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a b s t r a c t

This paper considers the problem of identifiability and parameter estimation of single-input–single-
output, linear, time-invariant, stable, continuous-time systems under irregular and random sampling
schemes. Conditions for system identifiability are established under inputs of exponential polynomial
types and a tight bound on sampling density. Identification algorithms of Gauss–Newton iterative types
are developed to generate convergent estimates. When the sampled output is corrupted by observation
noises, input design, sampling times, and convergent algorithms are intertwined. Persistent excitation
(PE) conditions for strongly convergent algorithms are derived. Unlike the traditional identification,
the PE conditions under irregular and random sampling involve both sampling times and input values.
Under the given PE conditions, iterative and recursive algorithms are developed to estimate the original
continuous-time system parameters. The corresponding convergence results are obtained. Several
simulation examples are provided to verify the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

System identification for continuous-time systems via sampling
is a classical field (Åström & Wittenmark, 1997; Chen & Francis,
1995; Ding, Qiu, & Chen, 2009; Phillips & Nagle, 2007). It is
well understood that to identify a time-invariant continuous-time
system, one may derive its time-invariant discrete-time sampled
system with periodic sampling and the zero-order hold; and
hence identification of the original continuous-time system is
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converted to that of its sampled system (Åström & Wittenmark,
1997; Garnier & Wang, 2008; Ljung, 1999; Marelli & Fu, 2010). A
sufficient condition to guarantee the one-to-onemapping from the
coefficients of the sampled system to the original system is that
the sampling period is less than an upper bound related to the
imaginary parts of the poles (Ding et al., 2009). This equivalence
implies that the existing algorithms for discrete-time systems
suffice for identification of the original continuous-time system.
Furthermore, it was shown in Ding et al. (2009) that multi-
rate sampling schemes can be used to create such a one-to-one
mapping when the sampling rate is slower than this bound. Under
such a multi-rate sampling system, the sampled system of a linear
time-invariant system remains linear and time invariant with a
higher order.

In practical systems, especially networked systems, periodic
sampling is no longer valid. Examples are abundant, such as com-
munication channels with packet loss and unpredictable round-
trip times. Irregular sampling time sequences may be generated
passively due to event-triggered sampling (Åström & Bernhards-
son, 1999), low-resolution signal quantization (Wang, Yin, Zhang,
& Zhao, 2010), activities by input control or threshold adaptation
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under binary-valued sensors (Wang, Li, Yin, Guo, & Xu, 2011), or
PWM (Pulse Width Modulation)-based sampling (Wang, Feng, &
Yin, 2013). Under irregular or random sampling, the sampled sys-
tem of a linear time-invariant system becomes time-varying, for
which system conversion is complicated and computational com-
plexity is much higher. When sampling is slower, irregular, or ran-
dom, system identification formulation, identifiability, algorithms,
accuracy, and convergence will be fundamentally impacted. This
paper will explore related issues in this paradigm.

In Johansson (2010), the original differential equation is first
converted to an algebra equation with respect to time by using
filtered input and output signals. Then the parameters of the
algebra equation are estimated at the irregular sampling points,
and the original system parameters are recovered by a one-
to-one mapping from the estimated parameters. One possible
methodology is to identify the original system parameters without
conversion to its sampled system (Gillberg & Ljung, 2010;
Larsson & Söderström, 2002; Marelli & Fu, 2010; Vajda, Valko, &
Godfrey, 1987). The parameters are directly identified by using
a continuous-time frequency domain identification method in
Gillberg and Ljung (2010). Similar to its discrete-time counterpart,
the continuous-time system can also be expressed by a linear
regression equation in a differential operator form (Larsson &
Söderström, 2002), in which the regressor involves input and
output signals and their derivatives. Since the derivatives are
unavailable under sampled data, higher-order derivatives of the
input and output signals are approximated by their related
differences (Larsson & Söderström, 2002), introducing errors
as a consequence. The resulting discrete-time system is then
identified by batch or recursive algorithms (Ljung, 1999; Ljung &
Vicino, 2005). To reduce approximation errors, fast sampling is
required. An instrumental variable approach is used to enhance
estimation accuracy for continuous-time autoregressive processes
in Mossberg (2008), which demonstrates improved computational
efficiency in comparison to the least squares approach (Larsson,
Mossberg, & Soderstrom, 2007).

Synchronization between the input sampling and output sam-
pling is also a significant factor. Typical schemes for the indirect
method assume that the input and output are sampled at the same
sampling points (Larsson & Söderström, 2002; Yuz, Alfaro, Agüero,
& Goodwin, 2011). The estimation method in Yuz et al. (2011) rep-
resents the original continuous-time state space model by an in-
cremental approximation under nonuniform but fast sampling and
employs the maximum likelihood approach. Zhu, Telkamp, Wang,
and Fu (2009) propose a two-time scale sampling scheme: fast
uniform input sampling, but slow and irregular output sampling,
with assumption that the output sampling time is a multiple of
the input sampling time. Under an output error structure, the sys-
tem parameters are then estimated by minimizing a suitable loss
function. In contrast, in Gillberg and Ljung (2010) the input is a
uniformly spaced piece-wise constant function (zero-order hold),
while the output is sampled irregularly. The main technique is to
use B-spline approximation to achieve uniformly distributed knots
from the non-uniformly sampled output. The method in Gillberg
and Ljung (2010) is restricted to the noise-free sampled output
and its estimation accuracy enhancement requires fast sampling.
Despite extensive research effort in this area, some fundamental
questions remain un-answered: (1) How fast and underwhat types
of sampling schemes, is the continuous-time system identifiable?
(2)What types of inputswill imply system identifiability? (3)What
modifications must be made to identification algorithms? (4) To
achieve convergence, how should the input be designed?

This paper investigates these questions from a new angle. In-
stead of focusing on parametermappings between the continuous-
time system and its sampled system, we view irregularly or
randomly sampled values as the available information set and
study identifiability, identification algorithms, and input
design directly on the original parameters. The main contributions
of this paper are in the following aspects. (1) We show that under
any inputs of exponential polynomial types, the continuous-time
system is identifiable if the sampling points are sufficiently dense
in a given time interval. The bound on the density of the sampling
points is tight, revealing an interesting connection, in terms of
identification information complexity, to Shannon’s sampling the-
orem for signal reconstruction (Proakis &Manolakis, 2007) and our
recent results on state estimation (Wang et al., 2011). Note that the
input used in this paper is continuous, while the existing literature
(Ding et al., 2009; Gillberg & Ljung, 2010) commonly uses piece-
wise constant inputs by zero-order hold. (2) Robustness of sys-
tem identifiability under a given sampling density is established.
(3) Under noise-free observations, a convergent iterative algorithm
is introduced, which is valid for any input signals satisfying certain
gradient conditions. (4) Under noisy observations, suitable iden-
tification algorithms are proposed, which are shown to converge
strongly and carry properties of the CLT (central limit theorem)
types if certain ergodicity conditions are satisfied. (5) Persistent
excitation (PE) conditions are derived that ensure convergence of
the developed algorithms. Departing from the traditional PE condi-
tions that rely only on input values, it is shown that under irregular
or random sampling, both sampling time sequences and the input
values impact on convergence. These results provide guidance for
input design in identification experiments. (6) Consistency of the
algorithms is proved without requiring fast sampling.

The rest of the paper is arranged as follows. The system setting
and several key properties are presented in Section 2. System iden-
tifiability is investigated in Section 3. The parameter estimation
algorithms and their convergence properties under noise-free
observation are discussed in Section 4. When observations are
noise corrupted, identification algorithms are significantly differ-
ent from noise-free cases. Two kinds of estimation algorithms (it-
erative algorithms and recursive algorithms) are introduced and
their convergence conditions are established in Section 5. Section 6
is focused on input design problems. The related persistent excita-
tion conditions are obtained. In Section 7 some numerical exam-
ples are given to verify the effectiveness of the proposed algorithms
of this paper. Section 8 concludes the paper with some further re-
marks. The main proofs of the assertions in the paper are placed in
the Appendix.

2. Preliminaries

This sectiondescribes the systemsetting and establishes several
important properties to be used in the subsequent sections.

2.1. Systems

We are concerned with identification of a single-input–single-
output, linear, time-invariant, stable, finite dimensional system
in the continuous-time domain, represented by a strictly proper
transfer function

G(s) =
b1sn−1

+ · · · + bn−1s + bn
sn + a1sn−1 + · · · + an−1s + an

,
b(s)
a(s)

, (1)

where a(s) is stable, i.e., all the roots of a(s) lie on the open left-
half complex plane; a(s) and b(s) are coprime, i.e., they do not have
common roots. The impulse response of G(s) is denoted by g(t) =

L−1(G(s)), where L−1 is the inverse Laplace transform. Let the
system parameters be expressed as θ = [a1, . . . , an, b1, . . . , bn]′.
We use G(s, θ) and g(t, θ) to indicate their dependence on the
parameters. R and C are the fields of real and complex numbers,
respectively.
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Under the zero initial condition, the input–output relationship
of the system (1) is

y(t) = g(t, θ) ⋆ u(t) =

 t

0
g(t − τ , θ)u(τ )dτ , f (t, θ), (2)

where the symbol ⋆ denotes the continuous-time convolution. In
this paper, u(t) is uniformly bounded by ∥u∥∞ ≤ umax < ∞,
where ∥ · ∥∞ is the standard L∞ norm. In the frequency domain,
the relationship (2) has the expression

Y (s) = G(s, θ)U(s), (3)

where U(s) and Y (s) are the Laplace transforms of the input and
output, respectively. In this paper, u(t) is selected in identification
experimental design and always assumed to be known. The output
y(t) is sampled at the nonuniform sampling times t1, t2, . . . .
System identification aims to identify θ from the data set
(t1, y(t1)), (t2, y(t2)), . . . .

