
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Internet of Things (IoT) is a term used to describe an

environment where billions of objects, constrained in terms of
resources ("things"), are connected to the Internet, and
interacting autonomously. With so many objects connected in IoT
solutions, the environment in which they are placed becomes
smarter. A software, called middleware, plays a key role since it is
responsible for most of the intelligence in IoT, integrating data
from devices, allowing them to communicate, and make decisions
based on collected data. Then, considering requirements of IoT
platforms, a reference architecture model for IoT middleware is
analyzed, detailing the best operation approaches of each
proposed module, as well as proposes basic security features for
this type of software. This paper elaborates on a systematic review
of the related literature, exploring the differences between the
current Internet and IoT-based systems, presenting a deep
discussion of the challenges and future perspectives on IoT
middleware. Finally, it highlights the difficulties for achieving and
enforcing a universal standard. Thus, it is concluded that
middleware plays a crucial role in IoT solutions and the proposed
architectural approach can be used as a reference model for IoT
middleware.

Index Terms— Internet of Things; IoT; Middleware;

Middleware architecture for IoT; Reference model.

I. INTRODUCTION
HE term Internet of Things (IoT) is credited to Kevin

Ashton as, in 1999, he started a presentation entitled “That
‘Internet of Things’ Thing” [1]. From then, enormous
contributions, such as security, connectivity, energy efficiency,
and much more, were made on the topic. Currently, IoT is
considered a relevant topic for researchers, consumers, and
service providers. Since its beginning, the term has suffered
minimal modifications. Nevertheless, the basics are still the
same. IoT can be described as a fancy term for a scenario where
anything may be inserted in a network, be uniquely identified,
and interact with minimal human intervention [2][3][4]. These

 This work was supported by National Funding from the FCT - Fundação
para a Ciência e a Tecnologia through the UID/EEA/50008/2013 Project; by
the Government of Russian Federation, Grant 074-U01; by Finatel through the
Inatel Smart Campus project; by Finep, with resources from Funttel, Grant No.
01.14.0231.00, under the Centro de Referência em Radiocomunicações - CRR
project of the Instituto Nacional de Telecomunicações (Inatel), Brazil; and by
the Research Center of College of Computer and Information Sciences, King
Saud University. The authors are grateful for this support.

M. Cruz is with National Institute of Telecommunications (INATEL), Santa

Rita do Sapucaí-MG, Brazil (e-Mail: maurocruzter@gmail.com).
J. J. P. C. Rodrigues is with National Institute of Telecommunications

(INATEL), Santa Rita do Sapucaí-MG, Brazil; Instituto de Telecomunicações,

things can belong to the real world (physical things) both from
inanimate pieces and to living animals, or the virtual world
(virtual “things”) that only exists in a simulation environment
[5]. To clarify, a “thing” is an ordinary device that can be
uniquely identified and connected to the Internet. Then, if users
or applications have access to the information and communicate
with these things (objects) through the Internet, it can be
considered IoT scenario.

Since 2015, the smartphone has surpassed the laptop as the
most important device for connecting to the Internet in the UK
and, from 2008, there are more devices connected to the Internet
than all the world population [6]. It is expected that, by 2020,
about 50 billion objects may be connected to the Internet [7].
At first glance, it might seem an exaggerated number (and,
maybe, it can be), but history has shown that, as the physical
size and price of certain technologies reduce, more people can
access to them and, consequently, their presence becomes
ubiquitous in daily life.

Considering the IoT definition, it is easy to conclude that IoT
follows the basic principle of things “speaking” the same
language, using technologies that perform a good
communication among them. To illustrate it, imagine the
following scenario: an interesting woman profile is spotted on
a social network, and a conversation is initiated through the
Chat. Both realize that one speaks English and the other
Russian. The conclusion is simple. Despite having a direct way
to communicate, they do not understand each other, as they are
just sending/receiving meaningless data (content). Therefore,
none of them can make meaning of it. The same principle is
applied when “things” interact regardless they have an Internet
connection. If they cannot interpret each other, the
communication will be futile and does not exist. Other
applications of IoT can be widely found in the literature and
industry (raw water management and smart homes, for
instance), and, mainly, health fields for remote healthcare

Portugal; ITMO University, Saint Petersburg, Russia; University of Fortaleza
(UNIFOR), Fortaleza-CE, Brazil; and Center of Excellence in Information
Assurance (CoEIA), King Saud University, Riyadh-11653, Saudi Arabia (e-
Mail: joeljr@ieee.org).

J. Al-Muhtadi is with College of Computer and Information Sciences
(CCIS), King Saud University, Riyadh-12372, Saudi Arabia (e-Mail:
jalal@ccis.edu.sa).

V. Korotaev is with ITMO University, Saint Petersburg, Russia (e-Mail:
korotaev@grv.ifmo.ru).

Victor Hugo C. de Albuquerque is with Graduate Program in Applied
Informatics, University of Fortaleza (UNIFOR), Fortaleza-CE, Brazil (e-Mail:
victor.albuquerque@unifor.br).

