
 Procedia Computer Science 45 (2015) 832 – 841

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Advanced Computing Technologies and
Applications (ICACTA-2015).
doi: 10.1016/j.procs.2015.03.168

ScienceDirect
Available online at www.sciencedirect.com

International Conference on Advanced Computing Technologies and Applications (ICACTA-
2015)

Autonomous Agent Based Load Balancing Algorithm in Cloud
Computing

Aarti Singha, Dimple Junejab, Manisha Malhotraa*
aMaharishi Markandeshwar University, Mullana, 133205, India

bDronacharya Institute of Management and Technology, Kurukshetra, 136119, India

Abstract

Cloud Computing revolves around internet based acquisition and release of resources from a data center. Being internet based
dynamic computing; cloud computing also may suffer from overloading of requests. Load balancing is an important aspect which
concerns with distribution of resources in such a manner that no overloading occurs at any machine and resources are optimally
utilized. However this aspect of cloud computing has not been paid much attention yet. Although load balancing is being
considered as an important aspect for other allied internet based computing environments such as distributed computing, parallel
computing etc. Many algorithms had been proposed for finding the solution of load balancing problem in these fields. But very
few algorithms are proposed for cloud computing environment. Since cloud computing is significantly different from these other
types of environments, separate load balancing algorithm need to be proposed to cater its requirements. This work proposes an
Autonomous Agent Based Load Balancing Algorithm (A2LB) which provides dynamic load balancing for cloud environment.
The proposed mechanism has been implemented and found to provide satisfactory results.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of International Conference on Advanced Computing Technologies and
Applications (ICACTA-2015).

Keywords:Agents; Cloud Computing; Dynamic Load Balancing.

1. Introduction

* Corresponding author. Tel.: +91-8427465352

E-mail address: mmanishamalhotra@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Advanced Computing Technologies and
Applications (ICACTA-2015).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.03.168&domain=pdf

833 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

The cloud computing is a distributed internet based paradigm, designed for remote sharing and usage of different
resources and services like storage, computational capabilities and applications etc. with high reliability over the
large networks. However, due to dynamic incoming requests, dynamic resource allocation is required in it. This
inherent dynamism in cloud computing requires efficient load balancing mechanisms. Load balancing concerns
distribution of resources among the users or requests in uniform manner so that no node is overloaded or sitting idle.
Like in, all other internet based distributed computing tasks, load balancing is an important aspect in cloud
computing. In the absence of load balancing provision, efficiency of some overloaded nodes can sharply degrade at
times, leading to violation of SLA. In traditional distributed computing, parallel computing and grid computing
environments load balancing algorithms are categorized as static, dynamic or mixed scheduling algorithms based on
their nature [6] where:

a)Static Load Balancing Algorithm is suitable for small distributed environments with high Internet speed and
ignorable communication delays.

b)Dynamic Load Balancing Algorithm focuses on reducing communication delays and execution time and thus
are suitable for large distributed environments.

c)Mixed Load Balancing Algorithm focuses on symmetrical distribution of assigned computing task and
reducing communication cost of distributed computing nodes.

Based on above categorization, cloud computing clearly falls under the second category. It means balancing load
in cloud computing environment requires focusing on dynamic load balancing algorithms. In traditional distributed
environments process migration is less expensive due to small process granularity whereas in CC environment,
process migration is expensive due to high granularity of data involved. Thus cloud computing environment requires
a load balancing algorithm which could cater to dynamic service demands of users while providing optimized load
balancing. Following parameters are available in literature for measuring efficiency of a load balancing algorithm in
CC environment [4]:
i.Reliability: The algorithm must be reliable, since process failure while transferring job from one location to other

may lead to increased waiting time and customer dissatisfaction.
ii.Adaptability: Algorithm must be capable of adapting the dynamically changing user requests and provide task

allocation in minimal amount of time.
iii.Fault Tolerance: The algorithm must ensure fault tolerance, so that in case of a problem in the system complete

load balancing mechanism does not stop working.
iv.Throughput: the algorithm must ensure increased throughput at minimal expense. If a load balancing algorithm

doesn’t increase system throughput, it defeats its own purpose.
v.Waiting Time: Algorithm should minimize wait time of a task for allocation of resources to it.

Next subsection elaborates major components of a dynamic load balancing algorithm.

