
A Few-shot Deep Learning Approach for Improved
Intrusion Detection

Md Moin Uddin Chowdhury∗, Frederick Hammond†, Glenn Konowicz‡,Chunsheng Xin §,Hongyi Wu¶ and Jiang Li‖
Department of Electrical and Computer Engineering, Old Dominion University

Email: ∗ mchow001@odu.edu, †dowufred13@yahoo.com, ‡gkono001@odu.edu, §cxin@odu.edu,
¶h1wu@odu.edu, ‖jli@odu.edu,

Abstract—Our generation has seen the boom and ubiquitous
advent of Internet connectivity. Adversaries have been exploiting
this omnipresent connectivity as an opportunity to launch cyber
attacks. As a consequence, researchers around the globe devoted a
big attention to data mining and machine learning with emphasis
on improving the accuracy of intrusion detection system (IDS). In
this paper, we present a few-shot deep learning approach for im-
proved intrusion detection. We first trained a deep convolutional
neural network (CNN) for intrusion detection. We then extracted
outputs from different layers in the deep CNN and implemented a
linear support vector machine (SVM) and 1-nearest neighbor (1-
NN) classifier for few-shot intrusion detection. few-shot learning
is a recently developed strategy to handle situation where training
samples for a certain class are limited. We applied our proposed
method to the two well-known datasets simulating intrusion in
a military network: KDD 99 and NSL-KDD. These datasets are
imbalanced, and some classes have much less training samples
than others. Experimental results show that the proposed method
achieved better performances than the state-of-the-art on those
two datasets.

Index Terms—Intrusion Detection System(IDS); low shot learn-
ing; CNN; SVM.

I. INTRODUCTION

It is estimated that there will be roughly 50 billion devices

that will connect to the Internet by year 2020. To keep abreast

with this exponential pace of Internet growth, cyber attacks by

hackers will exploit new flaws in Internet protocols, operating

systems and application software. There exists several protec-

tive measures such as firewall which is placed at the gateway

to check activities of intruders. To meet the dynamic character-

istics of attacks, intrusion detection systems (IDSs) [1] is used

as a second line of defense. IDSs dynamically monitor network

log, file system, and real-time events occurring in a computer

system or network and analyze them for signs of adversaries

or attacks [2]. IDSs are classified as host-based or network-

based. Host-based IDSs operate on information collected from

within an individual computer system, while network-based

IDSs collects raw network packets as the data source from the

network and analyze for signs of intrusions [2]. There are two

different detection techniques, misuse detection and anomaly

detection, employed in IDSs to search for attack patterns.

Misuse detection systems find known attack signatures in the

monitored resources, whereas anomaly detection systems iden-

tify attacks by detecting changes in the pattern of utilization or

behavior of the system. However, at present, anomaly detection

IDSs have not been widely adopted. On the other hand, despite

having limited potential against unfamiliar attacks, misuse

detection systems find greater usage in commercial arena [3].

With the increasing processing power of modern CPUs, data

mining/machine learning technique has become an alternative

to manual human input. This approach was first introduced

in mining audit data for dynamic and automatic models for

intrusion detection (MADAMID) using association rules [4].

However, the majority of IDSs currently in use are prone

to generation of false positive alarms. To this end, there

are only few datasets reflecting actual network connections

being publicly available for classifying normal from abnormal

connections. Among them KDD 99 and NSL-KDD [3] are

well known public datasets to promote anomaly detection

techniques using machine learning.

The KDD 99 dataset [3] is the pioneer for machine learning

based IDS. KDD 99 dataset was harvested from data gather-

ing during the 1998 DARPA Intrusion Detection Evaluation

Program, where a LAN was set up in an effort to simulate an

actual military LAN, collecting TCPdump data over a duration

of several weeks, with multiple attack data interspersed within

normal connection data. The training data consists of five

million connections records, and two weeks of testing data

yielded around two million records. The training data contains

22 different attacks out of the 39 present in the test data. The

known attack types are those present in the training dataset

while the novel attacks are the additional attacks in the test

datasets not available in the training dataset. The attacks types

are grouped into four categories [3] :

• DOS (Denial of Service): Under this attack, the attacker

prevents user from using resources by pre-occupying

resources so that the service provider can no longer

handle new user requests.

