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Abstract— To ensure robustness in wireless networks, 

monitoring the network state, performance and 

functioning of the nodes and links is crucial, especially for 

critical applications. This paper targets Internet of Things 

(IoT) networks. In the IoT, devices (things) are vulnerable 

due to security risks from the Internet. Moreover, they are 

resource-constrained and connected via Lossy links. This 

work addresses the optimized scheduling of the monitoring 

role between the embedded devices in IoT networks. The 

objective is to minimize energy consumption and 

communication overhead of monitoring, for each node. 

Several subsets of the potential monitoring nodes are 

generated by solving a minimal Vertex Cover Problem 

with Constraint Generation. Assuming periodical 

functioning, Vertex Covers are optimally assigned to time 

periods in order to distribute the monitoring role 

throughout the entire network. The assignment of Vertex 

Covers to periods is modeled as a Multi-objective 

Generalized Assignment Problem. To further optimize the 

energy consumption of the monitors, they are sequenced 

across time periods to minimize the state transitions of 

nodes. This part of the problem is modeled as a Traveling 

Salesman Path Problem. The proposed model is tested on 

randomly generated instances and the experimental results 

illustrate its effectiveness to optimize the scheduled 

monitoring for fault tolerance in IoT networks. 
Index Terms— Energy-Efficient Monitoring, IoT, Generalized 

Assignment Problem, Robustness, Scheduling, Vertex Cover, 

Traveling Salesman Path Problem. 
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I. INTRODUCTION AND MOTIVATION 

HE Internet of Things (IoT) is a persistently growing 
network that seamlessly interconnects a tremendous 
number of heterogeneous, smart devices (things) with the 

Internet. The connection does not require human-to-human or 
human-to-computer interaction. The IoT adopts novel 
processing and communication architectures and technologies 
[2]. IoT systems can rely on Wireless Sensor Networks 
(WSNs) for data collection and their computational 
capabilities may be enhanced by employing cloud and 
fog/edge computing [3], [4]. As a result, numerous 
applications and services have been created; including smart 
cities, smart homes, smart grids, smart energy, smart 
agriculture, and environmental and health care monitoring [5].  

The availability of devices, the reliability of 
communication, the Quality of Service (QoS), and security are 
all essential for the utilization of the IoT. Over time, the state 
of devices and the overall network may depreciate. This is due 
to the challenging and failure-prone nature of the IoT; 
consisting of a huge number of heterogeneous and resource-
constrained things in terms of memory, energy and 
computational capability. Furthermore, energy constraints 
impose hard duty cycles to maximise longevity, which in turn 
causes unreliable connectivity [6].  In addition to unknown 
and dynamic network topologies, and unreliable connectivity, 
this leads to incomplete information about the current network 
state [39]. The situation is considered a form of entropy, 
where a system deteriorates unless effort is invested in the 
development of monitoring and correction mechanisms to 
maintain a fault-tolerant system's performance [7]. 

Fault tolerance can be tackled in the network deployment 
stage by guaranteeing full network coverage and connectivity 
[8]. In the network layer, multipath routing has a major role in 
fault tolerance. It utilizes the high density in node deployment 
to incorporate redundancy in routing paths; which in turn 
increases the chance of data delivery [9], [10]. Nevertheless, 
constant network monitoring and taking corrective measures 
in case of failures is still necessary. 

Consequently, the proliferation of IoT applications 
critically depends on effective monitoring methods and 
algorithms. To be effective, such methods and algorithms 
should do the following: (1) ensure robustness and fault-
tolerant operation of IoT ecosystems from end to end, (2) 
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guarantee good operation of sensors, (3) verify the correctness 
of the big data programming models and the availability of 
resources in the network, in addition to, (4) verifying fog/edge 
and cloud datacenters, despite the high risk of faulty and non-
deterministic environmental conditions. Thus, addressing 
monitoring for fault tolerance and prevention in complex IoT 
can significantly improve the functioning of the network and 
will eventually pave way for the wide deployment of IoT 
services. This problem is interesting for both research and 
industrial domains, particularly for mission-critical, time-
sensitive applications. Examples of such applications are 
critical control and fault detection, health monitoring and 
safety applications. Such applications require the availability, 
reliability, and the state of communicant objects to be 
constantly checked for fast restoration in cases of unexpected 
communication problems. 

The literature is rich with researches on monitoring WSNs 
[8], [11]–[14], but fewer researches tackled the problem of 
monitoring IoT networks. Obviously the large foundation built 
for WSNs paves the way for successful monitoring in the IoT. 
However, due to the intrinsic differences between the two 
paradigms, providing a monitoring system customized 
specifically for IoT networks and their standardized protocols 
is worth investigating. Therefore, this paper is motivated by 
the lack of research that has addressed monitoring IoT 
efficiently, in terms of energy consumption and 
communication overhead. 

The monitoring system operations allow continuous 
maintenance of the network state and the availability of 
components. The system needs to consider the resulting 
overhead on the network and minimize it. The ability to 
monitor a network in real-time with energy-efficient and 
dynamic algorithms helps in the early detection/prevention of 
faults. At the same time, the network is left unconstrained 
during normal operation. This objective is challenging, since 
network monitoring causes high energy losses due to the need 
for devices to be awake most of the time to maintain a correct 
network state [15]. On the other hand, the design of WSNs, 
and Low power and Lossy networks (LLNs), is ordinarily 
constrained by life span concerns. A prevalent approach 
towards expanding the life span of such networks is by using 
sleep scheduling. In sleep scheduling, nodes enter sleep state 
frequently, and intermittently wake up to check for action in 
the network [16], [17]. For critical and time-sensitive IoT 
applications, monitoring needs to be continuous regardless of 
the lack of activity in the network. Therefore, while employing 
monitoring with sleep scheduling, it is required to guarantee 
that each link in the network is always monitored by at least 
one monitoring node throughout the network lifetime. 
Ignoring the monitoring overhead may lead to increased 
congestion in the network at critical times, or battery drainage. 
These situations violate the requirements of mission-critical, 
time-sensitive IoT applications.  