1.1Components of Dynamic Load Balancing Algorithms

Literature review highlighted that a load balancing algorithm has five major components [6] as discussed below:

 Table1: Components of Load Balancing
Sr. No. Policy Function
1 Transfer Policy This policy is responsible to determine when a task should be transferred from

one node to the other node.
2 Selection Policy It focuses on selecting the processor for load transfer so that the overall

response time may be improved.
3 Location Policy It determines the availability of required resources for providing services and

makes a selection based on location of resources.
4 Information

Policy
This policy acquires workload related information about the system such as
nature of workload and average load on each node. It is also responsible for
exchanging the information from one node to another, along with method of
exchange and amount of the information to be exchanged. For exchanging load
information of a node one of the following three methods may be adopted:
i. Broadcast Approach: If it is assumed a broadcast communication medium is
available, then a load exchange is done whenever the load node changes.
ii. Global System Load: Whenever a node does not acknowledges the revert
from another node in a complementary stage, it presumes that all nodes are
overloaded.

834 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

iii. Polling Approach: In the idle (or overloaded) state of a node the
neighbours or randomly polled nodes send the request to get the information.

5 Load Estimation
Policy

It determines the total workload of a node in a system. Need for balancing load
is triggered by this policy.

The remainder of the paper is organized as follows: Section 2 contains a review of the related work. Section 3

describes the proposed work. Implementations and results are analyzed in section 4. Finally conclusion of work is
given in section 5.

Next section provides the review of relevant literature in cloud computing.

2. Review of Existing Load Balancing Algorithms in Cloud Computing

Load balancing is one of important problems of heterogeneous computer networks. To address this problem,
many centralized approaches have been proposed in the literature but centralization has proved to raise scalability
tribulations. Randles et. al [8] provided a comparative analysis of various dynamic load balancing algorithms
(Honeybee foraging, Biased Random Sampling, and Active Clustering). Their analysis has highlighted that
honeybee algorithm has maximum throughput with increased system diversity as compared to other two algorithms.
The honeybee algorithm is motivated from the behaviour of biological bees that move in search of their food.
Similarly in load balancing there are virtual servers offering virtual services. Every server requiring services
calculates the profit and posts it on its advert board. The servers interested in serving the request also calculate their
profit and compare it with the colony profit. If case of high colony profit interested server serves the current virtual
server otherwise returns to the scout behaviour i.e. to choose another server randomly.

Hu. et. al. [5] proposed genetic algorithm based scheduling mechanism for load balancing among virtual
machines. This mechanism selects the least loaded virtual machine for load transfer and optimizes the high
migration cost. However due to large number of virtual machines and frequent service requests in the data centre,
there is chance of inefficient service scheduling. Xu et. al. [4] introduced a model for load balancing in public cloud
by using game theory. This algorithm is based on cloud portioning. They divided the cloud into three categories idle,
normal and overloaded on the basis of load degree. Zero load degree represents an idle cloud whereas if it lies
between zero and highest value then the cloud status is normal otherwise the cloud is overloaded. Here method of
selecting range for load degree has been left unaddressed. Wang et. al. [13] has proposed two static algorithms in
cloud environment. One is for Opportunistic load balancing in which incoming tasks received by a node have
minimum execution time which is calculated by service manager. Second is Load Balance Min Min which improves
the resource utilization by maintaining the load balance. However both these algorithm are not suitable for CC as
they do not support dynamic environments.

Osman et al. [19] proposed a system to migrate legacy and network application by providing a virtualization
layer on top of the operating system and transferring a process group. They achieve lower downtime of service, but
still use stop-and-copy approach. Nakai et. al [20], introduced an approach for client-based load distribution that
adaptively changes the fraction of the load that each client submits to each service replica to minimize overall
response times. Bhaskar et. al. [2] proposed a mechanism working in two phases. In first phase it finds the CPU
utilization and memory required for each instance and also finds the memory available for each virtual machine. In
second phase, it compare the available resources with required resources, if required resources are available then
proceed further otherwise discard the request. Drawback of this mechanism is that it lacks in scalability. Xu et. al
[15] has introduced an agent based model using decision theory. The aim of this model is to reduce the
computational cost involved in load balancing. The migration concept used in this architecture transfers the load
from overloaded nodes to under loaded nodes.