A Reference Model for
Internet of Things Middleware

Mauro A. A. da Cruz, Joel J. P. C. Rodrigues, Senior Member, IEEE,

Jalal Al-Muhtadi, Valery Korotaev, Victor Hugo C. Albuquerque, Member, IEEE

T

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

monitoring and control of vital signs from wearable sensors.
Thus, requiring a robust middleware software system to
mediate these interactions.

Without middleware solutions, programmers must read a new
software specification every time they integrate new software
packages, turning these tasks difficult and very time-consuming
[8][9]. In this regard, numerous organizations struggle and prefer
integrated solutions from the same vendor, even when they are
insufficient or too complicated for their needs. In IoT,
organizations and users will use multiple (and incompatible)
software. In fact, middleware is one of its enabling technologies
[3][10]. Recognizing the crucial role of middleware in IoT
environments, they are the focus of this study. Then, the main
contributions of this paper are the following:

i) A deep review of the state of the art on IoT middleware
platforms;

ii) A reference architecture model proposal for IoT
middleware detailing the best operation method for each module;

ii) Proposal of security features that IoT middleware should
comply for a safer IoT environment;

iii) Deep discussion on the difficulties of achieving a universal
standard for IoT, as well as the differences between the regular
Internet and the IoT. The paper also highlights the importance of
IoT middleware and their crucial role.

The remainder of this work is organized as follows. Section
II provides a background on the difficulties of achieving and
enforcing a universal standard. Then, it provides a background
on how Internet connectivity is slightly different in IoT
comparing to the conventional Internet due to their
requirements. Section III provides a simplified IoT layered
architecture. Then, highlights the platform layer by showing
their requirements and considering three categories of IoT
platforms. Section IV defines IoT middleware and how they
operate. This section also details some closed and open-source
middleware solutions. Section V describes the operation of
relevant modules of a model IoT middleware to meet IoT
requirements, and also proposes basic security features that
middleware should comply for a safer IoT. Open issues and
research challenges are identified and discussed in Section VI,
and, finally, Section VII concludes the paper.

II. THE STANDARDS COMPETITION
There will be different devices from different brands and

vendors in IoT. Currently, most IoT devices are only
compatible with devices from the same brand, or partner
brands. For this reason, several standardization initiatives such
as IPSO Alliance, AllSeen Alliance, OneM2M,
Openconnectivity, Fiware, OpenFog, OpenDaylight, and many
more were created. All of these initiatives are developing
reference architectures or standards for all IoT layers with the
purpose of delivering a more efficient and sustainable IoT. The
problem with standards is that history proves that different
regions adopt different standards because of many factors that
can range from price, implementation complexity, or even
political reasons. Power sockets are a notable example, they
exist for at least a century, and different standards are adopted
across the globe. Big tech companies appear on the member list

of more than one of the mentioned initiatives: Intel (5), Cisco
(4), Ericsson, Microsoft, Qualcomm, and LG (3), Bosch (2).
Take the Open connectivity foundation, for example, it supports
IoTivity [11] and Alljoyn [12], despite both being frameworks
that are addressing device connectivity. It is easily inferable that
tech companies are not sure what standard will prevail and are
not willing to fully commit. Another aspect of the standards
competition is that besides the mentioned initiatives, other
traditional standardization entities, such as IEEE, 3GPP (3rd
Generation Partnership Project), among others, are developing
standards for IoT. With so many entities developing competing
standards, another question emerges, what is the longevity of
such standards, also, what happens when a standard is
established, and another that is superior is developed.
Therefore, expecting to reach interoperability among devices
by enforcing a universal standard is somewhat innocent.

A. Connecting to the Internet in IoT
In IoT, most objects are constrained in resources. For this

reason, nearly everything that works on the current Internet
requires a lightweight IoT version [13][14]. A rapid analysis of
the most common wireless methods of accessing the Internet
reveals that the current Internet protocol stack does not take the
limitations of IoT into account. Wi-Fi (IEEE 802.11
a/b/g/n/ad/ac) is not battery efficient, does not cover a large
area, and does not support a high number of end-devices. For
this reason, alternatives such as Bluetooth 5 and IEEE 802.15.4
are being deployed in IoT solutions. Bluetooth 5 is the most
recent version of the mainstream Bluetooth standard. Like
Bluetooth 4.2, Bluetooth 5 also supports IP networks [15]
(Bluetooth’s IP capabilities are rarely explored by end-users).
IEEE 802.15.4 is a standard for Low-Rate Wireless Personal
Area Networks (LR-WPANs) that specifies the physical and
MAC layers of the OSI model [15]. The most common
implementations of IEEE 802.15.4 are 6LoWPAN (IPv6 over
Low Power Wireless Personal Area Networks) and ZigBee.
6LoWPAN is an IETF (Internet Engineering Task Force)
approach that compresses and encapsulates the IPv6 headers,
then accommodates them on the frame IEEE 802.15.4 [15].
ZigBee was developed and maintained by ZigBee Alliance. It
is famous for its mesh topology, but it supports other topologies
such as star and tree [15]. The most prominent advantage of
6LoWPAN is that it natively supports IP networks. When using
ZigBee or traditional Bluetooth, a gateway is necessary to
communicate with the Internet, which increases overhead. All
technologies that do not support IP natively use a similar
concept to connect to the Internet. ZigBee recognized the
importance of IP networks and releases ZigBee IP that uses
many 6LoWPAN concepts, especially the header fragmentation
and compression scheme [15].