• Probing: Under the probing attack, an attacker gathers

information to bypass existing security measures by port

scanning.

• U2R (User to Root): Under this attack, attackers attempt

to gain unauthorized access to local super user (root)

privileges.

• R2L (Remote to Local): This attack means unauthorized

access from a remote machine outside of the system to

access a valid user account.

Despite of its potential, KDD 99 dataset is considered as

having several drawbacks such as duplicate evidences and

978-1-5386-1104-3/17/$31.00 ©2017 IEEE 456

inherent packet handling problem of TCPdump [3]. To bypass

these limitations and create a dataset for better evaluation of

machine learning based IDS techniques, an improved dataset

known as NSL-KDD was created by removing all duplicate

records. The inherent drawbacks in the KDD 99 dataset

has affected detection accuracies of many IDSs. NSL-KDD

contains essential records of the complete KDD 99 dataset.

There is a collection of downloadable files at the convenience

of the researchers. Three main refinements done on KDD 99

dataset were [3]:

• All of the redundancy issues were taken care of in order

to enable the classifiers to provide un-biased classification

results.

• A comparable number of train and test records were

provided to conduct rational experiments

• The number of selected records from each difficult level

group is inversely proportional to the percentage of

records in the original KDD 99 dataset [3].

After their introduction, KDD 99 and NSL-KDD attracted

many research efforts and numerous machine learning archi-

tectures were developed for these datasets. The analysis of

these two datasets revealed that they are highly imbalanced [3],

i.e., U2R attack class type has only a few samples whereas the

normal type connection class has more than 50% presence. As

a result, classifiers face difficulty to detect the minor classes.

We did a literature survey on these two datasets and found that

the testing accuracy of NSL-KDD considering all the features

stuck at around 85% considering all attack types. So we were

looking for the answer to the following question, Is there any
way to increase the test accuracy of NSL-KDD especially
for the minor classes?

Traditional imbalanced learning strategies include oversam-

pling minority classes or undersampling majority classes [5].

Recently, authors in [6] introduced a novel method called ’few-

shot learning’, where they used a generic dataset to learn

a feature representation using deep CNN structures. They

learned new feature representations then went through a SVM

classifier or 1-NN classifier for few-shot learning. The SVM

or 1-NN classifier only needs few samples to predict the class

label for new observations. They found that, since the feature

extractor is optimized for the generic dataset but not the few-

shot samples, this model can perform well on the generic

dataset but not on the minor classes.

In this paper, we combine the traditional imbalance learning

techniques: oversampling and undersampling [5] with the few-

shot deep learning strategy [6] for few-shot intrusion detection.

We extracted outputs from different layers of a deep CNN

classifier and designed a SVM classifier and a 1-NN classifier

for few-shot intrusion detection. We also considered oversam-

pling and undersampling methods to make datasets balanced to

compare their performances. We conducted a literature survey

on these two datasets and to the best of our knowledge that

extracting outputs from different layers of deep CNN classifier

for few-shot learning is not yet implemented for both the KDD

and NSL-KDD datasets.

Our contribution in this paper can be summarized as fol-

lows,

• We developed a few-shot deep learning method for intru-

sion detection, where the average class-wise performance

was improved where data is highly imbalanced.

• We effectively incorporated the traditional imbalanced

learning techniques, oversampling and undersampling,

into few-shot deep learning for intrusion detection and

achieved state-of-the-art performances on the two bench-

mark datasets.

The rest of the paper are organized as follows. Section II

provides a brief literature review. We discussed classifiers used

in this research in Section III. Pre-processing methods and

numerical evaluation are presented in Section IV and Section

V respectively. Finally, Section VI concludes this paper.