From the literature it has been observed that there are some drawbacks such as static nature of load balancing
algorithms, lack of scalability and reliability. Further from analysis of literature it being observed that artificial
intelligent mechanism such as genetic algorithm, honeybee algorithm, game theory and intelligent agents had been
employed for load balancing in cloud computing, which highlights that researchers have found them suitable for
such applications and there is scope of employing them further. Thus there is strong need for an efficient load
balancing mechanism in cloud computing.

Next section elaborates the proposed work.

835 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

3. Proposed Work

From the literature review it is clear that limited work has been done for load balancing in cloud computing
environment and those existing mechanisms do have limitations that need to be addressed. Thus there is need of an
algorithm which can offer maximum resource utilization, maximum throughput, minimum response time, dynamic
resource scheduling with scalability and reliability. This work proposes an autonomous agent based load balancing
algorithm (A2LB) to address above issues. Whenever a VM becomes overloaded, the service provider has to
distribute the resources in such a manner that the available resources will be utilized in a proper manner and load at
all the virtual machines will remain balanced. A2LB mechanism comprises of three agents: Load agent, Channel
Agent and Migration Agent. Load and channel agents are static agents whereas migration agent is an ant, which is a
special category of mobile agents. The reason behind deploying ants is their ability to choose shortest/best path to
their destination. Ant agents are motivated from biological ants which seek a path from their colonies to the food
source. While doing so they secrete a chemical called pheromone on ground [16] thus leaving a trail for other
colleagues to follow. However this chemical evaporates with time. Initially the ants start searching a food source
randomly, thus they may follow different paths to the same source, however with passage of time, density of
pheromone on the shortest path increase and thus all follower ants start following that path resulting in increase of
pheromone density even further. An appealing property of ants is that they move from source to destination for
collecting desired information or performing a task but they do not necessarily come back to their source rather they
destroy themselves at the destination only thereby reducing unnecessary traffic on the network. Since load
balancing in CC would require searching for under loaded servers and resources, ant agents suit the purpose and
fulfill it appropriately without putting additional burden on network. Description of various agents deployed in
A2LB is as follows:

Load Agent (LA):It controls information policy and maintains all detail of a data centre. The major work of a load
agent is to calculate the load on every available virtual machine after allocation of a new job in the data centre. This
agent is supported with table termed as VM_Load_Fitness table.

VM_Load_Fitness table: It is used for maintaining record of specifications of all virtual machines of a data
centre. It contains virtual machine id, status of its memory consumed along with CPU utilization, fitness value and
load status of all VMs. Its structure is shown below in Table 2.

 Table 2: VM_Load_Fitness Table

 Where μ is the percentage of memory used, is the CPU utilization percentage and is the fitness value for a
virtual machine.
 Channel Agent (CA): It controls the transfer policy, selection policy and location policy. On receiving the request
from load agent, the channel agent will initiate some migration agents to other data centres for searching the virtual
machines having similar configuration. It also keeps the record of all messages received from these agents in
response table in sorting order which is as given below:
 Table 3: Response Table

Virtual Machine_ID Memory(μ)Used CPU Utilization () Fitness Value () Load Status

 VM1 μ1
1 1 Normal

VM2 μ2
2 2 Critical

| | | |
VMn μn

n n Normal

Migration Agent_ID Destination Data Centre_ID Response Received Migration Agent Status

MA1 DC_Id1 *A Live
MA2 DC_Id2 **NA Destroy
| | | |
MAn DC_Idn A Live

836 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

*A: <Applicable> Found Similar Configuration
**NA: <Not Applicable> Not Found Similar Configuration
Migration Agent (MA): These agents are initiated by channel agent. It will move to other data centres and

communicate with load agent of that data centre to enquire the status of VMs present there, looking for the desired
configuration. On receiving the required information it communicate the same to its parent channel agent.
Afterwards, it will stay at destination location, waiting for self-destroy message from parent CA channel agent. The
status of migration agent may be live or destroyed based on its applicability.

Figure 1 given below provides high level view of proposed mechanism.

Fig.1: High level view of A2LB

Load agent acts proactively for calculating load status of various VMs available in a DC. Periodically it
determines the workload of virtual machines in terms of available memory, available CPU utilization, and expected
response time. Afterwards it calculates the fitness value of each virtual machine which directly proportional to the
memory of a machine and can be evaluated by equation 1, 2 and 3:

available total used (1)

(%) 100available

total

(2)

The percentage of fitness values will gives the status of a virtual machine.