For convenience of statement, we define the set A on θ : (1)
The elements in A consist of column vectors θ ∈ R2n; (2) For
any θ = [a1, . . . , an, b1, . . . , bn]′ ∈ A, the polynomials a(s) =

sn +a1sn−1
+· · ·+an−1s+an and b(s) = b1sn−1

+· · ·+bn−1s+bn
generated by θ are coprime. Since the roots of a polynomial depend
continuously on its coefficients, A is an open set.

Since u(t) is uniformly bounded, the order of partial derivatives
(with respect to θ ) and the integral in the following equation is
exchangeable if u(t) is continuous almost everywhere, namely,

h(t, θ) ,
∂ f (t, θ)
∂θ

=
∂
 t
0 g(t − τ , θ)u(τ )dτ

∂θ

=

 t

0

∂g(t − τ , θ)

∂θ
u(τ )dτ =

∂g(t, θ)
∂θ

⋆ u(t). (4)

2.2. Basic properties

For a clear presentation, most proofs are postponed to
Appendix.

Lemma 1. If u(t) ≢ 0, then the elements of the gradient vector
h(t, θ) of f (t, θ) are linearly independent.

Consider an exponential polynomial

w(t) ,

lw
i=1

ni
j=1

wi,j
t j−1

(j − 1)!
exp(λit), (5)

where {λi ∈ C, i = 1, . . . , lw} are different from each other, andlw
i=1 ni = nw . The following lemma is fundamental.

Lemma 2 (Berenstein & Gay, 1995, Corollary 3.2.45). Let T > 0. The
number NT of zeros in [0 T ] of a nontrivial exponential polynomial
w(t) defined in (5) is bounded by µT = (nw − 1) +

δT
2π , where

δ , max1≤i,j≤lw {|ℑ(λi − λj)|} and the symbol ℑ(c) is the imaginary
part of a complex number c ∈ C.

3. System identifiability

Identifiability concerns the fundamental question of inverse
mapping: Under noise-free but sampled output observations, can
the system parameters be uniquely determined? Answers to this
question depend on model structures, input signals, sampling
types, and sample sizes. This paper characterizes sufficient
conditions for system identifiability.
3.1. Identifiability

The simplest input is perhaps the step input U(s) = u0/s.
The following results allow more general inputs of rational types.
The resulting identifiability condition implies that the system is
identifiable as long as the number of the sampling points is greater
than some positive integer in a given interval, regardless how
the sampling times are generated. Consequently, the results are
applicable to different sampling schemes, such as the traditional
periodic sampling (Åström & Wittenmark, 1997), nonuniform
sampling (Ding et al., 2009), event-triggered sampling (Åström &
Bernhardsson, 1999; Persson & Gustafsson, 2001), or the PWM-
based sampling introduced in Wang et al. (2013).

Assumption 1. U(s) is a nonzero proper rational coprime function,
i.e.,U(s) = d(s)/c(s), where c(s) and d(s) are coprimepolynomials,
deg d(s) ≤ deg c(s) = m. This implies that u(t) is an exponential
polynomial and hence the output f (t, θ) is also an exponential
polynomial.

Denote µ∗

T = (2n + m − 1)+ δ∗T
2π , δ∗ , max1≤i,j≤2n+m{|ℑ(λi −

λj)|} where {λi, i = 1, . . . , 2n + m} are the roots of a2(s)c(s).

Lemma 3. Under Assumption 1 and for θ ∈ A, the N × 2n Jacobian
matrix of f (t, θ) at the sampling points 0 < t1 < t2 < · · · < tN ≤ T

JN(θ) =


∂ f (t1, θ)
∂θ

,
∂ f (t2, θ)
∂θ

, . . . ,
∂ f (tN , θ)
∂θ

′

has full column rank if N > µ∗

T .

Theorem 1. Under Assumption 1 and the sampling points 0 < t1 <
t2 < · · · < tN ≤ T , the true system parameter θ∗

∈ A can be
uniquely determined by the sampling data {y(t1), . . . , y(tN)} when-
ever the number of the sampling points N > µ∗

T .

Proof. By (2), the sampled outputs {y(ti), 1 ≤ i ≤ N} satisfy the
following set of equations:

y(ti) = f (ti, θ∗), i = 1, . . . ,N (6)

which is a vector-valued function FN from A onto RN . Under the
hypothesis, the Jacobian matrix JN(θ∗) of the set of Eqs. (6) has full
column rank by Lemma 3. Hence the system parameter θ∗ can be
uniquely determined by (y(t1), . . . , y(tN)) by the inverse function
theorem (Rudin, 1973, p. 252). �

Remark 1. Theorem 1 does not require a(s) to be stable. As a
result, unstable systems can also beuniquely determinedby a finite
number of noise-free sampled outputswith sufficient data density.
This will be verified by a numerical example in Section 7. The
bound µ∗

T depends on both the system dynamics and the order of
the input. This is understandable since sampling is on the output. A
‘‘low-frequency’’ system under a ‘‘high-frequency’’ input will still
generate a high-frequency output. We shall emphasize that the
exponential polynomials starting at t = 0 always have infinite
bandwidths, and as such Shannon’s sampling theorem cannot be
applied on the output signal. It can also be verified that the bound
µ∗

T is tight in the sense that for large interval T , there exist systems
and inputs for which if N < µ∗

T , then the system is not identifiable.
For some counter examples for a related but different problem, see
Wang et al. (2011).
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3.2. Identifiability robustness with respect to sampling size

Theorem 1 gives a required sampling size N for identifiability
for θ∗. Identifiability robustness pertains to whether the size N
is also sufficient to identify systems in a neighborhood of θ∗.
This is important since in identification experimental design, N
needs to be pre-designed before θ∗ can be identified. We use
two useful tools in this study. The issue here is related to global
invertibility problems. There are two kinds of conditions on the
global invertibility for vector-valued functions.

The first kind of conditions (Sanderberg, 1980; Wu & Desoer,
1972) can be stated as follows. Let ψ : Rl

−→ Rl be a C1 map.
Then ψ is a homeomorphism of Rl onto Rl, i.e., ψ is a continuous
bijective map andψ−1 is also continuous, if and only ifψ satisfies:
(1) Themappingψ is a local homeomorphism, i.e., whenever x ∈ X
and y ∈ Y satisfy ψ(x) = y, there exist open neighborhoods U
of x and V of y such that ψ restricted to U is a homeomorphism
of U onto V ; (2) ψ is a proper mapping, i.e., the inverse image
ψ−1(M) of any compact set M ∈ Rl is compact. The second kind
of conditions (Mas-Colell, 1979) involves matrix properties. Let
ψ : M −→ Rl be a C1 map, where M ⊂ Rl is a compact and convex
set. (1) LetM be a rectangle. If for every x ∈ M, the Jacobianmatrix
J(x) of ψ at the point x is a P matrix (i.e., every principal minor
of J(x) has positive sign), then ψ is a homeomorphism. (2) If for
every x ∈ M, the Jacobianmatrix J(x) ofψ at the point x is positive
quasi-definite (i.e., v′J(x)v > 0 for all x ∈ Rl, v ≠ 0), then ψ
is a homeomorphism. However, both kinds of conditions can only
deal with the mappings from Rl or a compact and convex subset of
Rl onto Rl. Our results on identifiability robustness are related to
these conditions, but are different in subtle and important ways.

Let θ∗ be any vector in A. Then JN(θ∗) has full column rank
under the conditions of Theorem 1. It follows that there exists a
nonsingular R2n×2n submatrix Ji1,...,i2n(θ

∗) of JN(θ∗) composed of
the i1, . . . , i2n rows of JN(θ∗). Since Ji1,...,i2n(θ) is continuous over
θ , there is a compact and convex set K ⊂ A containing θ∗. If
F2n(θ) = [f (ti1 , θ), . . . , f (ti2n , θ)]

′ is still a convex set, then F2n is
injective on K by the same derivations as those used in Wu and
Desoer (1972).

Theorem 2. Let the conditions of Theorem 1 hold and M be a convex
subset of A. The mapping FN on the domain M defined in (6) is
injective if and only if for any distinct points x1 and x2 in M, the
integral along the line segment joining x1 to x2 satisfies

 x2
x1

JN(ξ)dξ ≠

0.

Proof. Sufficiency: Suppose that FN is not injective. Then there exist
two distinct points x1 and x2 such that FN(x1) = FN(x2). Since the
map FN is differentiable on the convex domain M, we have

FN(x2)− FN(x1) =

 1

0
JN

x1 + t(x2 − x1)


(x2 − x1)dt

=

 x2

x1
JN(ξ)dξ = 0,

which contradicts the assumption. Hence, FN on the domain M is
injective.
Necessity: If there exist two distinct points x1 and x2 such that x2
x1

JN(ξ)dξ = 0, then

FN(x2)− FN(x1) =

 1

0
JN

x1 + t(x2 − x1)


(x2 − x1)dt

=

 x2

x1
JN(ξ)dξ = 0,

which means that FN(x1) = FN(x2). It follows that FN is not
injective on the domain M, which violates the condition that FN
is injective on the domain M. As a result,
 x2
x1

JN(ξ)dξ ≠ 0 for
any two different points x1 and x2 in M. Therefore, the proof is
complete. �

3.3. Examples

The following two examples illustrate several key aspects of the
identifiability conditions in Theorem 1.