Another wireless method of accessing the Internet is through
3G/4G networks. Both have the same problems as Wi-Fi
regarding IoT environments. For this reason, wireless long-
range network solutions such as Sigfox, LoRa, and IEEE
802.11ah (HaLow) [16] were developed. These networks
consume less battery on end-devices and provide wide area
coverage. Both LoRa and Sigfox need a gateway that interfaces

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

with end devices. This gateway connects to a backhaul that
provides a connection to the Internet [17], this is depicted in
Fig. 1. One of the differences between LoRa and Sigfox is that
Sigfox operates similarly to a traditional ISP, where the user has
to subscribe to the service in order to use it, while LoRa offers
technology that any user can purchase, install the infrastructure,
and use the network at will. The advantage of IEEE 802.11ah
over LoRa and Sigfox is that as an IEEE 802.11 standard, it
natively supports IP networks [18]. Another promising method
of accessing the Internet through IoT is 5G technology,
expected to be released to the public around 2020 [19]. 5G
presents different performance requirements for distinct
scenarios and IoT is one of them.

Fig. 1. Illustration of Sigfox/LoRa overall architecture.

The current Internet architecture uses the Hypertext Transfer
Protocol (HTTP) in the presentation layer (referring to the OSI
model), but common HTTP requests consume too many
resources. For this reason, alternative lightweight protocols that
are more efficient and practical for end-devices have been
proposed for IoT [20]. Two protocols that stand out in this
regard are the Constrained Application Protocol (CoAP) and
Message Queing Telemetry Transport (MQTT), both expecting
a TCP/IP stack, and are being deployed on various IoT
deployments. MQTT runs over TCP, while CoAP runs over
UDP [21][22]. CoAP is based on the REST model, meaning
that constrained devices possess a lightweight method to
perform REST (Representational State Transfer) requests.
MQTT relies on the Publish/Subscribe (Pub/Sub) model, and
needs a message broker. A variation of the MQTT protocol for
networks that are not based on TCP/IP is called MQTT-SN
[23]. CoAP generates less overhead than MQTT for all message
sizes when the packet loss is low; when the packet loss is
higher, CoAP produces less overhead only when the message
size is small [22]. When the message is large, the probability
that TCP loses the message is smaller than UDP, which causes
MQTT to retransmit the entire message fewer times than CoAP
[22]. Another aspect of IoT is data representation. Currently,
the most used encoding technique is JSON, but one of its
biggest strengths (easily readable to humans) implies more
computational capacity when encoding or decoding as well as
transmitting. However, JSON is far superior to its competitor
XML [24]. In the current Internet, this inefficiency is worth the
advantages, but in IoT every Byte counts. Therefore, binary
encodings such as Apache Thrift and Google’s Protocol buffers
are better suited for most IoT devices [25]. Despite JSON
inefficiency in IoT, many devices in IoT environments still use

it. However, to maximize efficiency, they should only use
JSON encoding when strictly necessary.

III. INTERNET OF THINGS PLATFORMS
In computer science and engineering, an architecture

describes the general organization of a system, abstracting from
restraints such as implementation technology [26]. It goals to
understand and describe a system behavior. In [2], the most
relevant architecture proposals for IoT are surveyed and
reviewed. To summarize the different approaches, the most
relevant layers that are available in most IoT solutions are
illustrated in Fig. 2. They are as follows: i) Users or
applications, ii) IoT platform, and iii) devices and
infrastructure.
Users or applications: this upper layer addresses the users and
auxiliary applications such as decision support tools or social
media.
IoT platform: is a software package that integrates devices,
networks, and applications. The platforms hide implementation
complexity from the user, because they support and enable IoT
solutions by providing an ecosystem where things are built
upon [27].
Devices and infrastructure: at the low layer, the physical IoT
infrastructure is located. It includes network devices (including
“things”), multiple access, and modulation techniques.

Fig. 2. Simplified IoT layered architecture.

Like most software, platforms possess requirements.

Software engineering states that requirements are divided in
functional and non-functional [28].

A. Functional requirements
Functional requirements are functionalities that describe what a

system should be qualified to perform (what should be done) [29].
There are cases where functional requirements state what systems
should not do [28]. Either functional requirements are met or not,
there is no objective way of quantifying them. The functional
requirements of IoT platforms are described as follows.

Resource discovery: if an individual does not know what are
his capabilities he cannot advertise them to the others. The same
principle is applied in IoT, where it is crucial for things to be
aware of their abilities and limitations, so they can announce to
peers what resources they offer. Expecting a human to complete
this task for every IoT device manually is impractical, so

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

discovery mechanisms need to scale well. Resource discovery
is the process used by a device to search for the desired
resources, where the entire network is probed for services [10].