 (3)
25%
25%

AllocationCritical
Normal Allocation

837 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

Now whenever a request arrives in a data centre, after allocating resources to it load agent will update

VM_Load_Fitness table to reflect present status of all VMs. For this load agent calculates percentage of μ and
since these factors affect processing of incoming requests. Based on value of μ available, fitness value () for each
node is generated. As long as of a node is greater than a threshold (25%), in this case VM status is normal. As and
when fitness value of a VM becomes less than or equal to threshold value, load balancing needs to be performed.
Load agent on observing critical status of a VM will intimate and send the specification of that VM to the channel
agent. Then channel agent will initiate the migration agents to other data centres for searching the virtual machines
having similar specifications. Migration agents being ants will travel one way. On reaching a destination data centre,
migration agent will first send an acknowledgement message to its parent channel agent. Afterwards it will check
with load agent of that data centre for availability of virtual machines having similar configuration as desired. If no
such VM exists at that data centre, migration agent sends a <Not-Applicable> message back to its parent channel
agent and waits for <self_destroy> instruction from it. However, if one or more VMs having desired configuration
are found, migration agent further checks their μ and sends it to channel agent.

On receiving responses from various migration agents, channel agent maintains them in response analysis table
as shown below:

 Table 4: Response_Analysis Table

Response_Analysis table contains responses of live migration agents only. Each row indicates status of a desired

VM configuration, along with its . Additionally time of response for each migration agent is also recorded so as to
measure freshness of recorded data. It is necessary since once a migration agent sends a response, it is not necessary
that same VM would be used for balancing load, but still that information may be used at some time in near future,
thus live migration agents are instructed to periodically update status of their concerned VMs to parent channel
agents.

On receiving a new request in the data centre, the load agent will map the specification with the available virtual
machines. If the fitness value of a VM is normal, load agent proceeds future for allocation otherwise load agent will
call channel agent for perspective data centres having VMs with similar configuration for load balancing. At this
time, channel agent scans response analysis table and finds <MAid, DCid,, VMid>for matching the request. If more
than one suitable record is found, it picks the record with largest . Channel agent then communicates with
corresponding migration agent to confirm current of VM under consideration. On receiving response from
migration agent, channel agent again analyses all suitable VMs, if still same VM has highest , it passes that record
to load agent for further load balancing, otherwise channel agent again communicate with migration agent for new
suitable VM. Then channel agent would send this information to load agent for further processing.
Algorithms for various agents employed in this mechanism are as follows.

3.1 Algorithms

Algorithms of various agents deployed in proposed framework are given below in figure 2(a), 2(b) and 2(c)
respectively.

Migration
Agent_ID

Destination Data
Centre_ID

Virtual Machine_ID Fitness Value () Response Time

MA1 DC_Id1 VM1
1 t1

MA2 DC_Id2 VM2
2 t2

| | | | |
MAn DC_Idn VMn

n tn

838 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

 Fig.2(a): Algorithm of Migration Agent

Fig.2(b): Algorithm of Load Agent Fig.2(c): Algorithm of Channel Agent

Next section discusses the implementation of proposed algorithm with results.

4. Implementation and Results

This section implements the proposed A2LB algorithm by using java technology. The implementation is done on
a small scale environment by taking number of parameters are shown in table 5:

Migration_Agent ()
Input: VMconfigurations fromChannel_Agent(VMinitial)
Output: Search similar VM from other Datacenters
{
Accept VMconfigurations fromchannel_Agent(VMinitial);
Search a Data_center;
Check VM_Load_Table;
If (found)
Return (A);
Else
Return (NA);
On_receiving (self_destroy);
Kill (MAi);
}

Channel_Agent(VMinitial):
Input:ReceiveVMiconfiguration from Load_Agent;
Output:Response_Analysis_Table, VM_id;
On_ReceivingVMi fromLoad_Agent();
Initiate_Migration_agent();
Receive acknowledgement from Migration_Agents();
Maintain_Response_Table;
If (response == NA)
{
Send self_destroy(MAi);
}
Else
{
Receive (MAi);
Maintain Response_Analysis_Table;
Periodically update Response_Analysis_Table;
}

Channel_Agent(VMLoad_Balance):
On incoming request;
{
Scan Response_Analysis_Table;
Prepare list of matching VMi;
L1: for i=1 to n
Large=0;
If ((VMi) >large)
Large= (VMi);

old= i;
Update message to MAi;
If (old= = i)
Return (<DCi, VMi>) to Load_Agent;
Else
Goto L1;
}