II. RELATED WORKS

Intrusion detection using KDD 99 and NSL-KDD is well

studied in literature. Researchers proposed single, hybrid and

ensemble classifiers to increase test accuracy. Niyaz in [7]

proposed a deep learning approach (self taught learning TSL)

with two stage classification. The approach consists of learning

a good feature representation from unlabeled data and apply

to labeled data for classification. The authors used sparse

auto-encoder for unsupervised feature learning and soft-max

regression for classification. Using NSL-KDD Dataset they

obtained 79.1% test accuracy considering 5 classes.

Tang et al. [8] proposed a deep neural network model with

3 hidden layers for NSL-KDD. Using only 6 basic features ,

their model resulted into 75.75 % test accuracy. In [9] Zhang

and Zulkermine proposed a random forest based anomaly

detection model. Their hybrid framework combined misuse

and anomaly detection. They evaluated it on KDD 99 data set.

They converted the attacks into 2-class and got a detection rate

of 94.7%. Naive Bayes classifiers were also used for intrusion

detection problem in [10] and provided competitive results.

The experiments were performed on KDD 99 data set and

focused on 4 classes and 2 classes of attacks. The authors

implemented a decision tree classifier along with the Naive

Bayes. For 4 classes case, the model provided 91.28% and

91.47% by decision trees and Naive Bayes, respectively. For

the 2-classes case, the decision trees yielded a classification

accuracy of 93.02% while the Naive Bayes yielded a 91.45%

accuracy.

Unsupervised learning techniques were also proposed for

this problem. In [11], authors implemented a k-mean clustering

for the NSL-KDD data set. In the paper, the author tried to

classify data into the major attacks categories (4 clusters). the

clustering algorithm provided a good distribution of data and

showed that it is very useful for unlabeled data.

A number of papers applied feature selection methods to

reduce the complexity of the data. Panda et al. [12] proposed

a hybrid intelligent approach combining principal component

analysis (PCA) and random forest among other techniques.

In the paper, NSL-KDD data set was used with 2 classes.

The system gave a high detection rate (almost 100%) and

457

TABLE I
CNN ARCHITECTURE FOR FEATURE EXTRACTION

Layer Index Layer Output Shape Padding & Stride
1 Conv2D (64 filters, size: 1x3) 1, 38, 64 0,1
2 Conv2D (64 filters, size: 1x3) 1, 36, 64 0,1
3 Maxpooling2D 1, 18, 64
4 Conv2D (128 filters, size: 1x3) 1, 16, 128 0,1
5 Conv2D (128 filters, size: 1x3) 1, 16, 128 1,1
6 Conv2D (128 filters, size: 1x3) 1, 16, 128 1,1
7 Maxpooling2D 1, 8, 128
8 Conv2D (256 filters, size: 1x3) 1, 8, 256 1,1
9 Conv2D (256 filters, size: 1x3) 1, 8, 256 1,1

10 Conv2D (256 filters, size: 1x3) 1, 8, 256 1,1
11 Maxpooling2D 1, 4, 256
12 Flatten 1024
13 Fully Connected 100
14 Dropout 100
15 Fully Connected 20
16 Softmax 5

small false positive rates. Bouzida et al. [13] also used PCA

for feature reduction and applied to KDD 99 data set. Then,

the authors evaluated the proposed approach by using nearest

neighbor (NN) algorithm and decision trees with/without PCA.

The approach provided high accuracies for each attack class.

Mukkamala in [14] used SVM and Neural Networks (NN)

(Multi-layer, feed forward network with 4 & 3 layers) for the

intrusion detection problem. The models were evaluated on

KDD 99 data set. Both SVM and NN delivered high accuracies

(almost 100%) considering 2 classes. However, the evaluation

showed in significant difference in training times between NN

and SVM. Wun-Hwa Chen also used SVM and NN for the

problem [15] and their approaches were evaluated on KDD 99

data sets considering 2 classes and both models provided very

high accuracy rates (very close to 100%).