Example 1. This example will reveal that the Jacobian matrix
JN(θ∗) is not full column rank if the denominator and the
numerator of G(s) have a common factor. Suppose that G(s) =

b1s+b2
s2+a1s+a2

and the denominator of G(s) has two distinct real factors
s + λ1 and s + λ2, where λ1 > 0, λ2 > 0, and λ1 ≠ λ2. Then G(s)
has the following factorization:

G(s) =
c1

s + λ1
+

c2
s + λ2

,

where c1 =
b2−b1λ1
λ2−λ1

and c2 =
b2−b1λ2
λ1−λ2

. Suppose u(t) = 1, t ≥ 0.
Then U(s) = 1/s. Hence

Y (s) =
c1

s(s + λ1)
+

c2
s(s + λ2)

= d1
1
s

−
1

s + λ1


+ d2

1
s

−
1

s + λ2


,

where d1 = c1/λ1 and d2 = c2/λ2, and the output in the time
domain is

y(t) = d1(1 − exp(−λ1t))+ d2(1 − exp(−λ2t)).

It is clear that identifying the original parameters {a1, a2, b1, b2} is
equivalent to identifying the new parameters {λ1, λ2, d1, d2}. Set
θ = [λ1, λ2, d1, d2]′. Thus, we have

h(t, θ) = [d1t exp(−λ1t), d2t exp(−λ2t),

1 − exp(−λ1t), 1 − exp(−λ2t)]′. (7)

If G(s) is coprime, then d1 ≠ 0, d2 ≠ 0 and λ1 ≠ 0, λ2 ≠ 0.
For any vector γ satisfying γ ′h(t, θ) = 0, we have γ = 0 as the
unique solution, which indicates that the elements of h(t, θ) in (7)
are linearly independent. If G(s) is not coprime, then either c1 = 0
or c2 = 0.Without loss of generality, assume that c1 = 0. It follows
that d1 = 0. This implies that

h(t, θ)

= [0, d2λ2t exp(−λ2t), 1 − exp(−λ1t), 1 − exp(−λ2t)]′. (8)

It is apparent that the elements of h(t, θ) in (8) are linearly
dependent since [1, 0, 0, 0]h(t, θ) = 0 if G(s) is not coprime.

Example 2. This example demonstrates that we will not lose the
identifiability even if a zero of U(s) cancels a pole of the plant G(s).
Assume that G(s) =

b
s+a and U(s) =

s+2
s+1 , where a > 0 and a ≠ 1.

We want to investigate whether the identifiability for a and b will
be compromised if a = 2. The output is given by

Y (s) =
b(s + 2)

(s + a)(s + 1)
=

c1
s + a

+
c2

s + 1
,

where c1 =
b(2−a)
1−a and c2 = −

b
1−a . It follows that

y(t) = c1 exp(−at)+ c2 exp(−t).

Set θ = [a, b]′. Then we have

h(t, θ) =

∂c1
∂a

exp(−at)− c1t exp(−at)+
∂c2
∂a

exp(−t),

2 − a
1 − a

exp(−at)−
1

1 − a
exp(−t)

′

. (9)
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If a ≠ 2, then h(t, θ) in (9) is linearly independent. If a = 2, then
c1 = 0, but ∂c1

∂a ≠ 0 and ∂c2
∂a ≠ 0. This indicates that h(t, θ) in (9)

is still linearly independent even if a = 2. In other words, if we use
the same Jacobian matrix in our algorithms, it will still give local
convergence for the parameter estimation of the plant.

4. Identification algorithms and convergence properties under
noise-free observations

If observations are noise-free, then to obtain the true parame-
ters θ∗

∈ A it suffices to solve the nonlinear equation set (6) by
Theorem 1 when the number of the sampling points N > µ∗

T in
[0 T ].Since the true parameter θ∗ is unique in a small neighbor-
hood, solving (6) is equivalent to solving the following optimiza-
tion problem.

Define the objective function

S(θ) =

N
i=1


y(ti)− f (ti, θ)

2
. (10)

By Theorem 1, we have S(θ∗) = 0 and θ∗ is the unique argument
which takes theminimum value of the optimization (10) in a small
neighborhood of θ∗.

To find θ∗, the Gauss–Newton algorithm is employed. Choose
arbitrarily an initial value θ0 which is assumed to be in a small
neighborhood of θ∗. The iterative sequence {θk} is updated by the
following algorithm

θk+1 = θk + (J ′N(θk)JN(θk))
−1J ′N(θk)r(θk), (11)

where

JN(θk) =

∂ f (t1, θk)
∂θ

,
∂ f (t2, θk)
∂θ

, . . . ,
∂ f (tN , θk)
∂θ

′

,

r(θk) = [y(t1)− f (t1, θk), . . . , y(tN)− f (tN , θk)]′.

Remark 2. Under Assumption 1, the Laplace transform Y (s) of the
output y(t) is a rational polynomial: Y (s) = b(s)d(s)/(a(s)c(s)),
and hence the Laplace transform L(h(t, θ)) of the gradient vector
of y(t) is still a rational polynomial vector

∂Y (s, θ)
∂θ

=


−

b(s)d(s)[sn−1, . . . , s, 1]
a2(s)c(s)

,
d(s)[sn−1, . . . , s, 1]

a(s)c(s)

′

.

As a result, taking inverse Laplace transform on both sides gives

h(t, θ) = L−1


−
b(s)d(s)[sn−1, . . . , s, 1]

a2(s)c(s)
,

d(s)[sn−1, . . . , s, 1]
a(s)c(s)

′
.

Since the inverse Laplace transform of a rational polynomial is an
exponential polynomial, each component of h(t, θ) is still an ex-
ponential polynomial, which is uniquely determined by a finite
number of coefficients of the polynomials a(s), b(s), c(s), d(s). For
example, let p(s) be a proper rational polynomial and its factoriza-
tion be p(s) =

p̄
l=1
nl

i=1
vli

(s−λl)i
. Thus the inverse Laplace trans-

form of p(s) is L−1(p(s)) =
p̄

l=1
nl

i=1 vli
t i−1

(i−1)! exp(λlt). This is
an accurate expression over the variable t . As a result, the Jacobian
matrix given in the algorithm (11) can be accurately calculated for
any θ ∈ A if the input is available and the computation process
will not introduce systematic errors.

To prove the convergence of the algorithm (11), the following
lemma is needed, which is an application of the contraction
mapping principle (Granas & Dugundji, 2003; Istratescu, 1981).
Lemma 4. Suppose that A, B ∈ Rl×l, A is nonsingular, and ∥A−1
∥ ≤

ς . If ∥A − B∥ ≤ ν̄ and ςν̄ < 1, then B is nonsingular and ∥B−1
∥ ≤

ς

1−ςν̄ .

Theorem 3. Under the conditions of Theorem 1, there exists ϵ > 0
such that for any initial value θ0 in the neighborhood O(θ∗, ϵ) of θ∗

with radius ϵ, the iterative sequence {θk} defined in (11) converges to
the true parameter θ∗ and has the following convergence rate

∥θk+1 − θ∗
∥ ≤

1
4
∥θk − θ∗

∥, (12)

∥θk+1 − θ∗
∥ ≤ ϱ∥θk − θ∗

∥
2, (13)

for some ϱ > 0.

5. Identification algorithms and convergence properties under
noisy observations

Under noisy observations, this section uses nonlinear least
squares (Jennrich, 1969) and stochastic approximation methods
(Kushner & Yin, 2003) to design identification algorithms for
estimating the unknown parameters. Iterative and recursive
algorithms will be proposed, respectively, and their strong
convergence will be established.

Suppose that the sampled output at the sampling time tk is
corrupted by noise

y(tk) = f (tk, θ∗)+ ek,

where θ∗ is the true parameter vector and ek is the noise. In the case
of noisy observations, the plant is naturally required to be stable
and it is reasonable to consider asymptotic convergence properties
of parameter estimation algorithms as the number of the sampling
points grows. The following condition on ek is assumed throughout
the rest of the paper.

Assumption 2. The noise {ek} is a sequence of zero mean i.i.d.
random variables with finite variance σ 2.

5.1. Nonlinear least squares estimators and convergence properties

Define the sample objective function

QN(θ) =
1
N

N
k=1

(y(tk)− f (tk, θ))2. (14)

The vectorθN which minimizes (14) on a compact subsetΘ of R2n

containing θ∗ is called the nonlinear least-squares (NLS) estimate
for θ∗ based on the sampled outputs {y(t1), . . . , y(tN)}.

We impose the following conditions as assumptions for now.
They will be verified by input design in Section 6.

Assumption 3. (i) The limit limN→∞
1
N

N
k=1 f

2(tk, θ) exists for

any θ ∈ Θ andQ (θ) = limN→∞
1
N

N
k=1


f (tk, θ)−f (tk, θ∗)

2
has a unique minimum at θ = θ∗.

(ii) The gradient vector h(tk, θ) and Hessian matrix χ(tk, θ)
of f (tk, θ) exist and are continuous on Θ , and the limits
limN→∞

1
N

N
k=1 ρk(θ)ϖk(θ), with ρk(θ),ϖk(θ) replaced by

f (tk, θ), h(tk, θ), χ(tk, θ) respectively, exist. This implies that
the limit M(θ) = limN→∞

1
N

N
i=1 h(tk, θ)h

′(tk, θ) exists for
any θ inΘ .

(iii) The true value θ∗ is an interior point of Θ and the matrix
M(θ∗) is nonsingular.
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The assertions below follow closely from the conditions
imposed in Jennrich (1969), that render the NLS estimator θN a
consistent estimator of θ∗ and asymptotical normality via applying
the corresponding convergent results of the NLS estimator in
Jennrich (1969). The details are omitted here.

Theorem 4. Let θN be the NLS estimates of (14). Under Assump-
tions 2 and 3(i), we haveθN −→ θ∗ with probability one as N tends to
infinity. Further, if Assumptions 3(ii) and (iii) also hold, then
√
N(θN − θ∗) −→ N (0, σ 2M−1(θ∗)) as N → ∞. (15)

5.2. Iterative algorithms

Similar to the case without observation noise, the Gauss–
Newton algorithm is a reliable iterative method to calculate the
NLS estimatorθN when the sampling size is large, which is given
below.

