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Abstract—In the era of big data, with the increasing number
of audit data features, human-centered smart intrusion detection
system (IDS) performance is decreasing in training time and
classification accuracy, and many SVM-based intrusion detection
algorithms have been widely used to identify an intrusion
quickly and accurately. This paper proposes the FWP-SVM-GA
(feature selection, weight, and parameter optimization of support
vector machine based on the genetic algorithm) algorithm based
on the characteristics of the genetic algorithm (GA) and the
support vector machine (SVM) algorithm. The algorithm first
optimizes the crossover probability and mutation probability of
GA according to the population evolution algebra and fitness
value; then, it subsequently uses a feature selection method based
on the genetic algorithm with an innovation in the fitness function
that decreases the SVM error rate and increases the true positive
rate. Finally, according to the optimal feature subset, the feature
weights and parameters of SVM are simultaneously optimized.
The simulation results show that the algorithm accelerates the
algorithm convergence, increases the true positive rate, decreases
the error rate, and shortens the classification time. Compared
with other SVM-based intrusion detection algorithms, the detec-
tion rate is higher and the false positive and false negative rates
are lower.

Index Terms—Genetic algorithm; Intrusion detection; Support
Vector Machine;

I. INTRODUCTION

With the development and popularization of information
and network technologies, network information security is
becoming more and more important. Compared with tradi-
tional network defense technology (such as firewalls), human-
centered smart IDSs that can take initiative to intercept and
warn of network intrusion has a great practical value. The
question of how to improve the effectiveness of smart network
intrusion detection has become a focus of network security [1].

Currently, use of smart IDS is viewed as an effective
solution for network security and protection against exter-
nal threats. However, the existing IDS often has a lower
detection rate under new attacks and has a high overhead
when working with audit data, and thus machine learning
methods have been widely applied in intrusion detection.
SVM, one of the machine learning technologies, is a new
algorithm based on statistical learning theory that has shown
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higher performance than the traditional learning methods in
solving the classification problem of pattern recognition and
speech recognition [2]. Compared with other classification
algorithms, SVM can better solve the problems of small
samples, nonlinearity and high dimensionality. However, with
the advent of the era of big data, SVM encounters the problem
of long training and testing times, high error rates and low true
positive rates, which limit the use of SVM in network intrusion
detection. Therefore, SVM feature selection, feature weighting
and SVM parameter setting are critical to improved detection
performance. GA shows excellent global optimization ability
via population search strategies and information exchange
between individuals. Different from the traditional multi-point
search algorithm, GA can easily avoid local optima. In this
paper, GA and SVM are used to select the optimal feature
subset and optimize the SVM parameters and feature weights
to improve the performance of the network intrusion detection
system.

The remainder of the paper is organized as follows. Section
II describes related work, Section III introduces the genet-
ic algorithms (including selection operators, and optimized
crossover and mutation probability), Section IV presents an
improved intrusion detection method based on GA and SVM
(including selection of the optimal feature subset and optimiza-
tion of the SVM parameters and feature weighting), Section
V verifies the effectiveness of the FWP-SVM-GA algorithm
by comparing the experimental results with other methods of
intrusion detection, and Section VI presentes conclusions.