Resource management: every application requires QoS
(Quality of Service) to be reliable, and that is only possible
through fair resource allocation. Platforms should be able to
estimate device battery-time, current memory usage, and other
relevant internal data to facilitate resource allocation and satisfy
application needs. An efficient resource management can
guarantee that a device that is handling many requests or is low
on battery is requested less often if other devices are able to
perform the same task.

Data management: data are critical in every application; It
holds a big part of IoT value, so it should be appropriately
handled. In this paragraph, data refers to what is sensed by the
thing, or any other information that is interesting to the
application. Data management consists of acquiring
information, storing in a database, and processing through
analytics.

Event Management: IoT applications can generate a
massive number of events. Event management is an extension
of data management. After storing data, other applications
make use of it; meaning that accurate decisions can be made in
real-time with the information provided by the data, and the
proper events are generated.

Code Management: updating every device in person is
unpractical, and IoT will have a plethora of them. Platforms
should facilitate updating operations since they possess a
connection to devices.

B. Non-functional requirements
Non-Functional requirements are certain aspects that a

system should ensure, to guarantee QoS (Quality of Service)
[29]. These requirements are described as follows.

Scalability: an IoT platform needs to be scalable, since the
things connected to a network grow exponentially, so will the
amount of data. Platforms should provide a similar QoS as time
passes and more devices are added.

Real-time or Timeliness: most applications will rely on real-
time data, so data must continuously be updated. In computer
science, the term real-time means that the user barely perceives
the delay between sending data, and the amount of time the
computer takes to receive and process the data.

Reliability: is the likelihood that the software will
experience no failures in a specified timeframe. The specified
timeframe depends on the scenario. This means that the
timeframe can be the duration of a single task or even the entire
software lifecycle.

Availability: platforms supporting critical IoT applications
must be available at all times. The platform should remain
operational when executing tasks, even if it is experiencing
failures. Reliability and availability should work together to
ensure some level of fault tolerance.

Security: one of the most significant concerns in every
application is always security. In IoT, that aspect is even more
critical since a compromised object could perform all sorts of
attacks such as DoS (Denial of Service) [30], or even disclose

sensitive information such as user location, regular schedule, or
even live video. The implications of such data being exposed
are limitless, and platforms should do their best to protect user
data, while also providing intrusion detection mechanisms.

Privacy: a substantial amount of Facebook and Google
revenue comes from collecting user data and selling to
advertisers (users consent to this practice in the service
agreement). However, there is no way of being sure what data
they collect. Privacy issues are related to the willing disclosure
of data are an enormous concern. This problem is even more
severe when VoiceLabs (devices that are always listening) [31],
such as Amazon Alexa and Google assistant are used. An IoT
platform escalates the risks further with the amount of collected
data. A business model that could be popular in the future is for
users to consume cloud systems available in the form of PaaS
(Platform as a Service) for free with the tradeoff of the data
being sold to advertisers and other interested parties. The
advantage of PaaS solutions is that they are located in the cloud,
and authenticated users can access the data located on the server
from anywhere around the globe without having to worry about
deploying or managing the infrastructure [32].

Ease of deployment, maintenance, and use: these
platforms will be handled by users, who might not have
technical expertise. The average user should be able to install,
maintain, and use the platform easily. Software that are easy to
use are preferred by the public and usability without
compromising security will probably be one of the key aspects
of successful IoT solutions.

Interoperability: the platform should be compatible with
various devices and applications with minimal effort from
developers. If the Platform supports many devices, it will gain
a boost in popularity and will indirectly turn the solution more
scalable. A way of reaching interoperability is if besides the
popular HTTP(S), the platform also supports common IoT
communication protocols such as CoAP and MQTT. Also,
platforms should expose some functionalities through APIs
(Application Programming Interface). APIs allow software to
expose functionalities to other applications and things without
sharing actual code [9].

Spontaneous interaction: new devices will continuously be
added to the network, or even repositioned. These changes in
the network will occur at any time. Platforms should help
devices discover and interact each other with minimal human
interference.

Multiplicity: multiple devices are expected to communicate
simultaneously; when various devices offer the same service,
platforms should help other IoT intervenients decide which one
provides the best service. If instead of querying a single entity,
the device merely broadcasts a service solicitation to the entire
network, the device would then have to decide which is the best
(in the case that more than one entity provides the desired
service). If a single entity is enquired for the best device for a
service, the decision of the most suitable service is delegated to
a “smarter” player. The problem with querying a single entity
is that better devices will be prioritized. Therefore, better
devices will not always be able to provide the best service due
to memory constraints (too many requests being processed), or

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

even constraints from the physical world such as distance.
These are issues related to multiplicity [33], and platforms
should take them into account when replying.

Adaptability and Flexibility: the platform should be able to
adapt to long-term changes, as well as be flexible enough for
short-term alterations. The platform should also be viable
across multiple scenarios.