Authors in [17], proposed an optimizer to overcome the

weakness of gradient based optimization used in deep learning

algorithms. Their proposed optimizer controls both short-term

knowledge within a task and long-term knowledge common

among all the tasks. Experiments showed that their method

performs better than natural baselines and is competitive to

the state-of-the art in metric learning for few-shot learning.

In [16], authors presented prototypical networks for few-shot

learning algorithm. They trained these networks to specifically

perform well in the few-shot setting by using episodic training.

Apart from this, they demonstrated how to generalize proto-

typical networks to the zero-shot setting, and achieved state-

of-the-art results on the CUB-200 dataset

In essence, a high variety of models were proposed for

these two datasets. Nevertheless, the accuracy of NSL-KDD

never reached beyond a certain point while considering all 41

features and 5 classes. This motivated us to look for another

process other than traditional classifiers.

Fig. 1. Flowchart of our considered method.

III. CLASSIFIER INTRODUCTION

A. Support Vector Machine

SVM [18] is a supervised discriminative classifier which

is known for detecting class labels by creating a separating

hyperplane with large margins. In other words, given labeled

training data, the algorithm provides an optimal hyperplane

that maximizes the margins for all categories considered. SVM

training algorithm builds a model that separates two categories

with the largest margin that can generalize to unseen data. For

multiple class problem, it usually utilize one-vs-all strategy to

establish a multi-class classifier.

B. K Nearest Neighbor

k-NN [19] is a non-parametric learning algorithm, i.e., it

does not consider any assumptions on data distributions. For a

testing example, it searches k nearest neighbors of the testing

example in the training dataset and assigns the majority of the

labels from the nearest neighbors as the class label for the

testing example. We utilized 1-NN classifier in this paper and

it only needs a few training examples to predict class label for

a new coming data point.

C. Convolutional Neural Network

CNN [20] is comprised of one or more convolutional layers

(often with a maxpooling step) and then followed by one or

more fully connected layers as in a standard multilayer neural

network. CNN achieved state-of-the-art performances in image

classification and speech recognition fields in recent years. We

utilized the CNN as a general feature extractor in this paper.

458

KDD NSL-KDD

Dataset

0

10

20

30

40

50

60

70

80

90

100

T
es

t A
cc

ur
ac

y

SVM
k-NN

Fig. 2. Test Accuracy performance of undersampled datasets

SVM k-NN

Classifiers

0

10

20

30

40

50

60

70

80

90

100

T
es

t A
cc

ur
ac

y

Normal
Dos
Probe
R2L
U2R

Fig. 3. Classwise Accuracy performance of undersampled KDD 99

IV. METHODS

A. Pre-processing

Neural network based classification uses only numerical

values for training and testing. Hence a pre-processing stage

is needed to convert the non-numerical values to numerical

values. Two main tasks in our pre-processing are:

• Converting the non-numerical features in the dataset to

numerical values. The features 2, 3 and 4 namely the

protocol type, service and flag were non-numerical. These

features in the train and test data set were converted

to numerical types by assigning specific values to each

variable (e.g. TCP = 1, UDP = 2 and ICMP = 3).

• Convert the attack types at the end of the dataset into

its numeric categories. Category 1 is assigned to normal

data, and 2, 3, 4 and 5 are assigned to DoS, Probe, R2L

and U2R attack types, respectively

B. Normalization

Since the features of both KDD 99 and NSL-KDD datasets

have either discrete or continuous values, the ranges of the

values were different and this made them incomparable. In this

study, the features were normalized by subtracting mean from

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

90

100

T
es

t A
cc

ur
ac

y(
%

)

KDD-kNN
KDD-SVM
NSL-kNN
NSL-SVM

(a)

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

M
ea

n
cl

as
sw

is
e

T
es

t A
cc

ur
ac

y(
%

)

KDD-kNN
KDD-SVM
NSL-kNN
NSL-SVM

(b)

Fig. 4. (a) Test Accuracy performance & (b) Mean Class-wise test perfor-
mance of features from different layers for original KDD and NSL-KDD
datasets.

each feature and dividing by its standard deviation. After that,

we normalized the test features using the mean and standard

deviation of each feature from train datasets.

