobile Operation Scenarios

a) History: Traditional systems for buildings were iso-
lated and specialised on controls according to a set of defined
setpoints and schedules. They were commissioned once and
then left at these settings as there was no business need to
adapt them due to cheap energy.

b) State of Practise: Modern operational conditions re-
quire a more dynamic operation and foster the development
of the Internet of Buildings. The development of renewable
energy sources led to a transformation of the grid to a smart
grid [27] that supports a more flexible operation. Buildings
consume 40 % of the energy [4] and are thus a central target of
demand response, to better control the demand. The collection
of data in the cloud eases its access from mobile devices for
operators and occupants alike. This leads to a fundamental
change in the operation of buildings towards dynamic adaption
driven by user inputs.

c) CIoT Challenge: IoT enables a more dynamic and
demand oriented operation of businesses. Future CIoT have
to be able to adapt to changing requirements and conditions.
They have to understand the reasoning of users and act on their
behalf in a predictive manner. Moreover, the large amount of
data requires new user interfaces that remove the complexity
and allow the users to naturally interact with systems such that
the systems become natural elements of our environment.

IV. COGNITIVE IOT FEATURES

Based on the analysis made in section III, we derive in
section IV-A some key features of a Cognitive IoT platform.

A. Semantic Interoperability & Automated Analytics

IoT lowers the barrier for installing more, diverse sensors
in our environment. Semantic Interoperability is key to easily
integrate these devices into cognitive systems and automate
workflows that enable CIoT. Only if the diversity of devices
can be mapped to a common knowledge model, it becomes
possible to learn across the devices and systems automatically.

The analysis in [23] of 89 publications in the Smart
Buildings area revealed that automating analytic applications
requires additional metadata about the devices and rela-
tionships between the metadata. The most relevant relations
cover the implemented semantic functions, the locations, and
the observed cyber-physical systems (e. g. a heating system).
Different approaches are reviewed in [28] to automate the
extraction of metadata from available sources. The most
promising are semi automated data mining approaches that
learn common metadata schemata.

B. Self-Learning and Adaptation
CIoT systems need to be able to automatically process IoT

data and learn from it. The analysis of analytic application
in buildings [23] showed that various machine learning ap-
proaches are used depending on the application. So, there is
no silver bullet ML approach, therefore, a CIoT system should
be able to facilitate the existence of multiple approaches as
prescriptive micro-services and link them together.

C. Natural Intuitive Interface
CIoT will only be successful if it is usable by everybody.

One of the main reasons preventing the application of analytics
in buildings is the requirements of skills in analytics. The
operators and occupants of buildings are not data scientists.
Therefore, interfaces should enable a building operator to in-
tuitively understand the behaviour of a building. The interfaces
should be easy to use intuitive, responsive, mobile and abstract
the complexity of the underlying systems.

CIoT should provide multi-modal user interfaces that allow
alternative interactions with the systems beyond graphical
user interfaces. The integration of speech interfaces such as
Amazon Echo shows great potential to interact in natural
language with the operators and occupants. Also augmented
reality interfaces are paving new ways to seamlessly access to
sensors and systems data.

V. COGNITIVE IOT ARCHITECTURE ADAPTED TO
BUILDINGS

Our Cognitive IoT architecture is depicted in Fig. 5. It
implements the basic tiers of an IoT architecture extended by
the elements of a cognitive system. It supports an enterprise
tier, a platform tier and an edge tier. We split the last one into
three sublayers, namely a centric Semantic Meta-Data Layer,
a Data Integration Layer and an on-site Edge Gateway. The
platform tier provides a sublayer for APIs to automatically exe-
cute reasoning, machine learning and support services for user
interactions. The architecture is fog-enabled. Each layer in the
architecture is containerised (as a docker) and can potentially
be deployed in the cloud or at the edge level. The top layers
usually reside on a cloud and act as a platform as a service
(PaaS), and allow easy access from various clients to various
applications that can be deployed either on-site, remotely, or
on the PaaS. Information is exchanged between these layers
via web service interfaces. The architecture provides several
tools to automate the workflows as shown on the left hand side
in Fig. 5. We discuss them along with the individual layers in
the subsection V-A.