II. RELATED WORK

In the era of big data, intrusion detection has become the
most important topic in security infrastructure. To distinguish
between attack and normal network access, different machine
learning methods are applied in IDS, including fuzzy logic [3],
K nearest neighbor (KNN) [4], support vector machine (SVM),
artificial neural network (ANN) [5], and artificial immune sys-
tem (AIM) approaches [6]. SVM showed better performance
than traditional classification techniques [7], and several re-
searchers proposed SVM-based IDS [8–10]. Although SVM-
based IDS can improve IDS performance in terms of detection
rate and learning speed compared with traditional algorithms
(such as neural networks), room for improvement still exists.
As the number of features of the audit data becomes larger,
the performance of IDS degrades in terms of training time and
classification accuracy. To address these problems, we use GA
technology to supply fast and accurate optimization that can
enable IDS to find the optimal detection model based on SVM.
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In [11], the genetic algorithm (GA) was proposed to im-
prove the intrusion detection system (IDS) based on support
vector machine (SVM), and the optimal feature subset was
selected for SVM. However, the error rate of SVM was
not considered. In [12], an intrusion detection method based
on wavelet kernel least square was designed to improve the
detection capability of SVM in complex nonlinear systems.
However, the training and testing time of the algorithm is
relatively long. In [13], the heuristic genetic algorithm was
applied to optimize the SVM kernel parameters. The genetic
operator is dynamically adjusted via a heuristic strategy, and
the classification accuracy of the model is taken as the objec-
tive function to realize parameter optimization of the Gaus-
sian kernel-based SVM classification model. However, this
approach did not consider the impact of feature weighting on
SVM detection accuracy. In [14], the coarse-grained parallel
genetic algorithm (CGPGA) was presented to simultaneously
optimize the feature subsets and parameters of SVM. A new
fitness function was proposed that includes the classification
accuracy, the number of features and the number of support
vectors, but it required a long time to train the SVM. In [15],
GA was selected as one of the most powerful tools to search
in a large space with the potential to find the best solution
in the search space. However, in the later evolution of the
population, a larger crossover and mutation probability might
result in the loss of good genes and delayed convergence of
the algorithm.

In summary, although many SVM-based network intrusion
detection methods have been proposed in recent years, the
above algorithms still suffer from certain shortcomings:

• Due to redundant features, the raw dataset confuses
the classifier, leading to inaccurate detection. Traditional
feature selection (such as PCA) ignores a number of
sensitive features, resulting in a classifier without optimal
sensitivity.

• If GA is used to optimize the SVM-based intrusion
detection system, the training time is longer, and the error
rate is higher when selecting the optimal feature subset.
After selecting the optimal feature subset, the importance
of the features is not sorted.

For these reasons, we propose a combination of the genetic
algorithm (GA) with support vector machine (SVM). First, we
optimize the crossover probability and mutation probability of
GA, generate the population to speed up the search in the early
evolution of the population and accelerate the convergence of
the algorithm in the later evolution of the population. In the
stage of optimal feature set selection, a new fitness function
is proposed to decrease the error rate while increasing the
true positive rate. Finally, the feature weights and parameters
of SVM are optimized simultaneously, and the robustness of
SVM is improved.

III. GENETIC ALGORITHMS

Genetic operators are the key to optimization, and specifical-
ly, the crossover and mutation operators are used to maintain
population diversity and avoid local optima. Currently, the
crossover probability and mutation probability are constants

during the period of population evolution and delay the
convergence of the algorithm in the later evolution of the
population, leading to the long training time of SVM. There-
fore, the method proposed in this paper changes the crossover
probability and mutation probability of GA according to the
evolutionary algebra and fitness value, which generates the
population to speed up the search in the early evolution of the
population and accelerates the convergence of the algorithm
in the later evolution of the population.

A. Selection operators

The selection in GA is designed to seek better individuals
and maintain the diversity of the population. The offspring
population chooses the individual using the fitness value,
which gives the higher quality individual a greater chance to
be chosen. The common selection operators are roulette wheel
selection, elitist selection, and tournament selection.

Roulette wheel selection: Selection of a chromosome in the
population is proportional to its fitness value. The population
is assigned a circular “roulette wheel” slice, which is propor-
tional to the individual’s fitness value, and the wheel rotates
N times (N is the number of individuals in the population).
In each rotation, the chromosome under the wheel mark is
selected in the next generation.

Elitist selection: The individual with the highest fitness
value in the population does not participate in crossover or
mutation and is used to replace the individual with the lowest
fitness value after crossing and mutation. Elitist selection
avoids loss of the optimal individual by the crossover or
mutation operator.