This paper investigates the optimized scheduling of the 
monitoring role of nodes in IoT networks. The problem is 
represented through a mathematical model. The developed 
model corresponds to a multi-objective optimization of the 
energy consumption and the overall communication overhead 

of monitoring the network. The proposed model is 
decomposed into a three-phase framework. The first phase 
requires generating multiple subsets of the nodes that cover 
the entire graph. These subsets are generated by solving a 
Vertex Cover Problem iteratively; while incorporating a 
Constraint Generation algorithm. Furthermore, an optimized 
scheduling of the Vertex Covers is proposed. The scheduling 
aims to minimize the energy and communication costs 
incurred while monitoring the network. QoS-aware monitoring 
is targeted where constraints are used to include/eliminate the 
nodes that can/cannot withstand the energy requirements of 
monitoring. The scheduling is addressed in the second and 
third phases of the computation, which are modeled as a 
Multi-objective Generalized Assignment Problem and a 
Traveling Salesman Path Problem, respectively. To verify the 
effectiveness of the proposed model, a branch-and-bound 
(BB) algorithm is used for the first and second phases and a 
dynamic programming algorithm is used for the third phase. 
This contribution is a step towards achieving optimized 
monitoring for improved robustness and fault tolerance. The 
monitoring process is performed with minimal energy 
consumption and communication overhead while providing 
load balancing. This is important for mission-critical IoT 
applications.  

The rest of the paper is organized as follows: Section II 
discusses literature related to network monitoring in the IoT 
and WSNs. Section III is a description of the problem 
statement. Section IV presents the modeling of the monitoring 
optimization. Section V presents the mathematical formulation 
of the proposed framework, followed by implementation and 
analysis in Sections VI and VII, respectively. The conclusions 
and future research are presented in Section VIII. 

II. RELATED WORK 

Several applications of the IoT are known for area, object, 
and health monitoring [18]–[20]. This research targets 
monitoring the IoT network itself (hereinafter referred to as 
network monitoring). Algorithms are developed for ensuring a 
reliable and fault-tolerant operation of the network. Fault 
tolerance can be addressed in each of the network (routing) 
layer, transport layer or application layer [8]. Focusing on the 
network layer, the objective is to provide stable, reliable and 
scalable end-to-end connectivity.  

Extensive work had been proposed in the literature to 
address the problem of network monitoring for fault tolerance 
in WSNs [11]–[14], [21]. Swain et al. in [11] proposed a 
clustering framework for fault diagnosis to balance the load 
and minimize the energy consumption. The authors used a 
statistical mechanism for fault detection and neural networks 
for fault classification. Panda et al. [12] proposed a statistical-
based, distributed fault diagnosis algorithm. Coordination 
between neighboring nodes was used in the fault diagnosis to 
minimize the communication overhead. Khan et al. [13], on 
the other hand, proposed a fault detection strategy for WSNs 
based on a fuzzy inference system.  

Most of the proposed techniques are considered to be either 
active or passive monitoring [8], [22]. Active monitoring 
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injects probes into the network to infer the network’s 
performance from the measured parameters (such as delays 
and packet losses). Alternatively, passive monitoring observes 
the traffic that normally passes through the network and infers 
the network’s performance from it. Examples of active and 
passive monitoring for WSNs are found in [14] and [21], 
respectively. 

Given that the design of WSN, and Low power and Lossy 
Networks (LLNs) is always constrained by life span concerns, 
prolonging the lifetime of the nodes has become a problem of 
paramount importance. The problem is called in the literature 
the Maximum Lifetime Problem (MLP). Cardei et al. [23] 
proved that MLP is NP-Complete. Since monitoring uses the 
energy of the nodes, this additional activity should be 
minimized to prolong the network lifetime as much as 
possible. 

Lifetime maximization can be reached by using the high 
redundancy feature in node deployment, specifically, by 
collecting the nodes into subsets known as covers. Each target 
must be monitored by at least one sensor in the cover. 
Extending the network lifetime can be achieved by scheduling 
between these covers, where the monitoring role is alternated 
between different subsets.  The sensors that are not currently 
monitoring switch to a sleep state where the energy 
consumption is minimal. The total energy consumption of a 
node must be at most equal to its initial energy. Several 
propositions were formulated in the literature to address MLP 
and problem variations [5], [17], [24], [25]. 

Although the literature is rich with many researches on 
monitoring in WSNs [8], [11]–[14], [48], most of the 
researches proposed for WSNs are based on the assumptions 
that the network does not have a central controlling node, and 
that nodes are not associated with a unique global address 
[26].  On the other hand, IoT networks always include a 
central control device, known as the Border Router (BR), 
which connects 6LoWPAN networks with the Internet. The 
BR is assumed to be always accessible [29], [30], therefore it 
is capable of performing a crucial role in monitoring. 
Moreover, nodes are globally identified by an IP address 
which facilitates active monitoring when checking the 
availability of networks' components, where communication 
has not been established for long times. The full integration 
with the internet infrastructure and cloud services further 
enhances the computation capabilities of IoT networks, which 
could also be beneficial for monitoring.  

Despite these favorable characteristics, ensuring a reliable, 
fault-tolerant communication for IoT networks remains a 
challenging task for the following reasons: (1) The IoT is 
enabled by resource-constrained and heterogeneous things that 
are connected to the insecure Internet. (2) The utilized 
protocols need to be optimized to minimize the overhead on 
the constrained things. (3) Things are globally accessible 
which imposes a huge security risk from the Internet. (4) The 
communication is unreliable as they are connected through 
Lossy links [26]. (5) Furthermore, there are challenges 
imposed due to node mobility and the dynamic and uncertain 

environmental conditions.  
To enable the IoT, the Internet Engineering Task Force 

(IETF) working group has defined IPv6 over LoWPANs 
(6LoWPAN) [29]. It was promised to provide end-to-end 
connectivity, ubiquity, and scalability. However, due to the 
resource-constrained nature of the nodes, crucial IP protocols 
that are usually incorporated for network monitoring cannot be 
supported by such nodes. Therefore, extra effort has to be 
spent to address optimized network monitoring for IoT 
networks. Several recent works were proposed to answer to 
the security requirements of the IoT [26]–[28]. For instance, 
Raza et al. [26] developed an intrusion detection system to 
catch routing attacks in the IoT. Giuliano et al. [27] proposed 
a key renewal algorithm for the secure access of devices.  