2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2755376, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 5

Semantic Meta-Data Model

Machine-Learning

Data Integration

Energy 
Analytics

Cognitive
Advisor

MQTT REST

Time Series
(Rel. DB)

Semantic
Graph

(Graph DB)

ML Models 
(NoSQL DB)

Platform
Tier

Edge
Tier

Enterprise
Tier

Interaction
Dialogs

(NoSQL DB)

SQL SCV

Comfort
Analytics

Edge
Gateway

MQTT

Edge
Gateway

REST

Edge
Gateway

SQL

Edge
Gateway

CSV

Semantic & Physical Reasoning

REST

REST

REST

REST

REST

Semantic 
Mapping

Learn 
Behaviour

Generate 
Interaction

Reason
Physics

Fig. 5: High-level Cognitive IoT Architecture

A. Edge Tier

1) Edge Gateway:
a) Functionality: We use edge gateways to integrate data

obtained from various sites. The gateways are connected to
various systems at the sites and transfer the collected data to
the data integration layer.

b) Implementation: We use commercial IoT gateways
with Linux and a docker layer. The docker layer allows us to
manage the containers remotely, to easily deploy code updates,
and also to move upper layer functionalities to the edge. We
have different containers for common building systems and
support wireless networks like ZigBee, EnOcean, Yanzi as
well as traditional building systems like ModBus and BACnet.

2) Data Integration:
a) Functionality: The data integration layer offers dif-

ferent interfaces to inject data via MQTT, REST APIs, and
traditional CSV files. The incoming data is stored as time
series in a dedicated database.

b) Implementation: We utilize the commercial MQTT
client provided by the cloud platform that we use. In some
on-premise scenarios, we have deployed containers of the
open source Mosquitto broker on the edge. We extended the
MQTT client with additional REST APIs for device and data
management. The time series data is stored in a common
relational database as they are efficient for time series and
provide basic aggregation functions like average, sum etc. that
are used by upper layers and embedded in the API.

3) Semantic Meta-Data Model:
a) Functionality: The semantic layer allows to store and

query semantic meta-data associated to the devices, locations,
and related equipments. It also allows upper layers to query
the data integration layer via the semantic model as well as
associate their data (e. g. models). Thus, users do not need to
know each ID associated to a data point, but, can employ high
level queries to abstract the underlying IoT layers.

b) Implementation: The semantic layer is built on
Apache TinkerPop to abstract various Graph databases that
scale from embedded edge devices (TinkerGraph) to big data
databases (Titan). The semantic layer uses internally the Brick
ontology [26]. Brick structures the meta-data of IoT systems

in information dimensions. The core dimensions are the data
Point, its functional Measurement, the monitored or physical
Location, and the monitored Equipment. Each dimension is
detailed with a domain taxonomy that defines its specific
concepts.

Temperature 
Sensor

HeaterRoom

hasPoint

isNextTo feeds

Point Equipment Location RelationshipLegend

Outside

Occupancy
Sensor

Temperature
Setpoint

Temperature 
Sensor

hasPoint hasPoint

Fig. 6: Example for the Brick ontology

Brick also defines common relationships between these
concepts. Fig. 6 shows an example of a Brick model for
a single room. The Room is a subconcept of Location . It
contains a Temperature Sensor and an Occupancy Sensor
with the adequate Point . It is fed by a Heater with a
Temperature Setpoint . The room is located next to the
Outside. Various semantic relationships like hasPoint and
feeds describe their interaction in Brick.

Users can utilize this model to query, filter and
aggregate data. For example the REST call: ’/getHis-
tory?aggregate=mean&point=temperature sensor&location=
room102&time=2weeks’. The semantic layer evaluates the
query on the knowledge model to select the relevant data
points and runs the aggregation query on the data layer.

c) Automation: The semantic model does not need to
be manually specified. Various semi-automatic approaches and
tools are available [28]. We use a web tool that maps the IoT
data to the semantic model by a machine learning approach
that learns common mappings. It recovers the dimensions of
functionality, location, and asset.