Tournament selection: The selection process runs a number
of “tournaments” between two individuals randomly selected
from the population, and the better individual with a greater
fitness value is selected for the next generation. In this paper,
the optimal 60 percent of chromosomes was selected using the
tournament selection method.

B. Optimized crossover probability

The partial structure of the parent chromosomes is replaced
and recombined to form a new individual, and this operation
is referred to as the crossover operation, as shown in Fig. 1.
With the increase in the population evolutionary algebra, the
population approaches the optimal solution set, and thus we
stress the following points.

In the early evolution of the population, it is necessary to
increase the number of individual crossovers for rapid search
over the whole definition space. At the later stage of population
evolution, the population is concentrated in the vicinity of the
optimal solution, and the number of individual crossovers must
be reduced to prevent the loss of individual good genes to
speed up GA convergence.

When the average fitness value of individuals is low, an
increase in the individual crossover probability increases the
possibility of generating excellent individuals. When the av-
erage fitness value of population approaches the optimal solu-
tion, the individual crossover probability should be reduced.
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Parents
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Fig. 1: Crossover operators and their effects in generation of
the offspring

In summary, the adaptive crossover probability in the ge-
netic operation is given as follows:

Pc =
Pc0 + Pc1

2

=

((
N−n
N Pcmax + n

N Pcmin

)
+ Pcmax·fmin

fmax

)
2

(1)

With the increase of population evolutionary algebra, the
value of Pc0 decreases, and Pc1 decreases when the average
fitness value of the population tends toward the ideal value. In
this case, Pcmax is the maximum crossover probability, Pcmin

is the minimum crossover probability, fmin is the minimum
fitness value of the cut-off for the current population, fmax

is the maximum fitness value of the cut-off for the current
population, n is the current evolutionary algebra, and N is the
evolutionary algebra of the entire population.

C. Optimized mutation probability

Mutation point

Before

After

Fig. 2: Mutation operators and their effects in generation of
the offspring

Mutations can alter individual chromosomal genes in the
parent population, resulting in a large number of new indi-
vidual offspring, as shown in Fig. 2. With the increase in
evolutionary algebra, the population grows approaches the

optimal solution set. Choosing a larger probability of mutation
produces many new individuals. These new individuals are
distributed throughout the search space, and the proportion
of individuals with good fitness in the population declines.
Therefore, at the later stage of the population evolution, a
larger probability of mutation affects the proportion of the
dominant individuals and delays the convergence of the algo-
rithm. Therefore, the mutation probability is given as follows:

Pm =
N − n

N
Pmmax +

n

N
Pmmin (2)

where Pmmax is the maximum mutation probability, and
Pmmin is the minimum mutation probability.

IV. IMPROVED INTRUSION DETECTION METHOD BASED ON
GA AND SVM(FWP-SVM-GA)

Fig. 3 shows the architecture of the improved intrusion
detection method based on GA and SVM for feature selec-
tion, feature weighting and SVM parameter optimization, as
proposed in this paper. The input is the network traffic data
set, and the final output is attack detection and alarm. The
system consists of four main components:

Network 

traffic data

Optimal feature 

subset

Feature 

weighting and 

parameters 

optimization

Training

Classification

Intrusion 

detection

Fig. 3: System architecture of the proposed FWP-GA-SVM
IDS

• Feature selection based on GA and SVM: The network
traffic data are entered, feature chromosomes are creat-
ed, the chromosomes according to the fitness function
proposed in this paper are evaluated, the chromosomes
with the maximum fitness function value as the optimal
chromosome are selected, and the optimal feature subset
is decoded.

• Feature weighting and parameter optimization based on
GA and SVM: The weights of the feature and SVM
parameter chromosomes are created according to the
optimal feature subset. By evaluating the chromosome
with the highest classification accuracy and selecting it
as the optimal chromosome, the optimal SVM parameters
and the feature weights are decoded.