C. CNN Architecture for Feature Extraction

We trained a CNN architecture to extract features for both

datasets. Pre-processed data were fed through the input layer.

We used various number of filters such as 64, 128 and 256 with

filter size as 1x3. After the convolution layers, there was a fully

connected dense neural network with 3 hidden layers with 100

, 20 and 5 hidden units respectively. We trained the model

using train data and test data separately and extracted outputs

from intermediate CNN layers to create new representations

with different number of features. We considered mainly four

layers in this study. The highest layer was a fully connected

layer with 20 outputs, i.e., output from this layer has 20

features. We also considered a fully connected layer with

100 outputs, a maxpooling layer with 4x256 outputs and the

last CNN layer which had 8x256 outputs. We also tried to

extract features from lower level CNN layers but the testing

accuracy was around 40% to 43% for both of the datasets and

459

TABLE II
ORIGINAL DATASET ACCURACIES

Dataset Classifier Test Accuracy
KDD
99

SVM 95.27%
k-NN 96.19%

NSL-
KDD

SVM 77.68%
k-NN 80.74%

TABLE III
ORIGINAL DATASET CLASS-WISE MEAN ACCURACIES

Dataset Classifier Mean of Class-wise Test Accuracy
KDD
99

SVM 65.833%
k-NN 64.048%

NSL-
KDD

SVM 56.609%
k-NN 53.84%

hence omitted for comparison. A brief overview of the CNN

architecture is shown in Table I.

After getting the intermediate features we used them as

input to SVM and k-NN. We considered 1 Neighbor for k-NN

classifier. Fig. 1 shows our considered methodology and work-

flow. As performance metric, we considered mean classwise

accuracy along with test accuracy. In other words, we first

calculated the accuracy for each class and then considered the

mean of test accuracies of all classes as performance metric.

V. NUMERICAL RESULTS

A. Experiment Setup

For model development and evaluation we have considered

Intel core i-7 7700 3.60 Ghz CPU with 32 GB RAM work-

station. We have implemented SVM using Liblinear [21] in

MATLAB. For implementing k-NN we used the MATLAB

built in function. The CNN was implemented using the Python

keras package [22]. We have considered the following KDD

and NSL-KDD datasets for this research:

• KDD Train : 10% KDDtrain

• KDD Test: Corrected labels

• NSL-KDD Train : KDDTrain+

• NSL-KDD Test: KDDTest+

The 10 % KDDtrain dataset consisted of 494,021 records

among which 97,277 (19.69%) were normal, 391,458

(79.24%) DOS, 4,107 (0.83%) Probe, 1,126 (0.23%) R2L and

52 (0.01%) U2R connections. In each connection, there are 41

attributes describing different features of the connection and

a label assigned to each either as an attack type or as normal.

The 41 attributes can be classified into four different categories

as Basic, Content , Traffic and Host. Corrected labels has

311027 records. NSL KDDTrain+ and KDDTest+ has 125973

and 22544 records respectively.

B. Initial Evaluation

We tried to measure the performance of the original datasets

first. Table II shows the test accuracies for different classifiers

for both datasets. As expected, the test accuracy for KDD

99 is much higher (about 96%) than the NSL-KDD for

both of the classifiers due to its redundant records. The test

accuracies for NSL-KDD is also close to those of previous

literatures. Table III summarizes the class wise performance

of the classifiers for both of the datasets. It turns out that

KDD 99 dataset outperforms NSL-KDD in terms of detecting

each class individually by scoring 65.83% and 64.05% for

1-NN and SVM respectively. For NSL-KDD, the classifiers

were not able to detect the minor classes properly which

resulted into class-wise performance degradation (53.84% and

56.609% respectively for 1-NN and SVM).