θN(k + 1) = θN(k)+

J ′N(θN(k))JN(θN(k))

−1

× J ′N(θN(k))

YN − FN(θN(k))


, (16)

where

JN(θN(k)) =


h′(t1, θN(k))
h′(t2, θN(k))

...
h′(tN , θN(k))

 , YN =


y(t1)
y(t2)
...

y(tN)

 ,

FN(θN(k)) =


f (t1, θN(k))
f (t2, θN(k))

...
f (tN , θN(k))

 .

Theorem 5 (Jennrich, 1969). Let θN be the NLS estimator of (14).
Under Assumptions 2 and 3, there exists a neighborhood G of θ∗

such that the Gauss–Newton iteration θN(k) given in (16) converges
strongly toθN from any starting value in G whenever the number of
the sampling points N ≥ Ny, where Ny is a positive integer.

5.3. Recursive algorithms and strong convergence

Let θk be the estimate of θ∗ at the time instance tk. The
parameter algorithm is updated recursively

θk+1 = θk + εkh(tk, θk)(y(tk)− f (tk, θk))

= θk + εkh(tk, θk)(f (tk, θ∗)− f (tk, θk)+ ek), (17)

where εk is the scalar step size satisfying the typical conditions
(εk > 0, εk → 0, and


∞

k=1 εk = ∞). This is a stochastic ap-
proximation algorithm. For convergence analysis, we will employ
the ODE (ordinary differential equation) approach (Kushner & Yin,
2003). The main conditions on the sampling times {t1, t2, . . .} and
the input signals will be stated here first as assumptions and then
elaborated later.
Ergodicity conditions: Suppose that the following limits exist
locally. That is, there exists m0 such that for all m > m0, and each
θ , there exist continuous functionsM(θ) and W (θ) such that

lim
N→∞

1
N

m+N−1
k=m

h(tk, θ)h′(tk, θ) , M(θ), (18)

lim
N→∞

1
N

m+N−1
k=m

h(tk, θ)(f (tk, θ∗)− f (tk, θ)) , W (θ). (19)
Now, consider the limit ODE

θ̇ = W (θ). (20)

We note that W (θ∗) = 0, implying that θ∗ is an equilibrium

point of (20). In addition, ∂W (θ)
∂θ


θ=θ∗

= −M(θ∗). By the ODE

method (Kushner & Yin, 2003), we have the following convergence
conclusion.

Theorem 6. If M(θ∗) is full rank, then

θk → θ∗ locally w.p.1 as k → ∞.

The condition of M(θ∗) being full rank is of ‘‘persistent
excitation’’ types on the input and the sampling time sequences
and will be explored in the next section.

6. Persistent excitation (PE) conditions

Wenowderive sufficient conditions underwhich the ergodicity
conditions (18) and (19) exist,M(θ∗) is full rank, and Assumption 3
is valid. First, we comment that the condition on M(θ∗) being
full rank is a type of ‘‘persistent excitation’’ conditions that are
known to be needed for parameter estimation of discrete-time
linear systems. Under uniform sampling schemes, this condition
is translated into an input design problem for selecting suitable
input probing signals. In irregular sampling schemes, additional
complications arise since sampling times are not uniformly spaced.

6.1. PE conditions under irregular sampling

6.1.1. Repeated experiments with harmonic inputs
Recall that an input signal is said to be harmonic of order L and

base frequency ω if u(t) =
L

i=1 Ai cos(iωt). This input is periodic
with the period T0 =

2π
ω
. The system response to such a signal,

without noise, is

f (t, θ∗) = φ(t, θ∗)+ O(µt), (21)

where

φ(t, θ∗) =

L
i=1

Ai|G(jωi, θ∗)| cos(iωt + ̸ G(jωi, θ∗))

with j being the imaginary unit (j2 = −1) and O(µt)with 0 < µ <
1 are the steady-state and transient components of the system (1),
respectively. An experiment is said to be repeated of period T0 if in
the subsequent disjoint intervals (iT0, (i + 1)T0], i = 1, 2, . . . , the
sampling points are repeated as that in (0, T0], i.e., tiN0+l = iT0 + tl
with t0 = 0 for i ≥ 1, 1 ≤ l ≤ N0, where N0 is the number
of the sampling points in (0, T0]. This is a typical scenario in the
TDMA (time division multiple access) protocol of communication
systems, in which each frame is of duration T0 and frames are
repeated. Define the 2n × 2L matrix

G(θ) ,

A1
∂|G(jω, θ)|

∂θ
,−A1|G(jω, θ)|

∂ ̸ G(jω, θ)
∂θ

, . . . ,

AL
∂|G(jωL, θ)|

∂θ
,−AL|G(jωL, θ)|

∂ ̸ G(jωL, θ)
∂θ


.

Theorem 7. Suppose that the input is harmonic of L ≥ n, the
sampling scheme is repeated with period T0, G(θ∗) is full rank, and
N0 > µ∗

T = (2n + 2L − 1) +
δ∗T0
2π , where δ∗

= max{δ̄, 2Lω} and
δ̄ = max1≤i,j≤n{|ℑ(λi − λj)|} and {λi, i = 1, . . . , n} are the roots
of a(s). Then the limits (18) and (19) are valid, M(θ∗) is full rank,
and Assumption 3 is valid.
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Theorem 8. Under the conditions of Theorem 7 and Assumption 2,
the iterative algorithm (16) converges to the true value and achieves
the asymptotic normality (15) and the recursive algorithm (17) also
converges with probability one.

Proof. The result in Theorem 7 indicates that Assumptions 3(ii)
and (iii) are true. It remains to show that Assumption 3(i) also
holds. By the similar derivations in Theorem 7, we have

Q (θ) , lim
N→∞

1
N

N
k=1

(f (tk, θ)− f (tk, θ∗))2

=
1
N0

N0
k=1

(φ(tk, θ)− φ(tk, θ∗))2.

It follows that the Hessianmatrix ofQ (θ) at the point θ∗ is positive
definite by Theorem 7, which implies that Q (θ) has a unique
minimum at θ = θ∗ overΘ . �

6.2. PE conditions under random sampling

In this subsection, we are concernedwith two different kinds of
random sampling rules including i.i.d. sampling processes and in-
dependent increment stochastic processes, and the corresponding
input signals are designed to satisfy the PE conditions, respectively.

6.2.1. I.I.D. stochastic sampling processes

Assumption 4. The sampling sequence {tk} is independently
produced from a non-degenerate continuous distribution F with
the density function p(t), where t ∈ (p1, p2) ⊂ (0,∞).

Theorem 9. If the input u(t) satisfies Assumption 1 where all the
roots of c(s) lie in the closed left-half complex plane and the sampling
sequence {tk} satisfies Assumption 4, then Assumption 3 holds.

Corollary 1. Under the conditions of Theorem 9 and Assumption 2,
the iterative algorithm (16) converges to the true value and achieves
the asymptotic normality (15).

Remark 3. When the sampling sequence {tk} generated by the
way in Assumption 4 is resorted in the ascending order, the
ergodicity conditions of (18) and (19) are valid and M(θ∗) is full
rank. Consequently, the recursive algorithm (17) converges to the
true values under this setting with probability one.

6.2.2. Independent increment stochastic sampling processes

Assumption 5. The input signal is designed as u(t) =
L

i=1 Ai
cos(ωit) with L ≥ n, where the frequencies ωi (with i = 1, . . . , L)
are distinct.

Assumption 6. (i) The sampling process {tk} with t0 = 0 is an
independent increment stochastic process, that is, the inter-
sampling time τk = tk − tk−1 is a sequence of i.i.d. random
variables taking positive value.

(ii) Denote the characteristic function of τk by ϕ(ω), i.e., ϕ(ω) =

E(exp(jωτk)). Further, 0 < |ϕ(ω)| < 1 and |
ϕ(2ω)
ϕ(ω)

| < 1
for the frequencies ω = ωi, 2ωi, ωi + ωl, |ωi − ωl|, where
ωi, ωl, 1 ≤ i, l ≤ L are the frequencies in Assumption 5.

Remark 4. The inter-sampling time τk, a sequence of independent
and exponentially distributed of rate η, satisfies Assumption 6.
Note that the characteristic function of the exponential distribu-
tion with rateη is ϕ(ω) = (1 − jω/η)−1. It follows that |ϕ(ω)| =η/η2 + ω2 and |

ϕ(2ω)
ϕ(ω)

| =

 η2+ω2η2+4ω2 , which indicates that 0 <

|ϕ(ω)| < 1 and |ϕ(2ω)/ϕ(ω)| < 1 for any frequency ω > 0.
Define

G(θ) ,

A1
∂|G(jω1, θ)|

∂θ
,−A1|G(jω1, θ)|

∂ ̸ G(jω1, θ)

∂θ
, . . . ,

AL
∂|G(jωL, θ)|

∂θ
,−AL|G(jωL, θ)|

∂ ̸ G(jωL, θ)

∂θ


.

Theorem 10. If the input signal u(t) and the sampling sequence {tk}
satisfy Assumptions 5 and 6, respectively, then both Assumption 3 and
ergodicity conditions (18) and (19) hold, and M(θ∗) is positive
definite whenever the matrix G(θ∗) is full rank. Therefore, under
additional Assumption 2, the iterative algorithm (16) converges to
the true value and achieves the asymptotic normality (15); and the
recursive algorithm (17) also converges with probability one.

The number L of sinusoids in the input designs for repeated
experiments with harmonic input and independent increment
processes requires L ≥ n, which is a sufficient condition to excite
all the parameters of the plant. A benefit from increasing L can
reduce the covariance matrix σ 2M−1(θ∗) of the estimation errors
in Theorem 4 by the forms ofM(θ∗) for both cases in (30) and (41).