• Training: The original data are randomly divided into k
sub-portions of the same size to retain the first, second,
... k sub-portions, and the remaining k-1 sub-portions
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are used as training data to training the support vector
machine.

• Classification: The reserved first, second, ... k sub-
portions are classified as testing data and the combined
k prediction results. The advantage of this technique is
that all testing sets are independent and can improve the
reliability of the results. In our experiments, we chose k
= 10 and combine k results to estimate the performance
of the SVM classifier.

A. Feature selection based on genetic algorithm (GA) and
support vector machine (SVM) (FWP-SVM-GA-1)

Calculating the fitness 

value

Optimal feature subset

Selection、

crossover、
mutation

NO

YES

Feature chromosomes

（initial population）
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Training SVM 

classifier using k-1 
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Combining k predicted 

results

K-fold cross validation

Validation fold

Stop criteria

Fig. 4: Feature selection based on genetic algorithm (GA) and
support vector machine (SVM)

1) Flow chart (Fig. 4):
2) Steps:
• a. The feature chromosomes and original data are gener-

ated.
• b. Using the decoding parameters and training datasets

to create the SVM intrusion detection model, the testing
datasets are used to evaluate the classifier (K-fold cross
validation), and each chromosome is evaluated using the
fitness function when the prediction results are obtained.

• c. To evaluate the GA termination conditions, we deter-
mine whether the maximum number of 100 iterations is
reached or the current generation of the maximum fitness
value minus the previous generation of the maximum

fitness value is less than 0.001. If so, we jump to step
e, otherwise, we move to the next step.

• d. Genetic operations (selection, crossover and mutation)
are performed on the parent population, and the offspring
population is generated. The operation returns to step b.

• e. The optimal feature subset is obtained by decoding
the chromosome that has the maximum fitness function
value.

3) Chromosome design:

The chromosome design is binary coded, where 1 indicates
that the feature index is selected, and 0 indicates that the fea-
ture index is not selected. For example: feature chromosome
1: 110011110010 ... 10001.

4) Proposed fitness function:

The fitness function is a basic component in GA that can
evaluate whether an individual is suitable for survival. In this
paper, a new fitness function is proposed for GA to decrease
the error rate and increase the true positive rate while choosing
the optimal feature subset.

The new fitness function evaluates each feature subset using
three parameters, i.e., the true positive rate (TPR), error rate
(Error) and number of selected features (NumF (S)). The
calculation formula is written as follows:

Fitness (S) =W
′

aTPR+W
′

b Error +W
′

cNumF (S) (3)

The true positive rate (TPR) refers to the proportion of
samples that the classifier correctly predicts in all samples
for which the actual category is positive, and the calculation
formula is given as follows:

True positive rate (TPR) = Recall =
TP

TP + FN
(4)

The error rate (Error) refers to the proportion of the samples
that the classifier incorrectly predicts in all samples, and the
calculation formula is presented as follows:

Error rate (Error) =
FP + FN

TP + FN + TN + FP
(5)

Where Wa is the weight value of TPR, Wb is the weight
value of Error, and Wc is the weight value of the selected
feature number. In general, Wa and Wb can be set from 75 %
to 100 % according to the needs of the user. In this paper, Wa
is set to 40 %, Wb to 50 %, and Wc to 10 %, to obtain the
highest TPR, the lowest Error, and the smallest feature subset.
The confusion matrix is shown in Table I, which contains the
actual and predicted classification information produced by the
classification system.

TABLE I: Confusion matrix

Predicted Predicted
1 -1

Actual 1 True Positive ( TP ) False Negative ( FN )
Actual -1 False Positive ( FP ) True Negative ( TN )
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B. Parameters optimization and data feature weighting based
on genetic algorithm (GA) and support vector machine (SVM)
(FWP-SVM-GA-2)

After selecting the optimal feature subset, SVM also faces
two problems: how to sort the importance of the feature and
how to choose the optimal SVM parameters. These two issues
must be resolved at the same time because the weighting
feature influences the kernel parameter and vice versa.