C. IoT platform categories
The best would be for IoT platforms to support all the

mentioned requirements. Instead, most IoT platforms are built
to support some of the previous requirements and fall under
three categories that are described as follows i) Device
management, ii) application development, and iii) application
enablement. Table I displays a list of IoT platforms in
alphabetical order, and it also displays which categories each
one targets. No category is more important than another.
Nevertheless, the focus of this paper is on application
enablement platforms.

Device management platforms are focused on remote
device management and the optimization of network resources.
The definition of device management that is going to be used in
this paper is inspired in OMA DM (Open Mobile Alliance
Device Management) specification. According to this standard,
device management consists (but is not restricted) to setting
initial configuration (provisioning), changing parameters or
settings (maintenance), delivering updates (upgrading), query
device status, diagnostics, error reporting (reporting), and event
processing [34]. These platforms also focus on connectivity, as
well as optimizing the usage of network resources. They collect
the network capabilities and optimize the network resources by
offering tools that facilitate data delivery, device detection, and
network diagnostics. If a specific gateway in the network is
overloaded or is short on battery, the platform should notice and
take proper actions. Plug and play is another concern for this
type of platform, so when new devices enter the network or get
repositioned, little configuration by the user is necessary. It is
important to notice that device management usually requires
that additional software is installed on the device. Notice that
some software frameworks that enable D2D (Device to Device)
connectivity will also be included in this category.

Application development platforms are focused on
developing secure applications that can scale to many users, and
deal with the heterogeneity present in IoT environments. This
type of platforms also offers built-in tools to integrate with
popular service providers allowing the developed applications
to be compatible with them. Platforms that merely provide basic
SDKs (Software Development Kit) to send/receive data on their
platform will not be included in this category. However,
software development frameworks and toolkits specifically for
IoT will be included in this group.

TABLE I
AVAILABLE IOT PLATFORMS AND CORRESPONDING TARGETED AREAS.

IoT platforms App
enb

App
Dev

DM &
Conn

Alljoyn (Framework) [35] X
Amazon IoT platform [36] X
Artik Cloud [37] X X
Autodesk Fusion Connect [38] X
Carriots [39] X X
Chorevolution [40][41] X
CloudPlugs [42] X
Devicehive [43] X
EVRYTHNG [44] X
Fiware (Orion+STH) [45][46] X
GroveStreams [47] X
InatelPlat X
Iotivity (Framework) [48] X
Kaa [49] X
Konker [50] X
Linksmart [51] X X
Losant [52] X *** X
M2Mlabs (Framework) [53] X
Microsoft Azure IoT Suite [54] X
Nimbits [55] X
Nitrogen [56] X
OpenIoT [57] X X
Sitewhere [58] X
Stack4Things (Framework) [59][60] X
Tago [61] X
Telit IoT platform [62] X X
Temboo (Toolkit) [63] X
ThingSpeak [64] X
Thingworx IoT platform [65] X
Ubidots [66] X
WSO2 IoT server [67] X
Webinos [68] X X
Xively [69] X X
*** – Although the development for Losant is for the Losant platform, the

tools are very advanced.

Application enablement platforms are focused on enabling

and integrating external applications. They provide means to
manage and visualize data, which accelerates application
development and facilitates integration with enterprise systems
such as CRM (Customer Relationship Management) and ERP
(Enterprise Resource Planning). Additionally, these platforms
also secure user data and enable information exchange among
various devices/applications. This type of platform is also
called IoT middleware platform, or IoT middleware, and are the
focus of this paper. It is very common for this kind of platform
to also advertise themselves as supporting device management.
However, most do not offer ways of delivering updates. From
here on, the terms middleware, IoT middleware, and IoT
middleware platform will be used interchangeably. The
middleware is one of the enabling technologies for IoT [10][3].
Further details regarding IoT middleware platforms can be
found in Section IV.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

IV. IOT MIDDLEWARE PLATFORMS
As the name suggests, middleware is a software that is

located in the middle (between two things). The primary goal
of a middleware is bringing different systems together so they
can interact with each other [70]. The role of middleware is not
only to enable communication but to facilitate it. No
middleware can be applied to every scenario, so they are
generally built for specific or set of scenarios. In the literature,
IoT middleware solutions are sometimes referred to as IoT
platforms or IoT middleware platforms because generally, the
middleware is a platform, but it is not the only type of IoT
platform.

In IoT, middleware acts as a translator. To illustrate it,
imagine a scenario where three people from different
nationalities debate. If they do not have a common language
among them (the standardization option), they would need a
translator mediating the conversation. Now imagine that the
three people are different applications (APPs). APPs
communicate through APIs (the language), each APP has its
own API. Without a middleware (the translator) each APP must
understand every other API. This simple idea allows users to
focus on the problem and it is illustrated in Fig. 3, because
instead of knowing how each application works, users
manipulate data from one application (the middleware).

Fig. 3. Illustration of the communication (a) without middleware and (b) with
middleware.