Remark 5. The results, including system identifiability and the
PE conditions required by the convergence of the algorithm,
are derived under the exponential type of inputs. For open-
loop identification problems, the goal is to identify the system
parameters by designing proper input signals and corresponding
sampling time sequences. Hence the input is generally assumed
to be at the user’s disposal. The exponential type of inputs is
used in this paper since they are simple and widely used in
the experimental design. Future work will consider parameter
estimation problems of continuous-time systems by the direct
methods under other types of inputs (e.g., piece-wise constant
inputs, etc.) under irregularly sampled inputs and outputs.

7. Illustrative examples

This section provides some examples to demonstrate the
effectiveness of the algorithms developed in Sections 4 and 5.

Example 3. Consider a second-order transfer function G(s) =
b1s+b2

s2+a1s+a2
, where a1 = 1.5, a2 = 1, b1 = 2.5, and b2 = −1. Under

the noise-free circumstance, the performance of the algorithm
(11) is illustrated via the following five different exponential
polynomial input signals: (1) the step input 1/s; (2) the decaying
input 1/(s + 1); (3) the zero-pole cancellation input 1/(s − 0.4);
(4) the sinusoidal input s/(s2 + 12); and (5) a more complex input
(s2+1.5s+1)/[(s2+12)(s−2)] of order 3 canceling the poles of the
plant. For all the input signals, the sampling points (0.0349, 0.1360,
0.2729, 0.4138, 0.5744, 0.5772, 0.6009, 0.6896) are generated from
the uniform distribution over the interval [0, 1]. The number of
the sampling points equals 8, which is greater than 4, 6, and 7
required in Theorem 3 for the first three inputs, the fourth input,
and the last input of order 3, respectively. All the initial values of
the algorithm (11) for the situations considered in this example
are set to be zero vector [0, 0, 0, 0]′. The iterative estimates for the
true system parameters θ∗

= [1.5, 1, 2.5,−1]′ under the different
input exciting signals are displayed in Table 1, which clearly show
that the algorithm (11) quickly converges to the true values after 5
iterations.

Example 4. This example illustrates that the algorithm (11) can
still find the true parameters of an unstable system by the noise-
free input–output data. Let the transfer function be G(s) =

b1s+b2
s2+a1s+a2

, where a1 = −1.5, a2 = 0, b1 = 2.5, and b2 = −1.
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Table 1
Parameter estimation of a stable system under different input signals.

True values k = 1 k = 2 k = 3 k = 4 k = 5

U(s) = 1/s
a1 = 1.5 0.0000 0.8747 1.5032 1.5000 1.5000
a2 = 1 0.0000 −0.7109 0.9931 1.0000 1.0000
b1 = 2.5 2.3563 2.5000 2.5003 2.5000 2.5000
b2 = −1 −3.3994 −2.6904 −1.0010 −1.0000 −1.0000

U(s) = 1/(s + 1)
a1 = 1.5 0.0000 0.9891 1.5331 1.5001 1.5000
a2 = 1 0.0000 −0.8529 1.0788 0.9997 1.0000
b1 = 2.5 2.1758 2.5000 2.5008 2.5000 2.5000
b2 = −1 −2.8185 −2.5986 −0.9323 −0.9998 −1.0000

U(s) = 1/(s − 0.4)
a1 = 1.5 0.0000 0.8739 1.5032 1.5000 1.5000
a2 = 1 0.0000 −0.7101 0.9928 1.0000 1.0000
b1 = 2.5 2.3582 2.5000 2.5003 2.5000 2.5000
b2 = −1 −3.4032 −2.6907 −1.0009 −1.0000 −1.0000

U(s) = s/(s2 + 12)

a1 = 1.5 0.0000 0.8746 1.5025 1.5000 1.5000
a2 = 1 0.0000 −0.7105 0.9919 1.0000 1.0000
b1 = 2.5 2.3556 2.5000 2.5003 2.5000 2.5000
b2 = −1 −3.4014 −2.6912 −1.0027 −1.0000 −1.0000

U(s) = (s2 + 1.5s + 1)/((s2 + 12)(s − 2))
a1 = 1.5 0.0000 0.8669 1.5020 1.5000 1.5000
a2 = 1 0.0000 −0.7024 0.9877 1.0000 1.0000
b1 = 2.5 2.3730 2.5000 2.5003 2.5000 2.5000
b2 = −1 −3.4393 −2.6943 −1.0035 −1.0000 −1.0000

Table 2
Parameter estimation of an unstable system under different input signals.

True values k = 1 k = 2 k = 3 k = 4 k = 5

U(s) = 1/s
a1 = −1.5 0.0000 0.3996 −1.9253 −1.4878 −1.5000
a2 = 0 0.0000 −2.3030 0.5364 −0.0137 0.0000
b1 = 2.5 2.2762 2.4978 2.4993 2.5000 2.5000
b2 = −1 4.5792 3.7181 −2.0400 −0.9690 −1.0000

U(s) = 1/(s + 1)
a1 = −1.5 0.0000 0.3943 −1.9157 −1.4869 −1.5000
a2 = 0 0.0000 −2.2996 0.5255 −0.0147 0.0000
b1 = 2.5 2.2687 2.4977 2.4993 2.5000 2.5000
b2 = −1 4.5953 3.7040 −2.0155 −0.9668 −1.0000

U(s) = 1/(s − 0.4)
a1 = −1.5 0.0000 0.4017 −1.9303 −1.4882 −1.5000
a2 = 0 0.0000 −2.3042 0.5420 −0.0132 0.0000
b1 = 2.5 2.2795 2.4978 2.4993 2.5000 2.5000
b2 = −1 4.5732 3.7238 −2.0525 −0.9700 −1.0000

U(s) = s/(s2 + 12)

a1 = −1.5 0.0000 0.4006 −1.9207 −1.4876 −1.5000
a2 = 0 0.0000 −2.3051 0.5309 −0.0139 0.0000
b1 = 2.5 2.2752 2.4978 2.4993 2.5000 2.5000
b2 = −1 4.5751 3.7199 −2.0283 −0.9684 −1.0000

U(s) = (s2 − 1.5s)/((s2 + 12)(s − 2))
a1 = −1.5 0.0000 0.4012 −1.9321 −1.4883 −1.5000
a2 = 0 0.0000 −2.3031 0.5440 −0.0130 0.0000
b1 = 2.5 2.2801 2.4993 2.4993 2.5000 2.5000
b2 = −1 4.5745 3.7227 −2.0570 −0.9703 −1.0000

The sampling points and the input signals are the same as those in
Example 3 except for the last input signalU(s) = (s2−1.5s)/((s2+
12)(s − 2)) canceling the poles of plant. Table 2 gives the iterative
results of the algorithm (11) with the initial value [0, 0, 0, 0]′.

The following examples involve noisy observations. We intro-
duce the signal-to-noise ratio (SNR)

SNR =
variance of signal
variance of noise

=

1
N−1

N
i=1


f (ti, θ∗)−

1
N

N
i=1

f (ti, θ∗)
2

σ 2
Fig. 1. Recursive estimation under repeatedly periodic sampling for different SNRs.

to demonstrate the impact of the different noise levels to the
parameter estimation.

Example 5. In the noisy observation scenario, the effectiveness
of the iterative algorithm (16) and the recursive algorithm (17)
is verified by the second-order system given in Example 3. The
input signal is u(t) = cos(t) + 2 cos(2t) (its Laplace trans-
form is U(s) = s/(s2 + 12) + 2s/(s2 + 22)) with the period
T0 = π/2, and the sampling points in the interval [0, π/2] are
0.2013, 0.2380, 0.3114, 0.4642, 0.4669, 0.5641, 0.6657, 0.7422,
1.0959, 1.1651, which are uniformly produced from the interval
[0, π/2]. The successive sampling points are periodically repeated
with the period π/2. In order to show the effectiveness of the al-
gorithms under different noise levels, the observation noise {ek} is
chosen to be a sequence of Gaussian random variables with zero
mean for different variances: 0.12, 0.42, 0.82, and the resulting
SNRs are 529.09, 33.07, 8.26 since the variance of signal is 5.2909.
In the following, all the estimates are based on the average of the
estimates for ten runs. Table 3 summarizes the estimates and the
corresponding squared sums of the estimation errors (SSEE) at the
sample size N = 600, 1200, 1800, 2400, 3000 based on the it-
erative algorithm (16) with the initial value [0, 0, 0, 0]′ under dif-
ferent SNRs, where the values in the parentheses are the resulting
standard deviations based on ten runs. While the recursive esti-
mate is displayed in Fig. 1 in terms of the recursive algorithm (17)
with the initial value [0, 0, 0, 0]′.

Example 6. The estimation effectiveness of the iterative algorithm
(16) is illustrated in this example in the case of i.i.d. random
sampling scheme. Consider the second-order transfer function
given in Example 3. The input signal is u(t) = 2, t ≥ 0 (its Laplace
transform is U(s) = 2/s.) The sampling sequence {tk} comes from
the uniform distribution over the interval [0, 4]. The observation
noise {ek} is set to be a sequence of the Gaussian random variables
with zero mean for different variances: 0.12, 0.42, 0.82, and the
resulting SNRs are 145.51, 9.09, 2.27 since the variance of signal is
1.4551. The initial value of the algorithm is set to be [0, 0, 0, 0]′. All
the estimates are based on the average of ten runs. The estimates,
the corresponding standard deviations in the parentheses, and the
SSEE at the sampling sizes N = 600, 1200, 1800, 2400, 3000 are
shown in Table 4 under different SNRs.

Example 7. The estimation effectiveness of the iterative algorithm
(16) and the recursive algorithm (17) will be examined under
the independent increment random sampling scheme. Consider
the second-order transfer function given in Example 3. The input
signal is u(t) = cos(t) + 2 cos(1.5t) (its Laplace transform is
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Table 3
Iterative estimation under repeatedly periodic sampling for different SNRs.