Initial 

population

Data feature 

weighting

Calculate C and 

γ according to 

Equation 7.8

K-fold cross 

validation

Calculating the 

fitness value

Stop criteria

Selection、

crossover、

mutation

Optimal C and γ 

and feature 

weights

Weight genes

Parameter genes

Yes

No

Fig. 5: Parameter optimization and data feature weighting
based on genetic algorithm (GA) and support vector machine
(SVM)

1) Flow chart (Fig. 5):
2) Steps:
• a. Generation of chromosomes and original data.
• b. Decoding and data transformation: The chromosomes

are converted into SVM parameters C, γ(Eq. (7), (8))
and feature weights. In the training and testing data sets,
we multiply the feature value of an instances by the
corresponding weights using Eq. (6).Where Nxy and Mxy

are the values of the yth field of the xth instance before
and after the transformation, and Wy is the weight of the
yth field.

• c. The C, γ and transformed training data sets are used to
construct the SVM model. The transformed testing data

sets are used to evaluate the performance of the classifier
(K-fold cross validation). When the predicted results are
obtained, each chromosome is evaluated using the fitness
function.

• d. We determine whether to meet GA termination con-
ditions. If yes, we jump to step f, otherwise, the process
continues to the next step.

• e. Genetic operations (selection, crossover and mutation)
are performed on the parent population, the offspring
population is generated, and the process jumps to step
b.

• f. The chromosome with the maximum fitness value is
decoded to obtain the feature weights and the optimal
SVM parameters.

Mxy = Nxy*Wy (6)

3) Chromosome design:

The chromosome design is real-number coded. The RBF k-
ernel function of the SVM is used to convert a completely non-
separable problem into a separable or approximate separable
state. The RBF kernel parameter γ implies the distribution of
the data to the new feature space. The parameter C represents
the degree of penalty for the classification error in the linear
non-separable case. Because the weighting feature and the
support vector machine parameters interact with each other,
the chromosome must include both the parameters and the
feature weights, as shown in Fig. 6.

WnW2W1 ... c y

Fig. 6: Structure of chromosome of C, γ and feature weights

All genes in the chromosome have values in the range [0,1].
The two genes c and y represent the gene values of C and γ,
and W1 through Wn represent the gene values of the feature
weights (the weight of the unselected feature W = 0). Thus,
the SVM parameters C and γ map c and y to [C1, C2] and
[γ1, γ2] to obtain the formulas as follows:

C = C1 + c ∗ (C2 − C1) (7)

γ = γ1 + y* (γ2 − γ1) (8)

4) Fitness function:

In the decoding process, the ith feature of the training and
testing datasets is multiplied by the corresponding weights Wi

(i = 1, . . . , n), and the SVM with the RBF kernel function
is built based on C, γ and the transformed training datasets.
The classification accuracy of the testing datasets is used to
assess the quality of the chromosome. The fitness function is
expressed in terms of accuracy, and the calculation formula is
given as follows:
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Fittness = Accuracy =
TP + TN

TP + FN + FP + TN
(9)

V. SIMULATION

A. Simulation environment

In this experiment, the simulation model is built on Matlab
2014a software. The datasets are sourced from KDD Cup 99,
and the parameter settings are shown in Table II.

TABLE II: Parameters of GA and SVM

Parameter Value
Number of generations-N 100
Size of population 500
Maximum crossover probability-Pcmax 0.9
Minimum crossover probability-Pcmin 0.4
Crossover type Two point
Maximum mutation probability-Pmmax 0.1
Minimum mutation probability-Pmmin 0.0001
Search range of parameter C [0.001,1000]
Search range of kernel function parameter γ [0.00001,64]
Mutation type Simple mutation

B. Experimental results and discussion

1) Influence of optimized genetic operators on SVM
convergence:

The optimized crossover and mutation probabilities vary
with the number of iterations, and the crossover and mutation
probabilities take on constant values when not optimized.
Fig. 7 contrasts the SVM convergence algebra between the
two values. The x-axis represents the number of iterations, and
the y-axis denotes the accuracy of SVM (Accuracy). It can be
observed from Fig. 7 that the SVM of the optimized genetic
operators converges faster than those that are not optimized.