B. Platform Tier

The platform tier provides advanced services for reasoning
and machine learning.

1) Semantic & Physical Reasoning:
a) Functionality: We use reasoning to inject domain

knowledge into the semantic model to reconstruct relationships
that are not explicitly modelled in the semantic meta-data
model. For example, the semantic model describes the sensors,
the locations and the assets, but it does not capture the causal
relationships of these sensors. They are critical to several ana-
lytics approaches, for example to identify relevant features for
machine learning or to run diagnostic algorithms. The physical
processes used in IoT systems are generally well known and
understood. We capture these physical relationships in our
domain knowledge model and use reasoning to automatically
inject them into our knowledge model.

For the reasoning, we utilize a common design pattern in
sensor networks [29] that distinguishes the actual properties
(the air temperature at one point in a room) from the obser-
vations given by the data points (a temperature time series).
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Based on their properties, we can deconstruct the physical
relationships that describe the interactions into several atomic
implications.

For example, it is known that the air temperature is actually
a derivative of the inner energy in a room. Each room has such
an inner energy and temperature regardless if it is observed
by a sensor. We can express this in SWRL notation [30] with
the implication

Room(?r) =⇒ hasProperty(?r, ?e) ∧ Energy(?e).

It states that each instance ?r of the concept Room in our
model has to have a relationship hasProperty to another
instance ?e of the concept Energy . If the relationship and the
energy instance does not exists, then the reasoner will create
them. In the same way, we can express that the room also has
always a temperature that may be observed by a sensor

Room(?r) =⇒ hasProperty(?r, ?t) ∧ Temperature(?t).

Room(?r)∧hasPoint(?r,?s)∧Temperature Sensor(?s)=⇒
hasProperty(?r, ?t) ∧ Temperature(?t) ∧ observes(?s, ?t).

These two implications created a temperature property for the
room and linked it to the temperature sensor that is in the
same room. We can describe now that the temperature derives
from the energy if they share the same location, by writing

Room(?r) ∧ hasProperty(?r, ?e) ∧ Energy(?e)∧
hasProperty(?r, ?t) ∧ Temperature(?t) =⇒

influences(?e, ?t),

which links the temperature to the energy property.
These implications are part of our domain model. So, we do

not specify them anew for each building neither expect users
to do that. They are just loaded with each new project and
automatically applied wherever they fit.

Fig. 7 shows the derived physical processes as semantic
graph for the example in Fig. 6. It shows each Property
as an orange block and their causal relationship as directed
edges. As a result, all sensors are now linked in a graph
that explains their physical interaction and enables multiple
machine learning scenarios.

b) Implementation: The reasoning engine is imple-
mented in TinkerPops Gremlin language to directly run on
the semantic graph DB. The API provides functions to expose
the configuration and execution of the reasoning engine. The
user can specify implications at the REST layer that are then
translated to Gremlin code and run on the Graph DB.

c) Automation: We provide a web tool that allows to de-
fine and manage the atomic patterns of the physical reasoning.

2) Machine-Learning:
a) Functionality: The machine learning (ML) layer hosts

analytic applications consisting of data cleaning, pattern anal-
ysis, predictive analytics, and diagnosis. It follows a modular
concept in favour of an agile development of specialized
analytics. They can be hosted on the cloud or on the edge in
docker containers. The data exchange between the applications
happens via the data and semantic layer. This loosely coupling
of the analytics applications provides high flexibility facilitat-
ing the development and the connection of new analytics and
is one of the core concepts of the architecture.

b) Implementation: The ML layer supports different an-
alytics scripted in R or Python. We provide connector libraries
to connect these analytics to the semantic and the data layer
in a base docker file. Final analytics are then dockerized and
deployed in a datacenter for parallel batch computation. The
model output is stored as JSON-PMML models in a NoSQL
database for easy access from the ML layer, and from the
user interfaces. The NoSQL keys are stored in the semantic
meta-data model for access trough the APIs.

c) Automation: Based on the physical graph model,
machine learning approaches can be automatically deployed.
The graph contains the information describing the influence
that a sensor has on another. These causal relationships are
relevant for several machine learning approaches as it specifies
the relevant input features for training models. We will discuss
an example in the use case section.