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

90

100

T
es

t A
cc

ur
ac

y(
%

)

SVM-KDD 2 fold
KNN-KDD 2 fold
SVM-KDD 9 fold
SVM-KDD 9 fold

(a)

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

90

T
es

t A
cc

ur
ac

y(
%

)

SVM-KDD 2 fold
KNN-KDD 2 fold
SVM-KDD 9 fold
SVM-KDD 9 fold

(b)

Fig. 5. (a) Test Accuracy performance & (b) Mean Class-wise accuracy
performance of features from different layers for 2 & 9 fold oversampled
KDD dataset.

C. Performances from Oversampling and Undersampling

As mentioned before, the U2R attack class has only .05%

evidences. So deep learning methods are not able to classify

this class correctly as they are biased towards more frequent

classes. So we tried to undersample the other four classes

randomly at the same evidence of U2R i.e., we tried to create

new training datasets which is balanced (each class has 20%

presence). Then we trained 2 classifiers (1-NN & SVM)

using these datasets and compared the test performances using

the original test datasets. The test accuracies of undersampled

KDD 99 for the two classifiers were comparable to each other

460

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

90

100
T

es
t A

cc
ur

ac
y(

%
)

SVM-NSL-KDD 2 fold
KNN-NSL-KDD 2 fold
SVM-NSL-KDD 9 fold
SVM-NSL-KDD 9 fold

(a)

Layer 10 Layer 11 Layer 13 Layer 15

CNN Layer Index

0

10

20

30

40

50

60

70

80

T
es

t A
cc

ur
ac

y(
%

)

SVM-NSL-KDD 2 fold
KNN-NSL-KDD 2 fold
SVM-NSL-KDD 9 fold
SVM-NSL-KDD 9 fold

(b)

Fig. 6. (a) Test Accuracy performance & (b) Mean Class-wise accuracy
performance of features from different layers for 2 & 9 fold oversampled
NSL-KDD dataset.

as depicted in Fig. 2. To mitigate the effect of randomness, we

conducted the experiment 10 times and calculated the mean

results. The accuracies for SVM and 1-NN were 91.66% and

87.3% respectively for KDD 99 dataset. But this undersam-

pling method performed poorly on NSL-KDD dataset. The

test accuracy reached merely highest only 13%. We were also

curious about taking a look on class-wise performance of

undersampled KDD 99. From Fig. 3, we can see the class-

wise test performance of the classifiers. In this case, mean

of the class-wise test accuracies were better than original

datasets, where SVM and 1-NN scored 71.94% and 75.44 %

respectively.

D. Performance of few-shot Deep Learning

We trained a CNN model using KDD 99 and NSL-KDD

datasets and created 4 new datasets by extracting outputs from

4 different layers as mentioned in the previous section. The

results are shown in Fig. 4. From Fig. 4(a), we can see that,

the SVM test accuracies of KDD 99 for Layer 15 and Layer

13 are 97.26% and 98.71%, respectively, which are higher

than original SVM considering 41 features as shown in Table

II. The 1-NN accuracies are slightly better than the results

as shown in Table II. For NSL-KDD the accuracies reached

close to 90% for both of the classifiers. For instance, Layer

15 provides 91.82% for SVM and 89.27% for 1-NN. Features

extracted from Layer 13 provided 94.62% for SVM classifier

and 88.93% for 1-NN. The accuracies for NSL-KDD drop

as we move to lower layers. We can also observe a similar

pattern for mean class-wise test performances of different

CNN layers in Fig. 4(b). The more we go down, the less we

get mean test accuracy of all the classes. The best performance

is provided by layer 13 where the class-wise test accuracies

of all classifiers and datasets were above 70%. The SVM

classifier on KDD 99 dataset provided better results than other

classifiers.