Additionally, The IETF working group standardized the 
Routing Protocol for Low Power and Lossy Networks (RPL). 
It is considered to be the de facto routing protocol for IP-
connected IoT [29], [30]. It was developed as a response to the 
routing requirements of LLNs [31]. Multipath routing as well 
as local and global routing structure repair mechanisms were 
proposed to handle unreliable connectivity in IP-connected 
IoT. Multipath routing utilizes the high density in node 
deployment to incorporate redundancy in routing paths. It 
contributes to fault tolerance as it facilitates the recovery of 
the routing structure in case of link failures which increases 
the chance of data delivery and provides load balancing [8]– 
10].  

RPL repair mechanisms are considered to be reactive to 
node or link failures. Consequently, delays in communications 
and nodes unreachability are expected for some time (possibly 
for several minutes) [32]. Such delays are unacceptable for 
critical, time-sensitive IoT applications. Thus, network 
monitoring is a requirement. It is imperative, and yet 
challenging, to develop monitoring systems compatible with 
these standards and adapted to the mentioned challenges and 
characteristics. This led to development of a monitor 
placement algorithm that works in tandem with RPL  in 
[1].The algorithm is modeled as a classical minimum Vertex 
Cover Problem (VCP) that works in tandem with IPv6 
Routing Protocol for Low Power and Lossy Networks (RPL) 
The VCP works on the Destination Oriented Directed Acyclic 
Graphs (DODAG) constructed by RPL. A polynomial-time 
algorithm that converts the DODAG into a nice-tree 
decomposition with unity treewidth was developed in [1]. This 
strategy yielded a significant reduction in the complexity of 
solving the originally NP-hard VCP on generic graphs to be 
only polynomial-time solvable on DODAGs. In this work, an 
energy-efficient monitoring algorithm is proposed to maintain 
reliable network structure, while minimizing the overhead 
monitoring imposes on the network. 

III. PROBLEM STATEMENT 

The problem addressed is the efficient, full monitor 
coverage in RPL-based 6LoWPAN networks for a 
predetermined lifetime, considering minimum energy 
consumption and communication overhead. In RPL, the BR is 
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responsible for the DODAG construction, which starts by 
broadcasting a DODAG Information Object (DIO) [30]. The 
DIO contains the configuration of the DODAG. The objective 
of this work is to continuously test the availability and correct 
functioning of neighboring nodes by monitoring the status of 
the entire set of links present in the network.  

Monitoring can be performed inside RPL by including a 
header in the DIO for metrics and constraints objects. This 
header is called DAG Metric Container object. Node Energy 
and Link Reliability are examples of the metrics/constraints 
that could be included in the DAG Metric Container object 
[33].  When the DIO traverses the DAG, each node augments 
a sub-object to the message, which expresses its value to the 
metric used. The monitored nodes will unicast their responses 
of the DIOs to their monitors. Monitors are the nodes 
responsible for gathering the monitoring data and reporting 
back to the BR, through multi-hop communication. The BR 
then sends this information to the Networks Operations Center 
(NOC) where data analysis is performed. 

It is assumed that a link can only be monitored by its 
extremities (i.e., endpoints). Also, each node has several 
activities independent from monitoring; therefore, the 
monitoring activity cannot consume more than a specified 
limited power (fraction of a node's battery). The intrinsic 
energy limitations of the resource-constrained things in IoT 
networks need to be taken into consideration. This is because a 
monitor cannot continuously monitor its neighbours without 
running out of the battery reserved for monitoring.  

As mentioned in Section I, sleep scheduling is usually 
incorporated in WSNs and LLNs to reduce average power 
consumption and maximize longevity. This is often achieved 
by duty cycling between active and sleep states of the nodes. 
Hence, in order to achieve continuous monitoring, it is 
imperative to alternate the monitoring duty between several 
sets of nodes, while ensuring that each set is capable of 
covering the entire network. It should be noted that the 
active/sleep alternation addressed in this context is the turn 
on/off of the monitoring activity of the node, regardless of the 
other activities a node may perform (sensing, transmitting of 
sensed data, etc.). To realize this alternation, the monitoring 
function is periodical across the planning horizon. The 
planning horizon is the pre-determined lifetime specified by 
the NOC in which all edges are being monitored. The NOC is 
responsible for planning the optimized periodic monitor 
scheduling. Therefore, the optimization is external from the 
resource-constrained things.  At any time interval, the active 
node set is known from the DODAG. 

Usually, the cost of monitoring a network includes a 
monitor deployment cost and an operational cost [34]. The 
deployment cost is the hardware cost of deploying monitoring 
nodes. For the problem in hand, the operational cost is the 
network overhead resulting from the communications between 
the monitoring devices and the Border Router. The monitors 
are ultimately transmitting the gathered information about the 
monitored nodes to the root of the DODAG. The transmission 
is done through multi-hop communication. Consequently, the 

Fig. 1.  The energy model: (a) Before active time periods merged, (b) After 
active time periods merged [10]. 

 
longer the path to the root in number of hops, the higher is the 
cost. Moreover, the monitoring activity consumes a percentage 
from the battery reserved for monitoring. This work aims to 
minimize the monitoring costs in terms of communication and 
energy costs. 

As mentioned above, in sleep scheduling, a node assumes 
different states: active state, sleep state, or transient state (from 
active to sleep and vice versa). The energy consumption 
during the transient state can be high [35], and numerous state 
transitions for the nodes consume extra energy (Fig.  1(a)). 
Consequently, the energy consumption of the monitors could 
further be minimized if the time periods where a node is 
actively monitoring are merged together (Fig.  1(b)). To that 
end, it is required to find the optimal sequencing between the 
sets of monitors across the time periods in a way that 
minimizes the state transitions of nodes. The modeling and 
mathematical formulation of the monitoring optimization are 
discussed in the following section. 