There are many IoT middleware solutions available in the
literature as well as the market. Some of these solutions are
open-source and free to download, trial, like most open-source,
the code can be altered at will. Other solutions are closed-
source, and are only available in the cloud in the form of PaaS
(Platform as a Service). The advantage of PaaS solutions is that
they are located in the cloud, and authenticated users can access
the data located on the server from anywhere around the globe
without having to worry about deploying or managing the
infrastructure [32]. Both open- and closed-source middleware
solutions from Table 1 are described below.

Amazon IoT platform [36] is an IoT middleware platform
developed by Amazon. It supports MQTT, REST, and
Websockets communications with its server. One of the biggest
advantages of Amazon IoT is that it easily allows interaction
with other Amazon services such as S3, Machine learning,
CloudWatch, and many more. Their business model is PaaS.

Artik Cloud [37] is a platform developed by Samsung. It
provides application enablement as well as device management.
It supports MQTT, REST, Websockets, and CoAP
communications with its server. One of the advantages of Artik
Cloud is that popular IoT apps and devices such as Amazon
echo and Google Home can be easily integrated with it. Their
business model is PaaS.

Autodesk Fusion Connect [38] is an IoT middleware
platform developed by Autodesk. It is marketed as supporting
all M2M (Machine to Machine) protocols and vendor-specific
technology from over 50 devices. One of its biggest strength is
the fact that it provides comprehensive analytics tools. Their
business model is PaaS.

Carriots [39] is a platform developed by Carriots. It provides
application enablement as well as device management. It
supports MQTT and REST communications with its server.
Their business model is PaaS, and it can integrate with external
systems such as Dropbox.

Cloudplugs [42] is an IoT middleware platform developed
by Cloudplugs. It supports MQTT, REST, and Websockets
communications with its server. Their business model is PaaS.

Devicehive [43] is an open-source middleware platform
created by DataArt and is distributed under Apache license 2.0.
It supports MQTT, REST, and Websockets communications
with its server. Although it is open-source, an online version is
available as PaaS where users can trial for free, or expand to a
paid version. To successfully deploy the solution, users must
install PostgreSQL, Apache Kafka, and Java 8 or above. The
downside of Devicehive (when deploying a private server) is
that measurement data from devices is cached, meaning that if
the server is restarted, or runs out of memory all data are lost. If
the user desires this feature, it is necessary to create an
additional connector or modify backend logic. However,
Devicehive plans to support this feature in next releases.

EVRYTHNG [44] is an IoT middleware platform developed
by EVRYTHNG. It supports MQTT, REST, Websockets, and
CoAP communications with its server. An interesting feature is
that it allows integration with external Business Intelligence
systems. Their business model is PaaS.

Fiware (Orion+STH): It is common for Fiware to be
referred as a middleware platform. In reality, Orion Context
broker is the middleware. Orion is an open-source middleware
platform created and maintained by Fiware and is licensed
under Affero General Public Licence (GPL) version 3. It is a
publish/subscribe implementation of the NGSI-9 and NGSI-10
Open RESTful API specifications. It only supports REST
communications with its server. To successfully deploy the
solution, users must have MongoDB installed. The downside of
Orion (when deploying a private server) is that its specification
states that only the last collected value is stored in the database,
meaning that chronological data consultation is not possible.
Recognizing the limitations of Orion, Cygnus and STH (Short
Time Historic) were developed by Fiware. They both subscribe
to Orion notifications, and when values are changed, they are
persisted to the database. The main difference between Cygnus
and STH is that Cygnus only stores data, and no consultation is
possible, while STH allows both. Fiware officially supports

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

both Cygnus and STH.
InatelPlat is a middleware platform created in August 2017,

at INATEL’s (Instituto Nacional de Telecomunicações) ICC
(INATEL Competence Center). The goal is to provide PaaS for
interested buyers. Currently, it only supports REST
communications with its server, but the intention is to support
other protocols by early 2018. No further information regarding
implementation was provided because INATEL desires to keep
that information private. The name InatelPlat is temporary, and
the final version will have a different name.

Kaa [49] is an open-source middleware platform created and
maintained by KaaIoT and is licensed under Apache license 2.0.
Although it is open-source, users can expand to a paid version
by contacting the KaaIoT [71]. It supports REST
communications with its server, and SDKs can be deployed to
devices. To successfully deploy the solution, users must have
Oracle Java SDK, either MariaDB or PostgreSQL, MongoDB
or Cassandra, and Zookeeper. The downside of Kaa (when
deploying a private server) is that it is not possible to inquiry
the stored data from the server through the REST API, meaning
that the user has to develop another application for this feature.
To those who are interested, it is possible to build a REST API
that returns data from a MongoDB database using free tools
such as Spring tool suite [72].

Konker [50] is an open-source middleware platform created
and maintained by the Brazilian KonkerLabs. It is licensed
under Apache license 2.0. Although it is open-source, an online
version is available as PaaS where users can trial for free, or
expand to a paid version. It supports REST and MQTT
communications with its server. To successfully deploy the
solution, users must have Java SDK, MongoDB, Cassandra, an
application server that supports servlets.