N 600 1200 1800 2400 3000

SNR = 529.09
a1 = 1.5 1.5021 1.5017 1.5011 1.5019 1.5013

(0.0078) (0.0071) (0.0060) (0.0045) (0.0036)

a2 = 1 0.9999 1.0009 0.9998 0.9993 0.9992
(0.0088) (0.0052) (0.0055) (0.0048) (0.0049)

b1 = 2.5 2.5052 2.5036 2.5020 2.5028 2.5019
(0.0110) (0.0083) (0.0066) (0.0055) (0.0048)

b2 = −1 −1.0016 −0.9994 −1.0010 −1.0005 −1.0007
(0.0179) (0.0097) (0.0088) (0.0077) (0.0073)

SSEE 3.36E−05 1.69E−05 6.20E−06 1.25E−05 6.24E−06

SNR = 33.07
a1 = 1.5 1.4773 1.4910 1.4915 1.4946 1.4973

(0.0217) (0.0159) (0.0185) (0.0220) (0.0154)

a2 = 1 1.0040 0.9995 0.9983 1.0002 1.0002
(0.0241) (0.0258) (0.0267) (0.0203) (0.0191)

b1 = 2.5 2.4737 2.4929 2.4913 2.4921 2.4969
(0.0310) (0.0240) (0.0282) (0.0307) (0.0221)

b2 = −1 −0.9975 −1.0043 −1.0029 −1.0024 −1.0011
(0.0489) (0.0395) (0.0431) (0.0344) (0.0339)

SSEE 1.23E−03 1.49E−04 1.59E−04 9.65E−05 1.83E−05

SNR = 8.26
a1 = 1.5 1.5397 1.5073 1.4941 1.4917 1.4987

(0.1008) (0.0667) (0.0415) (0.0378) (0.0318)

a2 = 1 0.9009 1.0119 0.9992 0.9949 1.0000
(0.3138) (0.0449) (0.0275) (0.0285) (0.0319)

b1 = 2.5 2.5663 2.5117 2.4975 2.4898 2.5024
(0.1582) (0.0958) (0.0650) (0.0552) (0.0419)

b2 = −1 −1.1488 −0.9777 −1.0002 −1.0017 −0.9946
(0.4724) (0.0671) (0.0544) (0.0478) (0.0491)

SSEE 3.79E−02 8.28E−04 4.14E−05 2.01E−04 3.64E−05
U(s) = s/(s2 +12)+2s/(s2 +1.52)). The inter-sampling sequence
{τk} comes from the exponential distribution with rateη = 0.4.
To show the performance of the iterative and recursive algorithms
given in the paper under different SNRs, the observation noise
{ek} is set to be a sequence of Gaussian random variables with
different variances: 0.12, 0.42, 0.82, and the corresponding SNRs
are 630.65, 39.42, 9.85 since the variance of the signal is 6.3065,
respectively. The estimates given below are based on the average
of ten runs. The estimates obtained by the iterative algorithm
(16) with the initial value [0, 0, 0, 0]′, the resulting SSEE and the
standard deviations for different SNRs at the sampling sizes N =

600, 1200, 1800, 2400, 3000 are illustrated in Table 5. Under the
same setting, the recursive estimation generated by the algorithm
(17) with the initial value [0, 0, 0, 0]′ is presented in Fig. 2.

8. Concluding remarks

Under the framework of irregular and random sampling,
identifiability, identification algorithms, convergence properties,
and input design of linear time-invariant continuous systems
have been investigated in this paper. The identifiability conditions
obtained in this paper have established that the parameters
of coprime rational systems can be uniquely determined from
noise-free input–output data if the number of the sampling
points exceeds some fixed positive integer in a given time
interval regardless of the sampling schemes (periodic, irregular,
or random). The strongly convergent iterative and recursive
algorithms have been developed to identify system parameters
under noisy observations. The convergence properties of these
algorithms depend critically on input richness, sampling schemes,
and sampling sizes. The persistent excitation conditions under
irregular and random sampling have been established.
Fig. 2. Recursive estimation under Poisson sampling process for different SNRs.

There are still several significant open questions. Applications
of the algorithms and input design developed in this paper to
practical systems are important steps to verify true values and also
limitations of the algorithms. Extension to nonlinear systems is
possible and worth investigation.

Appendix

In the following proofs, we encounter frequently the partial
derivatives (gradients) of g(t, θ) and f (t, θ) with respect to θ . It
is straightforward to verify that in the region of convergence of the
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Table 4
Iterative estimation under i.i.d. random sampling for different SNRs.

N 600 1200 1800 2400 3000

SNR = 145.51
a1 = 1.5 1.5003 1.5005 1.5034 1.5030 1.5043

(0.0246) (0.0165) (0.0127) (0.0151) (0.0139)

a2 = 1 1.0049 1.0022 0.9963 0.9962 0.9961
(0.0190) (0.0112) (0.0090) (0.0102) (0.0102)

b1 = 2.5 2.5003 2.4977 2.5013 2.5022 2.5041
(0.0199) (0.0159) (0.0111) (0.0135) (0.0112)

b2 = −1 −0.9988 −0.9981 −1.0025 −1.0028 −1.0036
(0.0159) (0.0107) (0.0073) (0.0093) (0.0079)

SSEE 2.60E−05 1.41E−05 3.37E−05 3.62E−05 6.32E−05

SNR = 9.09
a1 = 1.5 1.5436 1.5308 1.4996 1.5026 1.4986

(0.1558) (0.1140) (0.0821) (0.0791) (0.0626)

a2 = 1 0.9483 0.9639 0.9771 0.9761 0.9840
(0.0804) (0.0625) (0.0482) (0.0395) (0.0347)

b1 = 2.5 2.5338 2.5249 2.4996 2.4979 2.4932
(0.1414) (0.1062) (0.0814) (0.0789) (0.0727)

b2 = −1 −1.0340 −1.0286 −1.0089 −1.0073 −1.0029
(0.0971) (0.0642) (0.0485) (0.0454) (0.0393)

SSEE 6.87E−03 3.69E−03 6.05E−04 6.37E−04 3.11E−04

SNR = 2.27
a1 = 1.5 1.2593 1.3085 1.3589 1.3809 1.4043

(0.1894) (0.1568) (0.1581) (0.1680) (0.1555)

a2 = 1 1.0779 1.0490 1.0308 1.0345 1.0394
(0.1533) (0.1346) (0.1344) (0.1115) (0.0906)

b1 = 2.5 2.2796 2.3283 2.3816 2.4004 2.4264
(0.2163) (0.1589) (0.1403) (0.1475) (0.1494)

b2 = −1 −0.8645 −0.8988 −0.9282 −0.9347 −0.9453
(0.1417) (0.1159) (0.1143) (0.1130) (0.1044)

SSEE 1.31E−01 7.88E−02 4.00E−02 2.96E−02 1.91E−02
Laplace transform

∂G(s, θ)
∂θ

=


−

b(s)[sn−1, . . . , s, 1]
a2(s)

,
[sn−1, . . . , s, 1]

a(s)

′

and its inverse Laplace transform is

∂g(t, θ)
∂θ

= L−1

∂G(s, θ)
∂θ


,

which remains a stable exponential polynomial. It is clear that
g(t, θ) and ∂g(t,θ)

∂θ
are continuous in the region (0, tf )× A for any

0 < t < tf and θ ∈ A.

Proof of Lemma 1. By (4), we have

h(t, θ) =
∂ f (t, θ)
∂θ

=
∂g(t, θ)
∂θ

⋆ u(t). (22)

Its equivalent representation in the frequency domain is given by

L (h(t, θ)) =
∂G(s, θ)
∂θ

U(s)

=


−

b(s)[sn−1, . . . , s, 1]
a2(s)

,
[sn−1, . . . , s, 1]

a(s)

′

U(s)

=
U(s)
a2(s)


−b(s)[sn−1, . . . , s, 1], a(s)[sn−1, . . . , s, 1]

′
. (23)

Suppose that γ = [α1, . . . , αn, β1, . . . , βn]
′

∈ R2n is a nonzero
vector such that

h′(t, θ)γ = 0, ∀t ≥ 0, (24)
where h′(t, θ) is the transpose of h(t, θ). By (23), (24), and the
linearity property of the Laplace transform, we have

L

h′(t, θ)γ


=

U(s)
a2(s)

(a(s)β(s)− b(s)α(s)) = 0 ∀s ∈ C,

where β(s) , β1sn−1
+· · ·+βn−1s+βn and α(s) , α1sn−1

+· · ·+

αn−1s + αn. It follows from u(t) ≢ 0 that

a(s)β(s)− b(s)α(s) = 0, ∀s ∈ C. (25)

Apparently, if α(s) = 0 (or β(s) = 0), then (25) implies β(s) = 0
(or α(s) = 0). Therefore, suppose that neither β(s) nor α(s) is the
zero function. Then b(s)/a(s) = β(s)/α(s). Since degβ(s) ≤ n− 1
and degα(s) ≤ n − 1, the right-hand side is a rational function of
order at most n − 1 and the left-hand side is a rational function of
order n. But this contradicts the fact that a(s) and b(s) are coprime
(so that gcd(a(s), b(s)) = 1 and the order of b(s)/a(s) cannot be
reduced). As a result, the only solution is β(s) = 0 and α(s) = 0,
which implies that the vector γ = [α1, . . . , αn, β1, . . . , βn]

′
= 0.

Therefore, the lemma is proved. �

Proof of Lemma 3. By (23), we have

L(h(t, θ))

=


−b(s)d(s)[sn−1, . . . , s, 1]

a2(s)c(s)
,
d(s)[sn−1, . . . , s, 1]

a(s)c(s)

′

. (26)

As a result, taking inverse Laplace transform on both sides of (26)
gives

h(t, θ) = L−1


−
b(s)d(s)[sn−1, . . . , s, 1]

a2(s)c(s)
,

d(s)[sn−1, . . . , s, 1]
a(s)c(s)

′
,



110 B. Mu et al. / Automatica 60 (2015) 100–114
Table 5
Iterative estimation under Poisson sampling process for different SNRs.