IV. MODELING OF MONITORING OPTIMIZATION 

The IoT network could be represented by its logical graph 
constructed by the routing protocol RPL, namely the DODAG 
[18], [19]. Consider an active DODAG D = (V, E) where V 
represents all the vertices, � = {��, k = 1, 2,..., q} and E is the 
set of edges. For monitoring a time horizon T = {��, j = 1,..., 

n}, the duty is cycled between several sets of nodes; each node 
has a reserved battery for monitoring( 	
�
��

_����
���). 
The monitoring activity for one period consumes energy (��). 
During the lifetime of monitoring, communication and 
transition costs are incurred. The communication cost is the 
cost of transferring the monitoring data to the BR. Transition 
cost is the cost of alternating from one set of monitors to 
another. The objective is to minimize the overall monitoring 
costs while ensuring monitor coverage of the entire DODAG 
throughout the planning horizon.  

Scheduling between several sets of monitors for minimum 
energy consumption is an NP-hard problem. This remains true 

even in the very special case, where, the  	
�
��

_����
��� 
for monitoring is sufficiently large such that, one set of 
monitors can cover the entire planning horizon. Finding the 
minimum set of vertices to cover an entire graph is also NP-
hard [36], [37].  
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Fig.   2.  Phases of the Monitoring Optimization. 

 To the best of our knowledge, the exact solution to the 
defined problem is not known. In this work, a three-phase 
decomposition of the problem (Fig.  2) is proposed. The three 
proposed phases are modeled using well-known optimization 
problems in the literature. Although these problems are NP-
hard in nature, approximation algorithms to solve them are 
available in the literature (cf. in [36]–[39]). Moreover, 
decomposing the original problem allows a finer reduction of 
the search space and, hence, reduction in the solution's 
complexity. 

The first phase (Phase I) of the proposed decomposition is 
responsible for creating multiple sets of monitoring nodes. 
Each set satisfies the coverage requirements of the network. 
Phase I can be modeled as a Vertex Cover Problem (VCP) 
[40]. The objective is to find the minimal sets of vertices that 
cover all the edges in the graph. The graph used in this work, 
is the DODAG constructed by RPL [29], [30].  Only minimal 
Vertex Cover sets are interesting for monitoring. If a node set 
is not minimal for the VCP then it contains a subset which is 
minimal and can cover all the edges with less cost. 

As described in Section III, several monitoring sets 
(Vertex Covers) are required to achieve monitor scheduling 
while minimizing and balancing the energy consumption of 
the monitors. For this purpose, an algorithm (Algorithm 1) is 
developed to get multiple solutions of the same VCP, after 
incrementally adding new constraints to reduce the search 
space. Reducing the search space through incrementally 
adding new constraints is known as the Constraint Generation 
approach [41].  

The output of Phase I is several sets of Vertex Covers. The 
working schedule of the Vertex Covers across the planning 
horizon is still required. Given a planning horizon (defined by 
the NOC), divided into several time periods, the purpose of 
Phase II is to optimally assign (a subset of) the Vertex Covers 
to each of the time periods with the following objectives: 

1) the total energy consumed for monitoring is minimized, 
and 

2) the communication cost across all Vertex Covers is 
minimized.  

Phase II is modeled as a Generalized Assignment Problem 
(GAP) [42]. GAP is a special type of optimization problems 
where agents are assigned to perform multiple tasks (Fig. 3). 
For the problem in hand, agents are the Vertex Cover sets (or a 
subset of them) that should be assigned to time periods.  

 The last phase, Phase III, is sequencing the Vertex Covers 
with the objective of minimizing nodes' state transitions from 
one period to the next. The sequence generated determines the 

Fig.   3. Assignment of Vertex Covers i to periods j 

number of times a node's state is being changed from asleep to 
awake and vice versa. Phase III is modeled as a Traveling 
Salesman Path Problem (TSP Path) [43]. We are interested in 
finding the minimum weighted Hamiltonian Path (in terms of 
nodes state transitions) from an arbitrary starting point. A 
Hamiltonian Path (HP) is a path that visits each vertex exactly 
once without the need to return to the starting vertex [47]. The 
vertices in this case are the selected Vertex Covers from Phase 
II. The starting vertex of the HP is completely arbitrary. The 
edges represent the transition costs. The result (the path) gives 
the optimal sequence (scheduling) of the selected VCs. 

V. MATHEMATICAL FORMULATION OF MONITORING 

OPTIMIZATION 

The three phases include the following sets: 

1) Set �: represents all the vertices in the DODAG where 
� = {��, k = 1, 2,..., q}.  

2) Set �: represents all the Vertex Covers �� obtain-ed from 
Phase I, where Subset �� ⊂ � represents the subset of 
monitoring nodes and � = { ��� , � =1,2,...,m} 

3) Set T: contains the disjoint time periods covering the entire 
planning horizon; which the Vertex Covers are assigned 
to monitor. T = {��, j = 1,..., n}. 

A. Phase I: Generating Multiple Vertex Covers 

Let D = (V, E) be the DODAG where V is the set of vertices 
and E is the set of edges. A subset �� ⊂ V is a minimal 
Vertex Cover of D if for every edge (u, �) ∈ E, either u ∈ �� 
or v ∈ �� or both u, v ∈ �� and �� is irreducible, i.e. no 
vertex can be removed from the VC without losing the 
coverage property. 

Phase I computes set � which includes the m Vertex Covers 
such that for each edge in the DODAG at least one of its 
endpoints belongs to ��� .  Moreover, no Vertex Cover in  � 
should be a subset of another such that:  

∀ ��� ⊂  �, ∄ ��"  ⊂  � | ��� ⊂  ��"                         (1) 

 Let the decision variables �� express whether the vertex �� is 
in the Vertex Cover or not. The objective is to minimize the 
total number of vertices in the Vertex Cover, subject to the 
constraint that at least one vertex of the edge (��, �") is a 
member of the ��. The problem is the binary optimization 
problem represented by Model 1. 
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The binary integer program in Model 1 is solved to get the 
minimum set of monitors, i.e. the minimum Vertex Cover.  In 
order to obtain multiple Vertex Covers, Algorithm 1 is used to 
solve the VCP iteratively. Each VC obtained using Algorithm 
1 satisfies the constraints of Model 1. 