Linksmart [51], formerly known as Hydra [73], is a
complete IoT platform that supports device management, as
well as application enablement. The app enablement module is
called Linksmart HDS (Historical Datastore). HDS is an open-
source middleware platform that is licensed under Apache
license 2.0. It supports REST communications with its server,
and data visualization is made through grafana. To successfully
deploy the solution, users must have either influxDB or
MongoDB installed. Regarding the platforms that are present in
this paper, it is the only one that uses SenML [74].

Losant [52] is a platform developed by Losant. It provides
application enablement as well as device management. It
supports MQTT and REST communications with its server.
Although the application development tools offered by them are
to communicate with their own middleware, the tools are very
advanced. One of its biggest advantages is that besides analytics
it can also be used on the edge of IoT devices. Their business
model is PaaS.

Microsoft Azure IoT Suite [54] is an IoT middleware
platform developed by Microsoft. It supports MQTT, AMQP,
and REST communications with its server. One of the biggest
advantages of Azure IoT suite is that it easily allows interaction
with other Azure services such as machine learning, Data
warehousing, and much more. Their business model is PaaS.

Nitrogen [56] is an open-source middleware platform. Some

of its modules are licensed under MIT license, while others are
under the Apache license 2.0. To successfully deploy the
solution, users must have Nodejs installed. The disadvantage is
that only Nitrogen enabled devices (devices that run Nitrogen
software) can communicate with the server. The project has
received no updates to its Github repository since March 2015,
and the official website domain (nitrogen.io) is for sale [75].
Which leads the paper to conclude that the project was
terminated.

Nimbits [55] is an open-source middleware platform created
and maintained by Nimbits; it is licensed under Apache license
2.0. It supports MQTT and REST communications with its
server. Although it is open-source, an online version is available
as PaaS where users can trial for free. To successfully deploy
the solution, users must have Java, Redis, a java server
application, and Mosquitto MQTT installed. The problem with
Nimbits is that it is going through a restructure and all
documentation related to usage was erased from the official
documentation, and the public cloud is down with no estimated
date of return.

OpenIoT [57] is an open-source platform that supports
device management, as well as application enablement. Created
and maintained by the OpenIoT consortium, it is licensed under
Apache license 2.0. It supports REST and GSN
communications with its server. To successfully deploy the
solution, users must have Java, Maven, JBoss, and Local
Virtuoso installed. Although it is a fascinating project, it has
received no updates to its Github repository since November
2015.

Sitewhere [58] is an open-source middleware platform
created and maintained by Sitewhere and is licensed under
CPAL-1.0 (Common Public Attribution License Version 1.0).
Although it is open-source, users can expand to a paid version
by contacting Sitewhere. It supports MQTT, AMQP, and REST
communications with its server. To successfully deploy the
solution, users must have Java, MongoDB, HiveMQ, and
Apache Tomcat.

Tago [61] is an IoT middleware platform developed by Tago.
It supports MQTT and REST communications with its server.
Their business model is PaaS.

Telit IoT platform [62] is an IoT platform developed by
Telit. It supports MQTT and REST communications with its
server. It provides application enablement as well as device
management. One of its biggest advantages is that besides
analytics it can also be used on the edge of IoT devices.

ThingSpeak [64] is an IoT middleware developed by
ThingSpeak. It supports REST communications with its server.
The differential of this platform is that it offers MATLAB
analytics. ThingSpeak started as an open-source project, but
currently offers its service in the form of PaaS, although the old
version of the server is still up in the Github repository.

Thingworx IoT platform [65] is an IoT platform developed
by PTC. It supports REST communications with its server, and
additional connectors are available in its marketplace. It
provides application enablement as well as device management.
One of its biggest advantages is that besides analytics it can also
be used on the edge of IoT devices.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Ubidots [66] is an IoT middleware platform developed by
Ubidots. It supports MQTT and REST communications with its
server. Their business model is PaaS.

Xively [69] is an IoT platform developed by LogMeIn. It
provides application enablement as well as device management.
Xively supports MQTT and REST communications with its
server. One of its biggest advantages is that besides analytics it
can be easily integrated with Amazon web services, Salesforce
Device Bridge, and custom integrations with external CRM and
ERP tools are also possible. Their business model is PaaS.

Webinos [68] is an open-source service platform that
supports device management, as well as application
enablement. It was developed as part of the EU FP7 ICT
Programme and is licensed under Apache license 2.0. Webinos
uses the concept of Personal Zones, which allows
communication between services and devices. Personal zones
are divided into two parts: i) PZH (Personal Zone Hub) and ii)
PZP (Personal Zone Proxy). A PZH possesses a public IP
address and runs in the cloud [76]. The PZP is a device that is
able to run Webinos services. To successfully deploy a personal
zone, users must have Nodejs installed. The disadvantage is that
only Webinos enabled devices (devices that run Webinos
software) can communicate with the server, besides that, it is
not suitable for real systems, because many critical features are
still unimplemented. It has received no updates to its Github
repository pzp module since February 2014, and pzh since
March 2015.