N 600 1200 1800 2400 3000

SNR = 630.65
a1 = 1.5 1.4958 1.4973 1.4975 1.4984 1.4978

(0.0066) (0.0052) (0.0057) (0.0039) (0.0042)

a2 = 1 0.9953 0.9987 1.0003 1.0001 0.9998
(0.0093) (0.0049) (0.0051) (0.0047) (0.0043)

b1 = 2.5 2.4952 2.4966 2.4970 2.4980 2.4967
(0.0100) (0.0070) (0.0086) (0.0063) (0.0070)

b2 = −1 −1.0081 −1.0031 −0.9998 −1.0008 −1.0011
(0.0174) (0.0087) (0.0081) (0.0078) (0.0079)

SSEE 1.28E−04 3.04E−05 1.56E−05 6.87E−06 1.73E−05

SNR = 39.42
a1 = 1.5 1.5138 1.5057 1.5033 1.5028 1.5047

(0.0360) (0.0259) (0.0148) (0.0151) (0.0143)

a2 = 1 0.9983 0.9993 1.0094 1.0003 1.0026
(0.0380) (0.0400) (0.0242) (0.0229) (0.0175)

b1 = 2.5 2.5236 2.5085 2.5052 2.5071 2.5084
(0.0503) (0.0401) (0.0234) (0.0224) (0.0195)

b2 = −1 −0.9925 −0.9987 −0.9848 −0.9967 −0.9912
(0.0729) (0.0639) (0.0402) (0.0387) (0.0279)

SSEE 8.05E−04 1.07E−04 3.57E−04 6.93E−05 1.78E−04

SNR = 9.85
a1 = 1.5 1.5451 1.5435 1.5121 1.5034 1.4907

(0.1358) (0.1217) (0.0435) (0.0375) (0.0310)

a2 = 1 0.9339 0.9072 1.0083 1.0043 0.9960
(0.3217) (0.3073) (0.0271) (0.0301) (0.0200)

b1 = 2.5 2.5575 2.5742 2.5176 2.5010 2.4834
(0.2055) (0.2033) (0.0655) (0.0517) (0.0396)

b2 = −1 −1.0841 −1.1281 −0.9721 −0.9873 −1.0008
(0.4737) (0.4783) (0.0543) (0.0593) (0.0400)

SSEE 1.68E−02 3.24E−02 1.30E−03 1.92E−04 3.78E−04
which implies that each element of h(t, θ) is either L−1


d(s)si

a(s)c(s)


or L−1


b(s)d(s)si

a2(s)c(s)


, 0 ≤ i ≤ n − 1. Assume that M is the set that

contains all the modes of the exponential polynomials generated
by a2(s)c(s), i.e., M = {pi,j(t), i = 1, . . . , lw, j = 1, . . . , ni} withlw

i=1 ni = 2n + m and pi,j(t) =
t j−1

(j−1)! exp(λit), and {λi, i =

1, . . . , lw} are the lw distinct roots of a2(s)c(s) with multiplicity
ni. Then each element of h(t, θ) is a weighted sum of the modes
{pi,j(t)}. As a result, h′(t, θ) can be expressed as the following linear
combination

h′(t, θ) = [p1,1(t), . . . , p1,n1(t), . . . , plw ,nlw (t)]Λ, (27)

where Λ is the corresponding coefficient matrix. Λ is full column
rank since h(t, θ) is linearly independent by Lemma 1.

Under the sampling points (t1, . . . , tN), denote

PN =


p1,1(t1) · · · p1,n1(t1) · · · plw ,nlw (t1)
p1,1(t2) · · · p1,n1(t2) · · · plw ,nlw (t2)
...

...
...

p1,1(tN) · · · p1,n1(tN) · · · plw ,nlw (tN)

 .
Apparently, JN(θ) = PNΛ. Suppose that there exists a vector γ =

[α1, . . . , αn, β1, . . . , βn]
′

≠ 0 such that JN(θ)γ = PNΛγ = 0.
Define a functionw(t) = [p1,1(t), . . . , p1,n1(t), . . . , plw ,nlw (t)]Λγ .
Then, JN(θ)γ = [w(t1), . . . , w(tN)]′ = 0 implies that w(t) has at
leastN zeros in [0 T ]. However, by Lemma 2, the number of zeros
ofw(t) is bounded by µ∗

T .
This contradiction implies thatΛγ = 0. As a result, γ = 0 since

Λ is full column rank. It follows that the Jacobian matrix JN(θ) has
full column rank. �
Proof of Theorem 3. The theorem is proved inductively. We first
show that (12)–(13) hold for k = 0. Since JN(θ) is Lipschitz
continuous on some convex and compact subset Θ of R2n

containing the true value θ∗, there exists a constant η > 0 such
that

∥JN(x)− JN(y)∥ ≤ η∥x − y∥, ∀x, y ∈ Θ. (28)

Furthermore, we have ∥JN(x)∥ ≤ ν,∀x ∈ Θ , where ν is a positive
real number. Since JN(θ∗) is full column rank by Lemma 3, the
minimum eigenvalue λ of J ′N(θ

∗)JN(θ∗) is positive. Selecting any
initial value θ0 ∈ O(θ∗, ϵ)with ϵ =

λ
4νη , then

∥J ′N(θ
∗)JN(θ∗)− J ′N(θ0)JN(θ0)∥

≤ ∥J ′N(θ
∗)(JN(θ∗)− JN(θ0))∥ + ∥(J ′N(θ

∗)− J ′N(θ
∗))JN(θ0)∥

≤ 2νη∥θ∗
− θ0∥ < λ/2.

Since ∥

J ′N(θ

∗)JN(θ∗)
−1

∥ ≤ 1/λ, the conditions of Lemma 4 hold,

and hence J ′N(θ0)JN(θ0) is nonsingular and
J ′N(θ0)JN(θ0)−1

 ≤

2/λwhenever θ0 ∈ O(θ∗, ϵ)with ϵ =
λ

4νη .
As JN(θ) is Lipschitz continuous onΘ and r(θ∗) = 0, we have

∥ − r(θ0)+ JN(θ0)(θ∗
− θ0)∥

=

 1

0
−JN(θ0 + s(θ∗

− θ0))(θ
∗
− θ0)ds + JN(θ0)(θ∗

− θ0)


≤

 1

0
∥JN(θ0 + s(θ∗

− θ0))− JN(θ0)∥ ∥(θ∗
− θ0)∥ds

≤

 1

0
η∥s(θ∗

− θ0)∥ ∥(θ∗
− θ0)∥ds ≤

η

2
∥θ∗

− θ0∥
2.
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By the iterative algorithm (11), we have

∥θ1 − θ∗
∥ ≤

2
λ

νη

2
∥θ0 − θ∗

∥
2

=
νη

λ
∥θ0 − θ∗

∥
2

=
4νη∥θ0 − θ∗

∥

λ

∥θ0 − θ∗
∥

4
<

1
4
∥θ0 − θ∗

∥.

This means that (12) and (13) hold for k = 0, and the constant
ϱ = νη/λ in (13). By induction, we see that (12) and (13) hold for
k ≥ 1 by the similar proof as that used for k = 0. Hence, it follows
that the conclusion of the theorem holds true. �

Proof of Theorem 7. It is clear that |G(jωi, θ)| and ̸ G(jωi, θ) for
any 1 ≤ i ≤ L are continuous with respect to θ in a small
neighborhoodΘ of θ∗. It follows that

f (t, θ) = φ(t, θ)+ O(µt), (29)

where φ(t, θ) =
L

i=1 Ai|G(jωi, θ)| cos(iωt + ̸ G(jωi, θ)) is a
periodic function with period T0, i.e., φ(t + T0, θ) = φ(t, θ). It
follows from (29) that

h(tk, θ) =
∂ f (tk, θ)
∂θ

=
∂φ(tk, θ)
∂θ

+ O(µtk),

where

∂φ(tk, θ)
∂θ

=

L
i=1

Ai cos(iωtk + ̸ G(jω, θ))
∂|G(jωi, θ)|

∂θ

−

L
i=1

Ai|G(jωi, θ)| sin(iωtk

+ ̸ G(jωi, θ))
∂ ̸ G(jωi, θ)

∂θ

= G(θ)ζk,

is also a periodic function with period T0, and

ζk = [cos

wtk + ̸ G(jω, θ)


, sin


wtk + ̸ G(jω, θ)


, . . . ,

cos

wLtk + ̸ G(jωL, θ)


, sin


wLtk + ̸ G(jωL, θ)


]
′.

Therefore, for any fixedm > 0 we have

1
N

m+N−1
k=m

h(tk, θ)h′(tk, θ)

=
1
N


N
N0

 N0−1
l=0

∂φ(tm+l, θ)

∂θ


∂φ(tm+l, θ)

∂θ

′

+ O


1
N


N→∞
−−−→

1
N0

N0−1
l=0

∂φ(tm+l, θ)

∂θ


∂φ(tm+l, θ)

∂θ

′

=
1
N0

N0
l=1

∂φ(tl, θ)
∂θ


∂φ(tl, θ)
∂θ

′

, M(θ),

where ⌊a⌋ represents the integer part of a positive real number a.
As a result, we have

1
N

m+N−1
k=m

h(tk, θ∗)h′(tk, θ∗)

−−−→
N→∞

1
N0

N0
l=1

∂φ(tl, θ∗)

∂θ


∂φ(t, θ∗)

∂θ

′

=
1
N0
Φ ′(θ∗)Φ(θ∗) = M(θ∗), (30)
where

Φ ′(θ∗) =


∂φ(t1, θ∗)

∂θ
,
∂φ(t2, θ∗)

∂θ
, . . . ,

∂φ(tN0 , θ
∗)

∂θ


= G(θ∗)


ζ1, ζ2, . . . , ζN0


.