Algorithm 1 works as follows: construct a matrix M where 
all solutions of the VCP are stored, and a z vector which 
contains the corresponding objective function value to each 
solution in M. Initially, M contains the optimum solution 
obtained after solving Model 1 using branch-and-bound 
algorithm, and z stores the minimum VC.  

Then, the VCP is solved iteratively after adjusting the 
integer program by adding previous solutions to the set of 
constraints, thereby reducing the search space. The algorithm 
terminates when no other feasible minimal Vertex Covers can 
be found. In each iteration, a column representing the new 
solution, which has a cardinality greater than or equal to the 
previous solution, is appended to matrix M and the 
corresponding objective function value is added to the & 
vector, such that: 

��� ' * M  < z (6) 

To illustrate, let the initial solution be ��(, and the 
corresponding objective function value be &%. To obtain ��), 
solve the integer program A x ≤ b after adding the following 
constraint to the matrix of constraints (A) and the vector of 
RHS (b) : 

 

��$ '   *��( <  &% 
 

(7) 
 

In this way, to solve for ��+ the following two constraints are 
appended: 

��, '  * ��( <  &% 

 
(8) 

��, '  * ��) <  &$ (9) 

To solve for  ��-  the following  (� − %) constraints are 
appended: 

     ��� '  * ��( <  &% (10) 

.  

. 

. 

 

��� ' * ��-/( < &�/% (11) 

B. Phase II: Assigning Time Periods to Vertex Covers 

In Phase II, the planning horizon is divided into several 
periods. Then, a mathematical model is developed to 
optimally associate the Vertex Covers to periods throughout 
the planning horizon. The assignment does not define any 
ordering or sequencing of the time periods. Given a planning 
horizon denoted by T = {'" , j = 1,…, n}, define a binary 
decision variable ��" that indicates whether a Vertex Cover 
���  is assigned to monitor a period '" (refer to (14)). 
Assumptions:  
1) any node can be selected as monitor, 
2) a node may be a member of several Vertex Covers, 
3) some Vertex Covers may monitor one period, more than 

one period, or none at all, 
4) each period is to be assigned exactly one Vertex Cover, 

and 
5) the monitoring cost is defined in terms of the 

communication cost incurred by monitors and the energy 
loss due to monitoring. 

Any node �0 may be a member of several Vertex Covers. 
The current �12�3�

_
2
�4��  of node �0 is calculated 
using (15). Equation 15 states that: the current 
�12�3�

_
2
�4��  for monitoring, depends on the number 
of times a Vertex Cover set, including �0, has been assigned 
to a period, multiplied by the energy loss (��) per each 
monitoring period. The energy loss is the same for each active 
monitor and for each period. In (12), a binary variable �0�  is 
defined, which indicates whether a vertex �� is a member of 
Vertex Cover ��� or not. The variable �0�  is the output of 
Phase I, and hence it is a parameter in Phase II.  When �0�  is 
multiplied by ��" and summed over the Vertex Covers and the 
periods, the result is the number of times a vertex �� has been 
assigned to monitor a period (refer to (15)).  
 

 

MODEL 1: MINIMUM VERTEX COVER PROBLEM 

 

Decision Variables 

Let ��=  5%, if �� is chosen in a Vertex Cover
E,        if �� is not chosen in a Vertex Cover 

 
 
(2) 

Model Equations  

Minimize             ∑ ��
G
HI%             

 

Subject to           �J + �L  ≥ 1   ∀ ( �J, �L) ∈ E 

             
            �� ∈ { 0, 1 }    ∀ �� ∈ O 

 

(3) 
 
 
(4) 
 
(5) 

 

ALGORITHM 1: VCP WITH CONSTRAINT GENERATION 

 

Input:  

  DODAG DDDD,  

 Initial solution  ��� , initial matrix of constraints A, 
vector of RHS b, and the initial value of the 
objective function zzzz. 

Output:     
 Matrix of solutions    MMMM 

 

Step 1 While (feasible minimal  ��  do exist) do 

 Step 1.1     MMMM            ���  
 Step 1.2 A              A + ���' 

 Step 1.3  b             b + ( &i - 1) 

 Step 1.4   i             i +1 

 Step 1.5  (���  , &) = VCP (A, b ) 

         END While 

Step 2    Return MMMM 

END  
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Energy is lost due to communication between the 
monitoring devices and the Border Router. This is because the 
monitors are ultimately transmitting the gathered information 
about the monitored nodes to the root of the DODAG. The 
energy lost for communicating the monitoring data is not part 
of the 	
�
��

_����
��� for monitoring. On the other hand, 
this energy loss affects the rest of the battery that is not 
dedicated to monitoring. Accordingly, it is necessary to find 
the shortest path, in terms of the number of hops to the BR. 
The objectives in Phase II are twofold (refer to (16) – (18)). At  

Fig. 4.  A DODAG of a network with 100 nodes and 234 links. Node number 
1 is the root. 

 
this stage, it is required to determine how all assignments 
should be made while minimizing the total number of hop 
counts travelled by all members of the Vertex Covers. This is 
done while minimizing the total energy spent for all nodes. 
Equation (12) denotes the number of hops travelled from each 
monitoring node �� in ��� to the root as S�, and (13) denotes 
the total number of hops travelled by all �� in ��� as T�. 
Constraint (19) indicates that each period must be monitored 
by one Vertex Cover. Constraint (20) ensures that the energy 
consumed for monitoring never exceeds the 
(	
�
��

_����
���). 