Fig. 7: Comparison of convergence speed of SVM

2) Improved algorithm for selection of the optimal feature
subset (FWP-SVM-GA-1):

The support vector machine (SVM) classifies datasets by
selecting important features. In this paper, based on the genetic
algorithm and support vector machine, 19 important features
are selected. From the experiments using these features, as
shown in Table V, it can be observed that feature selection
reduces the classification time and increases the classification

accuracy. The improvement in classification accuracy is due
to the elimination of confusion caused by irrelevant attributes
by reducing the features. In addition, because the number of
rules for decision making is reduced, the classification time is
reduced. The KDD Cup 99 datasets contain the features shown
in Table III. The features selected in this paper are shown in
Table IV.

TABLE III: Features of the KDD Cup 99 datasets

No. Feature name No. Feature name
1 duration 22 is guest login
2 protocol type 23 Count
3 service 24 serror rate
4 src byte 25 rerror rate
5 dst byte 26 same srv rate
6 flag 27 diff srv rate
7 land 28 srv count
8 wrong fragment 29 srv serror rate
9 urgent 30 srv rerror rate
10 hot 31 srv diff host rate
11 num failed logins 32 dst host count
12 logged in 33 dst host srv count
13 num compromised 34 dst host same srv count
14 root shell 35 dst host diff srv count
15 su attempted 36 dst host same src port rate
16 num root 37 dst host srv diff host rate
17 num file creations 38 dst host serror rate
18 num shells 39 dst host srv serror rate
19 num access shells 40 dst host rerror rate
20 num outbound cmds 41 dst host srv rerror rate
21 is hot login

3) Simulation results of improved fitness function when
selecting optimal feature subset:

The choice of the appropriate fitness function plays a highly
important role in the genetic algorithm (GA). The fitness
function locates the GA search strategy, which can obtain
the best solution in a large search space. The appropriate
fitness functions help the GA to explore the search space
more efficiently. In contrast, inappropriate fitness functions can
cause the GA to fall into local optima solutions easily and thus
lose the ability to explore. Compared with the fitness function
F-measure, the improved fitness function makes SVM obtain a
higher true positive rate (TPR), as shown in Fig. 8, and a lower
error rate (Error), as shown in Fig. 9, and the convergence rate
is also faster than that of the F-measure. As shown in Table VI,

TABLE IV: Feature selection based on GA and SVM

Selected features
duration,protocol type,dst byte,urgent,su attempted,num root,num file creations,
num access shells,num outbound cmds,is hot login,rerror rate,same srv rate,
srv count,srv serror rate,srv rerror rate,dst host diff srv count,
dst host srv diff host rate,dst host srv serror rate,dst host srv rerror rate

TABLE V: Comparison of support vector machine (SVM)
performance for selecting the optimal feature subset and not
selecting the optimal feature subset

Training set (10000)
Accuracy Classification time

SVM ( 41 features ) 0.9956 5.1875
FWP-SVM-GA-1

(19 features selected in this paper) 0.9975 5.0781
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TABLE VI: Support vector machine (SVM) performance
contrast between the fitness function proposed in this paper
and the fitness function F-measure when selecting the optimal
feature subset

Fitness function TPR Error Number of Iterations
F-measure 0.9066 0.041 18

Fitness function
proposed in this paper 0.9453 0.024 15

the fitness function proposed in this paper results in a SVM
final true positive rate of 94.53 %, an error rate of 2.4 %,
convergence algebra of 15, and the fitness function is the F-
measure (Eq. (10), Precision is obtained by Eq. (11). Recall is
obtained by Eq. (4)), making the SVM final true positive rate
90.66 % with an error rate of 4.1 %, and convergence algebra
of 18.