E. Effect of Sampling on Low shot Deep Learning

To increase the class-wise performance of original datasets,

we created 2 fold and 9 fold duplicate samples of U2R class

and studied the performances for both datasets. The results

for 2 & 9 fold duplicate oversampling of U2R class on KDD

dataset is depicted in Fig. 5. From Fig. 5(a) we can see

that the testing performances of 2 fold oversampled KDD

99 dataset for SVM classifier were 97.29%, 98.19%, 84.96%

and 95.51% respectively for Layers 15,13,11 and 10. The 1-

NN classifier performance on same oversampled dataset were

95.84%, 86.62%, 85.8% and 92.62%, respectively. In case

of, 9 fold oversampling of class U2R, KDD provided 97.06

%, 97.3%, 95.19% and 93.152% testing accuracies for SVM

classifier. On the other hand, 1-NN scored 95.62%, 94.25%,

88.65% and 53.5% on the same oversampled KDD dataset. We

then studied mean class-wise accuracies for 2 fold and 9 fold

duplicate evidences of U2R class on KDD which is depicted

in Fig. 5(b). The best results are provided by the features

from Layer 13. Overall, the mean class-wise performance is

better than the original dataset. We also observed that, the

performance of 9 fold oversampled outperformed its 2 fold

counterpart for both Layer 13 and 15. SVM classifier scores

83.152% mean class-wise accuracy on features extracted from

Layer 13 for 9 fold U2R oversampled KDD.

The test performances for 2 & 9 fold duplicate evidences

of U2R class on NSL-KDD dataset is depicted in Fig. 6. The

testing accuracies of 2 fold oversampled NSL-KDD dataset for

SVM classifier were 90.043%, 89.9%, 22.87% and 88.36%

respectively for layers 15,13,11 and 10 as shown in Fig.

6(a). The test accuracies of 1-NN classifier performance on

same oversampled dataset were 88.19%, 87.42%, 10.13% and

22.60%, respectively. The performance of 9 fold oversampled

dataset is slightly better than 2 fold oversampled NSL-KDD.

In case of, 9 fold oversampling of class U2R, NSL-KDD

provided 90.4%, 92.92%, 49.67%, 43.79% testing accuracies

for SVM classifier. At the same time, 1-NN scored 88.09%,

88.82%, 50.88% and 23.71% accuracies on the same oversam-

pled dataset for features from layer 15 to 10.

The mean classification accuracies of NSL-KDD are shown

in Fig. 6(b). We found a decreasing pattern for mean class-wise

test accuracy as we move downwards to CNN architecture.

461

TABLE IV
TEST ACCURACY COMPARISON TO LITERATURE

Algorithms Test Accuracy
Niyaz ei al. [7] 79.10%

Mahbod et al. [3] 82.02%
Tang et al. [8] 75.75%

Our work 94.62%

The highest mean class-wise accuracy (70.46%) was provided

by the SVM classifier for 9 fold oversampled U2R attack

class. As we move down towards the architecture, the mean

class-wise accuracy decreases. In essence, we observed an

increasing trend in mean class-wise performance but a slight

degradation in test accuracy performance for both of the

oversampled datasets. This is due to the fact that the classifiers

are detecting the minor class more accurately at the expense of

compromising test accuracy performances of majority classes.

F. Comparison to Literature

For ease of comparison with previous literatures considering

4 attack types, we also provide Table IV which shows that our

method outperforms other results in terms of test accuracy.

SVM classifier on features extracted from layer 13 provided

the best result on NSL-KDD dataset. Our methods worked

well for both of the datasets in terms of overall test accuracy

and class-wise test accuracy. The Layer 13, which is the first

fully connected layer with 100 hidden units, provided the best

results. Among the two classifiers, SVM outperformed 1-NN

in almost all the experiments.