Load_ Agent():
Input: Receive request from user;
Output: Allocate_ resources_with_A2LB;
Case I:
{
If (VM_Load_Table==empty())
Then allocate_requested_resources;
Maintain_VM_Load_Table;

available total used

(%) 100available

total

If (>25) then
{
allocation_status:=Normal;
}
Else
{
allocation_status:=Critical;
initiateChannel_Agent(VMinitial);
}
Case II:
If (VM_Load_Table≠ empty)
Scan VM_Load_Table;
If(Load_Status(VMi) ==Critical)
{
Call Channel_Agent(VMLoad_Balance);
Receive <DCid,VMidforload_ transfer>;
Transfer_request to DCid;
}
Else
Allocate_request to VMid;
Update VM_Load_Table;
}

839 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

 Table 5: Parameter Table

With all these parameters, implementation is done by two ways: in first case when requested virtual machine is
found with normal status and allocation takes place. In second case virtual machine is in critical state, then load
balancing takes place. Further second case is implemented by using A2LB algorithm and without A2LB algorithm,
also to observe performance of proposed mechanism.
 Table 6: Three cases of Implementation

Fig.3: Cloud Interface and Total Response Time in case I

Figure 3 shows the cloud interface in which the cloud user can demand the required instances. All these
executions are done 15 number of times. Initially the implementations is done when instance found in its own data
centre i.e all demanded virtual machines are under loaded hence allocation status is normal. It takes total 109ms
(response time) for completion of whole execution in first run. In second case when status of requested virtual
machine was found critical then A2LB algorithm was applied for load balancing. Figure 4 shows when the fitness
value of virtual machine will become less than 25% after allocation then automatically load agent will call the
channel agent and executes proactively A2LB. Channel agent will have the prior possible solutions for more
incoming requests.

Sr. No. Parameter Name Parametric Value
1 No. of Data Centre 3
2 No. of Virtual Machines per data centre 4

3 No. of Instances per Virtual Machine 6
4 Memory Unit In GB
5 Cost $
6 Wait Time In Milliseconds(ms)
7 Number of Runs 15

Case I Normal Allocation (Under loaded VM)

Case II Critical Allocation (Overloaded VM) (With A2LB Algorithm)

Case III Critical Allocation (Overloaded VM) (Without A2LB Algorithm)

840 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

Fig.4: Total Response Time in case II

When the fitness value becomes less than its threshold, channel agent gets activated and will search the virtual
machine having same configuration. It took only 16milliseconds additional time. So total time will become 125ms.
Figure 5 describes the last case when demanded virtual machine becomes overloaded and provider will search the
similar virtual machine after receiving the request i,e without applying the A2LB algorithm. It takes 215
milliseconds time which is almost double than case I and II.

Fig.5: Total Response Time in case III

Figure 6 illustrates the comparison between three cases. It is clear from the chart that in all executions, response
time remains double in case III. It takes 212ms average response time. Even if we compare the graph of case I and
case II there is no more difference in deviations. The average response time is 97ms in case I and 113ms in case II.
So it is clear that A2LB takes optimum time when virtual machine becomes overloaded. From this implementation it
is revealed that A2LB algorithm provides desired results. Next section concludes this work.

Fig.6 Comparison Between three Cases

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case-I
Case-II
Case-III

841 Aarti Singh et al. / Procedia Computer Science 45 (2015) 832 – 841

5.Conclusion

This work focuses on load balancing in cloud computing environment. Load balancing in cloud computing has
been ignored, but rapid growth in number of cloud users has raised demand for load balancing mechanisms. This
work has proposed an autonomous agent based load balancing mechanism which provides dynamic load balancing
for cloud environment. Major contribution of this mechanism is proactive load calculation of VM in a DC and
whenever load of a VM reaches near threshold value, load agent initiates search for a candidate VM from other
DCs. Keeping information of candidate VM beforehand, reduces service time. Result obtained through
implementation proved that this algorithm works satisfactorily.

References

1.Bhaskar. R, Deepu. S.R and Dr. B.S. Shylaja (2012, September). Dynamic Allocation Method for Efficient Load Balancing in Virtual Machines
for Cloud Computing Environment. Advanced Computing: An International Journal (ACIJ), 3(5), pp. 53-61.