F − measure = 2 · Precision ·Recall
Precision+Recall

(10)

Precision =
TP

TP + FP
(11)

Fig. 8: Support vector machine (SVM) true positive rate (TPR)
contrast between the fitness function proposed in this paper
and the fitness function F-measure when selecting the optimal
feature subset

Fig. 9: Support vector machine (SVM) error rate (Error)
contrast between the fitness function proposed in this paper
and the fitness function F-measure when selecting the optimal
feature subset

TABLE VII: Comparison of performance between FWP-SVM-
GA and other algorithms

Algorithm DR FNR FPR
CSVAC [16] 94.86 1.00 6.01

HGA-SVM [13] 91.38 - -
GF-SVM [17] - 2.5 0.31

FWP-SVM-GA-1
( SVM performance of the

optimal feature subset is selected )
96.61 0.07 3.39

FWP-SVM-GA-2
( SVM performance in optimizing

feature weights and SVM parameters )
100 0.07 0

4) Performance of the improved intrusion detection
algorithms based on GA and SVM(FWP-SVM-GA):

In this paper, we propose two-step optimization of SVM
based on GA. The first step is to select the feature subset
(FWP-SVM-GA-1) that can result in the SVM with the max-
imum true positive rate and minimum error rate. The second
step is to optimize the selected feature weights and SVM
parameters (FWP-SVM-GA-2). Compared with the intrusion
detection algorithm, which is based on the ant colony network
and support vector machine (SVM) proposed in [16], the de-
tection rate (DR) of each step in the FWP-SVM-GA algorithm
is higher than that of CSVAC, and the false positive rate (FPR)
and false negative rate (FNR) of each step in the FWP-SVM-
GA algorithm are lower than those of CSVAC. Compared
with the support vector machine using the heuristic genetic
algorithm proposed in [13], the FWP-SVM-GA algorithm has
a higher detection rate for each step. Compared with the GF-
SVM algorithm proposed in [17], the final false positive rate
(FPR) and false negative rate (FNR) of the FWP-SVM-GA
algorithm are lower than those of GF-SVM, as shown in
Table VII.

The false positive rate (FPR) refers to the proportion of
samples that the classifier incorrectly predicts in all samples
for which the actual category is negative, and the calculation
formula is given as follows:

False positive rate (FPR) =
FP

FP + TN
(12)

The false negative rate (FNR) refers to the proportion of
samples that the classifier incorrectly predicts in all samples
for which the actual category is positive, and the calculation
formula is given as follows:

False negative rate (FNR) =
FN

TP + FN
(13)

The detection rate (DR) refers to the proportion of samples
that the classifier correctly classifies in all samples for which
the predict category is positive, and the calculation formula is
given as follows:

Detection rate (DR) =
TP

TP + FP
(14)
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VI. CONCLUSION

This paper proposes an alarm intrusion detection algorithm
(FWP-SVM-GA) based on the genetic algorithm (GA) and
support vector machine (SVM) algorithm for use in a human-
centered smart IDS. First, this paper makes effective use of the
GA population search strategy and the capability of informa-
tion exchange between individuals by optimizing the crossover
probability and mutation probability of GA. The convergence
of the algorithm is accelerated, and the training speed of the
SVM is improved. A new fitness function is proposed that
can decrease the SVM error rate and increase the true positive
rate. Finally, the kernel parameter γ, the penalty parameter C
and the feature weights are optimized simultaneously, and the
accuracy of SVM is improved. Simulation and experimental
results show that the improved intrusion detection technology
based on the genetic algorithm (GA) and support vector
machine (SVM) proposed in this paper increases the intrusion
detection rate, accuracy rate and true positive rate; decreases
the false positive rate; and reduces the SVM training time.
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