VI. CONCLUSION

In this research, we implemented a few-shot deep learn-

ing method for intrusion detection. Among different attack

types, some rare attack types make machine learning based

detection systems difficult to identify those minority attack

types. Inspired by the few-shot image recognition work in [6],

we trained a deep CNN structure and used it as a general

feature extractor for feature extraction. We then trained a

SVM or an 1-NN classifier for intrusion detection on the new

feature representations. In addition, we incorporated a tradi-

tional imbalance learning technique that oversampled minority

classes before training. Our method obtained state-of-the-art

performances on the KDD and NSL-KDD datasets achieving

over 94% accuracies for both datasets. We also able to achieve

better classwise accuracy using traditional imbalance learning

techniques. The proposed method is a good candidate for

imbalance learning and intrusion detection. In future, we plan

to use our method on various imbalanced datasets to enhance

the minority class detection rate.

REFERENCES

[1] S. Potluri and C. Diedrich, “Accelerated deep neural networks for
enhanced intrusion detection system,” in 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sept 2016, pp. 1–8.

[2] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting
features for intrusion detection: A feature relevance analysis on kdd
99 intrusion detection datasets,” in Proceedings of the third annual
conference on privacy, security and trust, 2005.

[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, July
2009, pp. 1–6.

[4] J. P. T. Srilatha Chebrolu, Ajith Abraham, “Feature deduction and
ensemble design of intrusion detection systems, computers security,
volume 24, issue 4, june 2005, pages 295-307, issn 0167-4048.”

[5] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, Sept 2009.

[6] B. Hariharan and R. Girshick, “Low-shot visual recognition by shrinking
and hallucinating features,” arXiv preprint arXiv:1606.02819, 2016.

[7] Q. Niyaz, W. Sun, A. Y. Javaid, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communica-
tions Technologies (Formerly BIONETICS), BICT-15, vol. 15, 2015, pp.
21–26.

[8] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), Oct 2016, pp. 258–
263.

[9] J. Zhang and M. Zulkernine, “A hybrid network intrusion detection
technique using random forests,” in Availability, Reliability and Security,
2006. ARES 2006. The First International Conference on. IEEE, 2006,
pp. 8–pp.

[10] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision
trees in intrusion detection systems,” in Proceedings of the 2004 ACM
symposium on Applied computing. ACM, 2004, pp. 420–424.

[11] V. Kumar, H. Chauhan, and D. Panwar, “K-means clustering approach
to analyze nsl-kdd intrusion detection dataset,” International Journal of
Soft Computing and Engineering (IJSCE), 2013.

[12] M. Panda, A. Abraham, and M. R. Patra, “A hybrid intelligent approach
for network intrusion detection,” Procedia Engineering, vol. 30, pp. 1–9,
2012.

[13] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia, and S. Gombault, “Ef-
ficient intrusion detection using principal component analysis,” in 3éme
Conférence sur la Sécurité et Architectures Réseaux (SAR), La Londe,
France, 2004, pp. 381–395.

[14] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neu-
ral networks and support vector machines,” in Neural Networks, 2002.
IJCNN’02. Proceedings of the 2002 International Joint Conference on,
vol. 2. IEEE, 2002, pp. 1702–1707.

[15] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of svm and ann for
intrusion detection,” Computers & Operations Research, vol. 32, no. 10,
pp. 2617–2634, 2005.

[16] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks
for few-shot learning,” CoRR, vol. abs/1703.05175, 2017. [Online].
Available: http://arxiv.org/abs/1703.05175

[17] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[18] D. S. Kim, H.-N. Nguyen, and J. S. Park, “Genetic algorithm to improve
svm based network intrusion detection system,” in 19th International
Conference on Advanced Information Networking and Applications
(AINA’05) Volume 1 (AINA papers), vol. 2, March 2005, pp. 155–158
vol.2.

[19] H.-V. Nguyen and Y. Choi, “Proactive detection of ddos attacks utilizing
k-nn classifier in an anti-ddos framework,” International Journal of
Electrical, Computer, and Systems Engineering, vol. 4, no. 4, pp. 247–
252, 2010.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “Liblinear: A library for large linear classification,” J. Mach.
Learn. Res., vol. 9, pp. 1871–1874, Jun. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1390681.1442794

[22] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

462

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