C. Phase III: Sequencing Between Assigned Vertex Covers 

The objective of Phase III is to minimize the nodes' state 
transitions from one Vertex Cover to the next. If a node �� 
belongs to more than one Vertex Cover set ��� ,  
the model associates consecutive periods to the Vertex Cover 
sets containing the repeated node. Accordingly, the number of 
times a node needs to start up to perform its assigned 
monitoring is minimized. This Phase is  
modeled as TSP Path. Details of the TSP Path are shown in 
Model 3, where the Miller, Tucker and Zemlin (MTZ)  
mathematical formulation [38] is adopted. The decision 
variables and parameters are adjusted to in Model 3 such that: 
• the cities here are the unique Vertex Cover sets assigned 

to periods T = {��, j = 1, . . ., n}, i.e. the  
unique results from the previous assignment model 
(Model 2), 

• define a binary decision variable U�� denoting whether ��� 
is selected in the path after ��� (23),  

• a feasible solution is a path (Hamiltonian Path) that passes 
through each set exactly once (25) and (26), 

• number of state transitions of the members of the sets, 
from active to sleep and vice versa (22), 

• the cost (distance)  ��" of moving from one city (Vertex 
Cover set) to the next, from ��� to ���, is the total 

 

MODEL 2: GENARALIZED ASSIGNMENT PROBLEM 
 

` 

Parameters: 
 

 

�0� =   51, �V ��  ∈  ��� 
0, XYℎ[\]�^[  

(12) 
 
 

 S� 

 

Number of hops travelled from each 
�� in ���to the root of the DODAG 
 

 

T� Total number of hops travelled by all 
�0  in ��� 

 
 
(13)  = ∑(_HJ  ∗   S�)    ∀ H ∈ O  

 

��   Energy  loss  per each monitoring 
period assigned for �� 

 

 

	
�
��

_����
��� Maximum battery allowed for 
monitoring  

 
 

Decision Variables: 

 

  

Let ��" =      51, if ���  is assigned to period j
0, XYℎ[\]�^[  

 

(14) 

Auxiliary Variables: 

 

  

�12�3�

_
2
�4��  = ��*( ∑ ∑ ��� ∗ ��"2"I%��I% ) (15) 
 

Objective Functions: 

 

 

F1: Total  energy loss 

e% =  ∑ �12�3�

_
2
�4���∈�  

 
(16) 
 
 

F2 :Total number of hops across all periods 

F2 = ∑ ∑ (T�) ∗ ��"2"I%��I%  

 
 
(17) 

Model Equations:  
 

Minimize    F1 &  F2 (18) 
Subject to:  

 
 

f ��"
�

�I%
= % , ∀ " ∈ g, 

 
 
(19) 
 

hijklmno_njnpq_H  ≤  	
�
��

_����
��� ∀ � ∈ O  
(20) 
 

��"  ∈ {0, 1} ∀ �, " (21) 
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• the objective is to find the least costly sequence of Vertex 

Covers over the planning horizon (24), and  
• extra variables 3� are required for subtour elimination, in 

the constraints expressed in (27) and (28). 

VI.  IMPLEMENTATION AND ANALYSIS 

A.  Problem Resolution & Implementation  

Solving the problem starts with Phase I by generating a 
DODAG and outputs matrix M. Multiple solutions of the 
Vertex Cover Problem are stored in matrix M. Algorithm 1 
runs until no more feasible minimal VCs exist. However, for 
experimentation purposes, it has been shown to suffice to loop 
any number of times between the range [1.5|T| – 3|T|]. This 
range denotes the required number of Vertex Covers  
(θ).Analytical simulation is conducted for networks of 50, 
100, 150 and 200 nodes with varying numbers of links. Table 
I shows the characteristics of the corresponding DODAGs, a 
summary of the results of the three phases for 8 different 
DODAGs, as well as the metrics used for evaluation. 
DODAGs are constructed such that there is a root (BR) and 
each node has at least one path towards it. The edges on the 
DODAGs are constructed by randomly generating (x, y) 
positions of each node in a unit square (units do not matter in 
the graph). The distance between every two nodes is 
measured; if it is less than a certain Threshold parameter then 
the two nodes are connected. 

By varying the Threshold parameter, in the range [0 – 1], 
the DODAG gets sparser or denser. Fig.  4 shows an example  

Fig. 5.  Effect of varying the density of the DODAG on the percentage  of 
monitors. 

of a DODAG with 100 nodes and a Threshold of 0.09, which 
gives 234 links. Varying the density of the graph affects the 
number of nodes required to monitor the entire DODAG. Fig.  
5 depicts the effect of varying the density of a DODAG, with 
100 nodes, on the percentage of monitors. It is evident that the 
more the number of communication links between the nodes, 
the more monitors are required.  

Throughout the entire set of experiments, it is assumed 
that the planning horizon T is divided into 10 time periods, 
and that the energy loss ��  per monitoring period assigned 
for �� is 2% of its total energy. Running Phase I with 
DODAG number 3 in Table I, for example, (DODAG shown 
in fig.  4), outputs matrix M which includes 15 different 
Vertex Covers (��% ,...,��%s). M is the input of the multi-
objective Generalized Assignment Problem in Phase II. 

As mentioned in Section III, the model in Phase II a Multi-
objective Mathematical Programming (MMP) problem. There 
are several approaches to solving MMP problems in the 
literature. This research adopts the ε-constraint method. This 
is due to its several advantages over its rivals [44]. In the ε-
constraint approach, only one objective function is optimized, 
whereas the others are added to the constraints. Pareto- 
efficient solutions are achieved by varying the right hand side 
of the constrained objective functions. 

Although it is widely used, the ε-constraint method has its 
disadvantages. First of all, it is required to calculate the range 
of every objective function used as a constraint. The usual 
way is to build a payoff table. It includes the optimal solution 
for each objective function optimized individually. There is no 
guarantee that these optimal solutions are indeed non-
dominated solutions [45]. Another weak point is that the 
optimal solution is not guaranteed to be an efficient solution if 
there are alternative optima. To overcome some of the 
limitations of the ε-constraint approach, (AUGMECON) [45] 
was developed.  