2.Dr. PK Sinha, SR Dhore,(2010),Multi-Agent Optimized Load balancing Using Spanning Tree for Mobile Services, International Journal Of
Computer Application , 1(6).

3. G. Xu, J. Pang, X. Fu. (2013, Feb). A Load Balancing Model Based on Cloud Partitioning for the Public Cloud. Tsinghua Science and
Technology.[Online].18(1),pp. 34-39.

4.J. Hu, J. Gu, G. Sun, T. Zhao. A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment in
Proc. PAAP, 2010, pp. 89-96.

5.K. B. Mahieddine. An Evaluation of Load Balancing Algorithms for Distributing System A thesis of Doctor of Philosophy submitted in The
University of Leeds, School of Computer Studies, October 1991.

6.M. Amar, K. Anurag, K. Rakesh, K. Rupesh, Y. Prashant (2011). SLA Driven Load Balancing For Web Applications in Cloud Computing
Environment, Information and Knowledge Management, 1(1), pp. 5-13.

7.M.Randles,D.Lamb,AT.Bendiab. A Comparative Study into Distributed Load Balancing Algorithms for Cloud Computing. In Proc. ICAINAW,
2010, pp.551-556.

8.R. Ezumalai,G. Aghila, R. Rajalakshmi,(2010, Feb). Design and Architecture for Efficient Load balancing with Security Using Mobile Agents.
International Journal of Engineering & Technology(IACSIT). [Online]. 2(1), pp. 149-160.

9.S Jing and K She (2011 April). A Novel Model for Load Balancing in Cloud Data Centre. Journal of Convergence Information Technology.
6(4),pp. 29-38.

10.S. Ray and A.D. Sarkar (2012, October). Execution Analysis of Load Balancing Algorithms in Cloud Computing Environment. International
Journal on Cloud Computing: Services and Architecture (IJCCSA). 2(5), pp. 1-13.

11.S. S. Moharana, R. D. Ramesh & D.Powar,(2013, May). Analysis of Load Balancers In Cloud Computing. International Journal of Computer
Science & Engineering (IJCSE). [Online]. 2(2), pp.: 101-108.

12.S.C. Wang,K.Q. Yan, W.P.Liao, S.S. Wang. Towards a Load Balancing in a three-Level Cloud Computing Network. In Proc. ICCSIT, 2010,
pp.108-113.

13.T. Desai, J. Prajapati,(2013, Nov). A Survey of Various Load Balancing Techniques And Challenges In Cloud Computing. International
Journal of Scientific & Technology Research, [Online]. 2(11), pp.158-161.

14.Y.Xu, L. Wu, L. Guo, Z.Chen, L.Yang, Z.Shi. An Intelligent Load Balancing Algorithms Towards Efficient Cloud Computing. In Proc. AAAI
Workshop, 2011, pp. 27-32.

15.Z Zhang and X Zhang. A Load Balancing Mechanism Based on Ant Colony and Complex Network Theory in Open Cloud Computing
Federation.In Proc. ICIMA, 2010, pp. 240-243.

16.Z.Chaczko, V. Mahadevan, S.Aslanzadeh, C. Mcdermid. Availability and Load Balancing In Cloud Computing. In Proc. ICCSM , 2011,
pp.134-140.

17.Clark, C., Fraser, K., Hand, S., Jacob, G.H.Live migration of virtual machines. In: 2nd ACM/USENIX Symposium on Network Systems,
Design and Implementation (NSDI), pp. 273–286 (2005).

18.Osman, S., Subhraveti, D., Su, G., Nieh, J. The design and implementation of ZAP: a system for migrating computing environments. ACM
SIGOPS Oper. Syst. Rev. 36(SI), 361–376 (2002).

19.Nakai, A., Madeira, E., Buzato, L.E. Improving the QoS of web services via client-based load distribution. In: Proceedings of the 29th
Brazilian Symposium on Computer Networksand Distributed Systems (SBRC2011) (2011).

20.Cardellini, V., Colajanni, M., Yu, P.S. Request redirection algorithms for distributed web systems. IEEE Trans. Parallel Distrib. Syst. 14(4),
355–368 (2003).

21. A Keren and A Barak (2013 January). Opportunity Cost Algorithms for Reduction of I/O and Interposes Communication Overhead. In a
Computing Cluster. IEEE Trans. 14 (1), pp. 399-446.