3) Interaction:
a) Functionality: The growing number of IoT devices

increases the effort for configuring the user interfaces. Partic-
ularly, if one considers that modern user interfaces should be
multi-modal and support graphical as well as conversational
interactions with the users.

The interaction layer provides dedicated APIs for speech-
or chat-based conversations that wraps the underlying ML and
semantic layers. For example, we provide conversational APIs
that support queries like: ”What was the mean temperature
in room 102 over the last 2 weeks”, which is automatically
mapped to the equivalent query on the semantic layer.

b) Implementation: The APIs are separated into visu-
alizations and conversations. The visualization API wraps
information from the semantic meta-data model into JSON
objects that directly feed for example into a heatmap plot on
the client side. It also provides mappings from Augmented
Reality Markers (see Fig. 10) to the relevant data points and
systems in the knowledge model. For the conversational API,
we are utilizing commercial Speech-to-Text and Conversation
APIs that are provided by our cloud platform. The API is
linked to the semantic meta-data model that is executed to
answer specific queries like the provided example.

c) Automation: The dialog flows are automatically con-
figured with the knowledge stored in the semantic layer.
The dialogs require entities for location, equipment type, and
point types. We know for example: ’mean’ is an aggregate,
’temperature’ is a point type; ’room 102’ is a location; ’2
weeks’ is a time. So, the dialog system identifies: ”What was

KIYAN-CO
Highlight
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the #aggregate #point in all #location over the #time” for the
last query example.

VI. USE CASE

A. Knowledge Model Size
We demonstrate our approach using a campus consisting of

6 buildings with 3,300 sensors. The sensors produce approxi-
mately 1 million samples a day that are fed to the Cognitive
IoT platform from two gateway devices.

The size of the underlying knowledge model in the graph
DB is shown in Fig. 8. The Brick domain ontology con-
tains 2,396 vertexes and 16k edges. The 3,300 sensors are
mapped to 220 semantic concepts from the Brick ontology (cf.
Sec. V-A3c) bringing a similar size of vertexes and duplicating
the number of edges. After the physical reasoning process,
we derive 14,830 physical relationships between the sensors
with the same number of vertexes and 27k edges. The total
computation time for deriving all graphs is 30 minutes. We
use the graph to train 14,043 models for anomaly detection
and diagnosis of abnormal energy consumption and thermal
comfort. The models are linked in the graph trough 22k edges.
The platform further creates approximately 30k different con-
versational variants on the interaction layer, ranging from
simple queries to ask for the location of an asset to complex
ones like the previously discussed examples.

0 20000 40000 60000 80000

vertexes

edges

Domain Knowledge Device Meta-Data

Physical Model ML Models

Fig. 8: Numbers of elements in the knowledge graph

B. Diagnosing High Temperature
Temperature sensors and heating systems are present in

several rooms of the building. We define as an abnormal
situation, the case where the temperature falls two degrees
below the setpoint. In this circumstance, the monitoring system
detects and diagnoses the abnormal temperature. We easily
implement the analytic function capturing the detection and
the diagnosis scenario with our semantic model, and for all
the rooms. Let’s assume that we have a function

High(A,B) : y(t) = 1(A(t) > B(t) + 2)

that returns 1 if the value of input A(t) is higher than B(t)+2
at time t, and 0 otherwise. We want to deploy this function in
all the rooms that have a temperature sensor and a setpoint.
We can specify in our reasoning engine that

Room(?r) ∧ hasPoint(?r, ?t) ∧ Temperature Sensor(?t)∧
hasPoint(?r, ?p) ∧ Temperature Setpoint(?p) =⇒

High(?h) ∧ asA(?h, ?t) ∧ asB(?h, ?p).

Bad Isolation

Heating Issues

0 25 50 75 100
percentage on anomalies

TP

TN

FP

FN

Fig. 9: Results for a building: TP - true positives, TN -
true negatives, FP - false positives, FN - false negatives in
percentage of anomalies.