AUGMECON guarantees the Pareto-efficiency of the  

 

       
MODEL 3: TRAVELING SALESMAN PATH PROBLEM 
 

 

Parameters 

 

 

      Let ��" =  ∑ ����
'��2����12��" 
 

(22) 

Decision Variables  
 Let  U��    

= 51, �V ��" is chosen for monitoring after ��� 
0, XYℎ[\]�^[  

 
 

 
 
(23) 

Model Equations  
          

Minimize   
                  

    ∑ ∑ ��" U�"2"u�,"I%2�IE  

 
(24) 

Subject to 

 
f U�"

2

�IE,   �u"
= %        ∀  " 

 
(25) 

 
f U�"

2

"IE,   �u"
= %       ∀ � 

 

 
(26) 

 3� −  3" + (2 − %) U�" ≤  j −  $,
J, L = $ , … , 2,   i≠ "  

(27) 
 

 % ≤ 3� ≤ 2 − %            J =  $, . . . , j    (28) 

0
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TABLE I. SUMMARY OF EXPERIMENTAL RESULTS 

|T| = 10, y- = 2%, z[^[\�[{_|}YY[\~0 = 50% , ���Y�}�_|}YY[\~0  = 
100. 

  

 

solutions by using lexicographic optimization1 of the objective 
functions. Therefore, the augmented ε-constraint method 
(AUGMECON) is implemented in this work. Through using 
AUGMECON method for Phase II, the output is the scheduled 
assignment of the Vertex Covers over the periods, which is 
represented by a binary decision variable s��.  

Input to Phase III is the unique Vertex Covers assigned to 
monitoring in Phase II. Output of Phase III is the sequence 
that minimizes the total number of state transitions of the 
nodes. The sequence is generated using a dynamic 
programming implementation of the Traveling Salesman Path 
Problem.  Fig.  6 shows a comparison between the sequencing 
of the Vertex Covers assigned in Phase II (Fig. 6(a)) on 
DODAG number 3, and the sequence after solving the TSP 
Path of Phase III (Fig. 6(b)). The new sequence reduces the 
total number of state transitions by 70%. 

B. Performance Evaluation 

The experiments were performed on a personal computer 
with 8gigabite RAM and an Intel Core i7 processor @2.20  
gigahertz. Considering the problem formulations presented in  
Section V, the metrics used for evaluation (shown in Table I) 
are: 

1) percentage of nodes selected as monitoring nodes, 
2) average residual energy among monitors, and 

 
1 Lexicographic optimization is the sequential optimization of multiple 
objective functions; by optimizing one function and from the pool of 
alternative optima sequentially optimize the next. 

 

 

 

 

 

 

3) percentage of reduction in the nodes' state transitions. 

The originality of this work is mainly in the proper 
modeling of the defined problem. Modeling the monitor 
selection problem as VCP in Phase I guarantees optimal 
monitor placement to cover the entire set of links. 
Simultaneously, the percentage of deployed monitors is 
relatively small, (52% - 66%, depending on the density of the 
network). Consequently, it is possible to identify fine-grained 
performance link metrics, where monitors send passive probes 
in an end-to-end approach.  This leads to reducing the need for 
active probes; thus less monitoring overhead. In addition, 
active probes can be used when needed, to check the 
availability of network parts where communication has not 
been established for long times. Moreover, the proposition in 
Phase II is able to optimally  assign monitors to periods with 
minimum energy consumption, depending on the number of 
periods (|T|), the energy loss per period (��), and the reserved 
battery per node (	
�
��

_����
���). The values of the 
parameters used for the test instances have been chosen 
arbitrarily. This is because the main overriding objective of 
this paper is to emphasize that energy-efficient solution  
methods for this difficult problem do exist. That being said, it 
can be seen that, after setting the parameters to the values: (|T|  
= 10, �� = 2%, 	
�
��

_����
���= 50% and  
�2�����_ ����
���= 100%), the average residual battery 
throughout the 8 instances depicted in Table I is in the range 
[86% – 98%].  

It is interesting to emphasize that when the battery dedicated 
for monitoring is sufficiently large, fewer Vertex Covers are 
assigned to periods and less monitor scheduling is required.  

Instance Nodes Links Threshold %monitors Avg. 

residual 
battery (%) 

Running time (sec) %Reduction in 

nodes' state 
transitions 

 Phase I Phase II Phase III 

1 50 123 0.125 60 86.0 0.83 3 0.001 66.6 

2 50 104 0.09 52 89.8 0.46 2 0.001 67.0 

3 100 234 0.09 55 88.8 2.02 2 0.001 70.0 
 

4 100 347 0.125 66 86.6 9.71 600 0.001 80.8 

5 150 380 0.09 62 87.5 48.9 591 0.001 70.2 

6 150 407 0.125 57 87.5 21.5 523 0.001 52.9 

7 200 383 0.06 54 98.0 22.98 534 0.001 80.0 

8 200 576 0.08 63 87.3 30.06 300 0.001 0.00 
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(a) 

 

(b) 

     Fig.  6.  Assignment of Vertex Covers: Before TSP (a), After TSP (b). 

On the other hand, when the 	
�
��

_����
��� is relatively 
small, more Vertex Covers are required to monitor the same 
number of periods and scheduling for minimal energy 
consumption is critical. Fig.  7 shows the minimum,  
average, and maximum remaining (residual) battery after 
monitoring for a network of 50, 100, 150 and 200 nodes. For 
y-  = 2%, the minimum residual battery does not fall below  
80% and the average residual battery is between the range 
[83% – 90%]. Also, when the model was tested without 
running Phase I, all the nodes were assigned to monitoring. 

Fig.  7. Residual battery after monitoring for different-sized networks. 

 

 
Fig.  8. Average residual battery after monitoring for a network of 200 nodes 
and varying number of links. 

Consequently, the nodes’ battery level dropped to the 
minimum level. Fig.  8, emphasizes the model’s capability of 
monitoring a dense network of 200 nodes with increasing 
number of links, without depleting the nodes’ reserved battery 
for monitoring. The figure shows that the density of the 
network grows up to 2463 links and yet the average residual 
battery is in the range [82% – 98%].  