It follows thatΦ(θ∗) has full column rank by the similar treatment
as that used in Lemmas 1 and 3 if G(θ∗) is full rank and N0 > µT∗

0
.

As a result,M(θ∗) is positive definite since N0 is finite. �

Proof of Theorem 9. According to the strong law of large num-
bers, under Assumption 1 the limit

lim
N→∞

1
N

N
k=1

f 2(tk, θ) = Ef 2(t1, θ)

=

 p2

p1
f 2(t, θ)p(t)dt w.p.1. (31)

Since f (t, θ) is a bounded exponential polynomial, the integral (31)
exists if p2 is finite. When p2 = ∞, noting that p(t) is a density
function, for any A2 > A1 > 0, A2

A1
f 2(t, θ)p(t)dt

 ≤ M  A2

A1


µt

+ cos(ωt)+ 1

p(t)dt


≤ M  A2

A1
p(t)dt

 A1→∞

−−−→ 0,

where M is a positive constant and 0 < µ < 1. This means that
the integral (31) also exists under this setting. Similarly, we have

Q (θ) = lim
N→∞

1
N

N
k=1

(f (tk, θ)− f (tk, θ∗))2

= E(f (tk, θ)− f (tk, θ∗))2

=

 p2

p1
(f (t, θ)− f (t, θ∗))2p(t)dt w.p.1 (32)

which is well defined. It follows that the Hessian matrix of Q (θ) at
the point θ∗

Qθθ (θ∗) = 2
 p2

p1
h(t, θ∗)h′(t, θ∗)p(t)dt.

In what follows, we will show that the Hessian matrix Qθθ (θ∗) is
positive definite. Let β = [β1, β2, . . . , β2n]

′
≠ 0 be a column

vector such that

β ′Qθθ (θ∗)β = 2
 p2

p1
β ′h(t, θ∗)h′(t, θ∗)βp(t)dt = 0.

Then we have β ′h(t, θ∗) = 0 since p(t) is a density function.
By Lemma 1, h(t, θ∗) is linearly independent, which derives that
β = 0. As a result, we have proved thatQθθ (θ∗) is positive definite.
Hence, Q (θ) has a unique minimum at θ = θ∗. It follows that
Assumption 3(i) is true. Assumption 3(ii) can be proved similarly.
As the set A defined in Section 2.1 is open, the true value θ∗ is an
interior point of someΘ containing θ∗. Since

M(θ) = lim
N→∞

1
N

N
i=1

h(tk, θ)h′(tk, θ) = Eh(tk, θ)h′(tk, θ)

=

 p2

p1
h(t, θ)h′(t, θ)p(t)dt w.p.1,

also exists for any θ ∈ Θ , we have M(θ∗) is positive definitive by
the proof above. It follows that Assumption 3 (iii) also holds. �
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Lemma 5. Under Assumption 6, for any initial phase ξ , the following
assertions hold at the frequency ω satisfying 0 < |ϕ(ω)| < 1 and
|ϕ(2ω)/ϕ(ω)| < 1:

1
N

m+N−1
k=m

cos(ωtk + ξ) −−−→
N→∞

0 w.p.1, (33)

1
N

m+N−1
k=m

sin(ωtk + ξ) −−−→
N→∞

0 w.p.1, (34)

while at the frequency ω satisfying 0 < |ϕ(2ω)| < 1 and
|ϕ(4ω)/ϕ(2ω)| < 1 there hold

1
N

m+N−1
k=m

cos2(ωtk + ξ) −−−→
N→∞

1/2 w.p.1, (35)

1
N

m+N−1
k=m

sin2(ωtk + ξ) −−−→
N→∞

1/2 w.p.1. (36)

Proof. Because

cos(ωtk + ξ) = cos(ωtk) cos(ξ)− sin(ωtk) sin(ξ),

to prove (33) it suffices to verify that

1
N

m+N−1
k=m

cos(ωtk) −−−→
N→∞

0 w.p.1 and

1
N

m+N−1
k=m

sin(ωtk) −−−→
N→∞

0 w.p.1

which is equivalent to

1
N

m+N−1
k=m

exp(jωtk) −−−→
N→∞

0 w.p.1. (37)

Using tk =
k

i=1 τi, the characteristic function of tk equals

E exp(jωtk) = E exp

jω

k
i=1

τi


=

k
i=1

E exp(jωτi) = ϕk(ω).

Since {τk} is an i.i.d. sequence, we have

E
 1
N

m+N−1
k=m

exp(jωtk)
2

=
1
N2

m+N−1
k=m

m+N−1
l=m

E exp(jωtk) exp(jωtl)

=
2
N2

m+N−1
k=m

ϕ(2ω)
ϕ(ω)

k ϕk+1(ω)− ϕm+N(ω)

1 − ϕ(ω)

+
1
N2

ϕm(2ω)− ϕm+N(2ω)
1 − ϕ(2ω)

= O


1
N2


. (38)
It follows from (38) that for any ϵ > 0,

∞
N=1

P

 1N
m+N−1
k=m

exp(jωtk)

 > ϵ



≤

∞
N=1

E


1
N

m+N−1
k=m

exp(jωtk)
2

ϵ2

=

∞
N=1

O


1
N2


< ∞. (39)

Hence, by the Borel–Cantelli lemma (Chow & Teicher, 2003), one
derives that

1
N

m+N−1
k=m

exp(jωtk) −→ 0 w.p.1 as N → ∞.

Similarly, we can prove (34). Noting cos2(ωtk + ξ) = 1/2 +

1/2 cos(2ωtk + 2ξ), by (33) we have

1
N

m+N−1
k=m

cos2(ωtk + ξ)

=
1
N

m+N−1
k=m

(1/2 + 1/2 cos(2ωtk + 2ξ))

=
1
2

+
1
2N

m+N−1
k=m

cos(2ωtk + 2ξ) −−−→
N→∞

1
2
w.p.1.

By the triangle identity sin2(ωtk + ξ) = 1/2−1/2 cos(2ωtk +2ξ),
the assertion (36) can be verified similarly. The lemma is thus
proved. �

Proof of Theorem 10. Under Assumption 5, the noise-free output
is

f (t, θ) = φ(t, θ)+ O(µt), (40)

where φ(t, θ) =
L

i=1 Ai|G(jωi, θ)| cos(ωit + ̸ G(jωi, θ)) and 0 <
µ < 1.

Similar to the derivations in Theorem 7, under Assumptions 5
and 6, the gradient of (40) is given by

h(tk, θ) =
∂ f (tk, θ)
∂θ

=
∂φ(tk, θ)
∂θ

+ O(µtk)

= G(θ)ζk + O(µtk),

whereζk = [cos

w1tk + ̸ G(jω1, θ)


, sin


w1tk + ̸ G(jω1, θ)


, . . . ,

cos

wLtk + ̸ G(jωL, θ)


, sin


wLtk + ̸ G(jωL, θ)


]
′.

Denote ζN =
1
N

m+N−1
k=m

ζkζ ′

k. Then the diagonal elements of ζN
are either

1
N

m+N−1
k=m

cos2

witk + ̸ G(jωi, θ)


, 1 ≤ i ≤ L

or

1
N

m+N−1
k=m

sin2witk + ̸ G(jωi, θ)


1 ≤ i ≤ L,
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which tend to 1/2 via (35) and (36). On the other hand, the non-
diagonal elements of ζN have the forms:

1
N

m+N−1
k=m

cos(wptk + ̸ G(jωp, θ)) sin(wqtk + ̸ G(jωq, θ)),

1 ≤ p, q ≤ L;
1
N

m+N−1
k=m

sin(wptk + ̸ G(jωp, θ)) sin(wqtk + ̸ G(jωq, θ)),

1 ≤ p, q ≤ L and p ≠ q;

or

1
N

m+N−1
k=m

cos(wptk + ̸ G(jωp, θ)) cos(wqtk + ̸ G(jωq, θ)),

1 ≤ p, q ≤ L and p ≠ q.

It follows that the non-diagonal elements of ζN approach to
zeros via (33), (34), and the triangular formulas: cos(α) sin(β) =

1/2(sin(α+β)−sin(α−β)), sin(α) sin(β) = −1/2(cos(α+β)−
cos(α− β)), and cos(α) cos(β) = 1/2(cos(α+ β)+ cos(α− β)).
As a result, we have ζN −−−→

N→∞

1
2 I w.p.1.

Noting that tk =
k

i=1 τi and the sequence {τk} is i.i.d, we
have Eµtk = Eµ

k
i=1 τi = E

k
i=1 µ

τi = (Eµτ1)k. Since Eµτ1 =
µtp(t)dt < 1 and Eµ2τ1/Eµτ1 < 1 for any 0 < µ < 1, where

p(t) is the density function of τk, we have E


1
N

m+N−1
k=m µtk

2
=

O


1
N2


and

∞
N=1

P

 1N
m+N−1
k=m

µtk

 > ϵ


=

∞
N=1

O


1
N2


< ∞

similar to the derivations in (38) and (39). By the Borel–
Cantelli lemma (Chow & Teicher, 2003), we get 1

N

m+N−1
k=m µtk

−−−→
N→∞

0. It follows that

1
N

m+N−1
k=m

h(tk, θ)h′(tk, θ)

= G(θ)ζN
G′(θ)+

1
N

m+N−1
k=m

O(µtk)

−−−→
N→∞

1
2
G(θ)G′(θ) = M(θ)w.p.1. (41)

It is obtained thatM(θ∗) is positive definite if the matrixG(θ∗) has
full rank. Similarly, the limit in (19) also exists as that used in the
proof above. �
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