The reasoner creates instances of High for all appropriate
locations and returns this list with the individual inputs and
outputs. It is now easy to run the script for these instances1.

We want to diagnose these anomalously high tempera-
ture samples in the next step. Let’s define the function
Diagnose(A,C1, . . . , Cn) that diagnoses sensor A from the
set of potential causes C1, . . . , Cn. We can identify the poten-
tial causes in the graph and deploy the algorithm with

Temperature Sensor(?t) ∧ observes(?t, ?p)∧
influences∗(?i, ?p) ∧ observes(?c, ?i) =⇒
Diagnose(?d) ∧ asA(?d, ?t) ∧ asC (?c, ?t).

This query looks for all temperature sensors ?t and the
property ?p they observe. Then it collects all influencing2

properties ?i and returns them if they are observed by another
sensor ?c. The list of ?c are then the observable potential
causes for which a diagnostic model is deployed.

For the given example we can identify in Fig. 7 the potential
causes for the anomaly, which are a low outside temperature,
neighbouring rooms with a low temperature, and a low setpoint
of the heating system.

For our building, 4 % of the room temperature samples
were abnormal due to an inactive heating system and/or
unusually low outside temperature. Fig. 9 summarizes the
diagnosis results from a machine-learning classification model
[31]. The model learns from historical anomaly-free time
series data what the data range of the cause is under normal
circumstances. We flag a cause as the real cause of an anomaly,
if it is outside its predicted range. It bases on the intuition
that a cause of an anomaly is also characterized by abnormal
values in comparison to the anomaly-free data. Our approach
retrieved that 67.95 % of the abnormal room temperature
readings were related to an inactive heating system which
could also be validated by the building operator. Furthermore
our approach computed that 89.58 % of the abnormal cases
was related to the outside air temperature which the operator
largely confirmed to be the case.

Most importantly, our approach revealed that most abnormal
temperature readings that were related to the outside tempera-
ture occurred in 11 rooms that had severe isolation problems.
It turned out that they consumed an estimated 50 % of the
buildings heating energy.

After detection and diagnosis of anomalies in the building,
an operator will usually inspect the situation on site. The use

1The analytic platform is performing further steps to retrieve the data from
the data platform and align it temporally.

2’influences∗’ in the query indicates multiple steps in the graph. We
normally use a depth of 4.
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of traditional and unsophisticated means to scrutinize the data
at the system level is complex and sometimes unpractical for
identifying the related issues. A solution to this issue is the use
of Augmented Reality. Fig. 10 shows an augmented view on
the vent in the ceiling of our floor. We labelled the vents in the
building with black-white markers encoding a unique ID that
is mapped by the interaction layer to the corresponding asset.
By pointing a smart device on the marker, the operator can
now see the full asset behind the ceiling as well as the real-
time values of the associated data points, which is delivered
by the semantic meta-data API.

Fig. 10: Systems AR View showing a FCU in the ceiling.

VII. CONCLUSION

In this paper we conceived, developed, and implemented a
CIoT architecture, and validated it with a complex use case:
buildings. We addressed the lack of large scale applications
of CIoT, as identified in the state-of-the-art analysis of CIoT
and IoT, with a prime emphasis on their architectures. Based
on this, we developed a CIoT architecture that combines the
IoT strength in scalability with cognitive computing tools
to integrate knowledge models and self-learning into the
platform. The application of the architecture to buildings
demonstrated the efficiency to diagnose temperature anoma-
lies. Our solutions particularly showed the elements associated
to data integration, semantic meta-data modelling, automated
analytics, and the implementation. The example shows the
strength of CIoT in enabling easily deployable, scalable, and
self-learning complex IoT systems that are convenient to use.

The proposed architecture can be used to implement CIoT
architectures in other IoT domains. As outlined in the trend
analysis, the integration of semantics, machine learning, and
natural user interfaces into CIoT are essential for extensive
adoption of IoT systems. Our future research lies in semantic
identification and matching, automated machine learning as
well as natural user interfaces in order to further facilitate and
democratize the use of these technologies.
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