The results after solving the TSP Path, for the optimal 
sequencing of the Vertex Covers across the time periods, are 
very promising. The model is both effective and efficient in 
reducing the state transitions of nodes up to 80%. It is worth 
mentioning that in some instances, like DODAG number 8 in 
Table I, the solution from Phase II is already optimum with 
respect to the number of state transitions Therefore, the 
percentage reduction of state transitions after the TSP Path is 
sometimes zero. 

VII. COMPLEXITY ANALYSIS 

The proposed model's time complexity depends on several 
factors: 
1) |�|: size of the DODAG, in terms of the number of nodes,  
2) |M |: number of  Vertex Covers obtained from Phase I, 
3) |T|: number of periods in the planning horizon, and 
4) u: number of unique Vertex Covers assigned to monitor 

the periods (solution of Phase II). 
 

Lemma 1: Phase I has a time complexity of O($|�| . |�|2 ). 

 
Proof: The Integer Programming solution for the VCP 

includes a nested loop that runs in exactly (
)(|�| - 1). |�|. This 

nested loop is analogous to the constraint in (3) in Model 1. 
The Constraint Generation algorithm (Algorithm 1) has a 
constant running time of θ, where θ represents the required 
number of generated Vertex Covers.  As mentioned in Section 
VI, it is noticed from the preliminary experimentation that it is 
sufficient to set θ in the range [1.5|T| – 3|T|]. The branch-and-
bound (BB) algorithm is used to solve the VCP. The 
complexity of BB is lower bounded by the total number of 
nodes, which is proportional to $|�| [24]. Hence, Phase I has a 

total running time of (
(
)|�| - 1) . |�| + θ). $|�|  .i.e. O 

($|�| . |�|2).  
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As VCP is NP-Hard, a lot of research has been conducted to 
produce efficient approximation algorithms (cf. in [36], [37]).  
The work in [1] develops a polynomial-time algorithm that 
converts the DODAG into a nice-tree decomposition with 
unity treewidth. Using the algorithm proposed in [1] yields a 
significant reduction in the complexity of solving VCP on 
DODAGs. The problem becomes polynomial-time solvable, 
even though it is run iteratively using a Constraint Generation 
algorithm.  

It can be seen from Table I that the majority of 
computations is relatively centered in the multi-objective 
Generalized Assignment Problem (GAP) in Phase II. For 
example, DODAG number 4 with 100 nodes and 347 links 
requires around 10 seconds to reach the optimal solution for 
the VCP, and less than 1 second for the TSP Path, and 600 
seconds to reach the optimal solution for the multi-objective 
GAP.  The problem of large running time exists for instances 
having more than 200 nodes and 350 links. The optimum 
solution is still reachable, albeit slowly. Fortunately, there 
exist several approximation algorithms for GAP. For instance, 
[39] presented a polynomial-time 2-approximation algorithm 
for GAP. 

Lemma 2: Phase II has a total time complexity of 
O($(|�|.|'|) . (|�|+ |M| +|T|)). 

Proof: To prepare the coefficients for the communication 
objective function F2 as represented in (17), the solution loops 
|M| times.  Moreover, a loop of |T| times is required to enforce 
a period to be assigned once, which is represented in (19). 
Also, to constraint the energy used for monitoring of each 
node to be less than or equal to the  	
�
��

_����
��� the 
solution loops |�| times (represented in (20)). The number of 
variables in the GAP is |M|.|T|. Using the BB algorithm for 
solving the GAP, which is bounded by the total number of 
variables, gives an overall time complexity for Phase II of 
O($(|�|.|'|) . (|�|+ |M| +|T|)). 

Lemma 3: Phase III has time complexity of O(2u .u2).  

Proof: Although the TSP Path is also NP-hard and there are 
approximation algorithms proposed in the literature (cf. in 
[6]), its running time in the proposed model is relatively small. 
This is due to the fact that the input of Phase III is only the 
unique Vertex Covers assigned to monitor the periods (u) from 
Phase II.  TSP Path is solved using Held–Karp dynamic 
programming algorithm [17]. There are at most (2u .u) sub-
problems, each of which takes linear time (u) to solve. 
Therefore, the time complexity of Phase III is O(2u . u2). 

VIII. CONCLUSION & FUTURE WORK 

In this paper, a three-phase mathematical model was 
proposed to address the optimized scheduling of the 
monitoring role in IoT networks. In the first phase, multiple 
subsets of the nodes that cover the entire graph are generated 
by solving Vertex Cover Problem iteratively; while 
incorporating a Constraint Generation algorithm. The 
optimized scheduling of the Vertex Covers is handled in 
Phases II and III. The multiple Vertex Covers are input to 
Phase II which is modeled as a Multi-objective Generalized 

Assignment Problem. The objectives are to minimize the 
energy and communication costs incurred while monitoring 
the network. Input to Phase III is the unique Vertex Covers 
assigned to monitoring in Phase II. Phase III is a Traveling 
Salesman Path Problem with the objective of further 
minimizing the energy consumption by reducing nodes’ state 
transitions (from active to sleep and vice versa).  

The proposed solution is a proof of concept to emphasize 
that energy-efficient solutions for monitoring IoT networks do 
exist. The proposed model and solution method were tested on 
a number of test instances of different sizes, ranging from 50 
to 200 nodes, and from 123 to 2463 links. Experimental 
results show that, for the sizes of the tested instances, the 
proposed model was indeed effective and scalable in 
achieving the monitoring objective, while providing load 
balancing between monitors and minimizing the cost of 
monitoring in terms of energy and communication costs, and 
the number of nodes' state transitions.  

Future work will be the development of heuristics and 
approximation algorithms to reduce the complexity of Phase 
II, since it was noticed to be the most time consuming 
phase. Often in IoT, the underlying network can change 
dynamically (nodes, links, topology, etc.), in order to handle 
these changes, it will be interesting to develop incremental 
methods and dynamic algorithms for the system control 
(including the monitoring). To test the energy consumed for 
transmission of monitoring probes by the nodes, a network 
simulator should be used. Therefore, testing the proposed 
model on Cooja network simulator is another possible future 
work. 
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