V. A REFERENCE MODEL FOR IOT MIDDLEWARE
When IoT is promoted, beautiful scenarios are presented

where gadgets study user habits and also react to them,
improving quality of life and user experience. Most of the
presented scenarios finish with a sentence similar to this one:
“all of this with minimal human intervention.” These scenarios
are only possible because of middleware platforms that
integrate data from all the devices and acts upon it. For this
reason, Middleware are present in most IoT scenarios.
Collecting data and react accordingly is a crucial feature in IoT
because most devices are small, and resource constrained to
make complex decisions. Therefore, the middleware platforms
are responsible for part of the intelligence in IoT. To fulfill their
goals, the modules of an IoT middleware platform architecture
should reflect IoT requirements as follows: i) interoperability,
ii) persistence and analytics, iii) context, iv) resource and event,
v) security, and vi) Graphical User Interface (GUI). The
modules of a considered ideal IoT middleware are presented in
Fig. 4 and described as follows.

Interoperability module: The IoT is a heterogeneous
environment, and the middleware platform is the integrator.
Therefore, it should provide an API that allows software to
expose functionalities to other applications and things without
sharing actual code [9]. API requests made by
things/applications can be performed through any protocol, so
the middleware should at least support the most popular IoT
application protocols, such as CoAP, MQTT, and HTTP(S) [9].
The module should also support standard data representation
methods, like XML (eXtensible Markup Language) and JSON

(JavaScript Object Notation), as well as binary encodings
(Apache thrift, Google protocol buffer), another data
representation that is emerging for IoT is SenML (Sensor
Markup Language) [74]. To further extend interoperability, the
middleware should provide basic SDKs, so the code can
quickly be deployed to devices, and they can send/receive data
to/from the middleware platform. SDKs can be vital, because
adding new devices to the middleware is relatively easy, but is
not scalable in the sense that it is tedious for the user to add
various devices at once. Then, adding new devices should be
further simplified (without compromising security). This
module is intended for future expansions, and is ideal for new
and unforeseen technologies to be integrated here.

Persistence and Analytics module: IoT produces a massive
amount of data, which needs to be quickly and continuously
stored for chronological consultation and further processing
[77]. IoT Middleware should use NoSQL databases to store
data since they are generally faster than SQL databases because
their data model is simpler [78]. It is commonly said that in IoT,
Things learn from user habits. In practice, devices are
constrained in resources, and the middleware is the one who
learns from collected data. Therefore, middleware least it
should provide basic analytics, such as simple graphs, averages,
or min/max values [8]. However, the best is further data
processing through data warehousing, big data, or even feeding
these data to deep/machine learning algorithms because the
collected data are highly valuable, especially after being
processed [79].

Context module: In a communication, context provides
meaning to a conversation. IoT environments are expected to
adapt to surroundings and context will play a significant role in
this regard [4]. A system is context-aware if it is capable of
providing relevant information or services according to the task
demanded by the user [80]. Regarding user interaction, systems
are classified into three levels of context-awareness [80]: i)
Personalization, ii) Passive, and iii) Active. Context-
awareness personalization is when the user states to the
system precisely what he wants, and the system merely follows
what was programmed (e.g., user programs the lights to go on
when he enters the room). Passive context-awareness is when
the system monitors the environment and suggests actions
according to the monitored data (e.g., a user walks into a room,
and the system asks if he should turn on the lights). Active
context-awareness is when the system monitors the
environment and acts on the changes to the environment
autonomously (e.g., a user walks into a room, and the system
autonomously identifies if the user can navigate through the
room and turns on the light with the right degree of luminosity).
Context-awareness affects the ability to adapt to new
circumstances or environments, and is deeply connected to
event detection/management. For context-awareness to be
achieved, it has to be modeled. In recent years the ontology-
based modeling has become mainstream, spawning different
standards. A popular standard is OWL (Web Ontology
language) that is backed by W3C (World Wide Web
Consortium). More information regarding other context
modeling techniques, as well as context in general can be found

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

in [80]. Semantic interpretation and ontologies are expected in
this module because people communicate semantically and the
same is expected when humans interact with machines in IoT
environments. For the IoT that is envisioned the best is artificial
intelligence in this module (one of the most challenging fields
in this technology), but the middleware platform can use
external APIs to achieve this goal. Currently, some middleware
proposals such as Linksmart and OpenIoT rely on ontologies to
reach semantic interoperability between the sensed data [81].

Resource and Event module: For devices to be efficient in
their actions, they must know what they can perform and their
internal operation status (battery level, internal/external
temperature, current memory usage), so they can advertise their
resources and discover resources from others. Multiple devices
are expected to communicate with each other simultaneously;
they can even offer the same service, and better devices are
supposed to be requested more often than the others. This
means that they will not always be able to provide the best
service, due to memory constraints (too many requests being
processed), or even constraints from the physical world such as
distance. These issues are a concern related to the multiplicity
of actions and the limitations of the tiny device [33].
Middleware platforms can minimize these problems by
managing and optimizing these interactions. When connecting
for the first time to a middleware platform, devices and external
applications should announce their capabilities through some
sort of text message (e.g., in JSON). Then, the context module
semantically interprets the capabilities, and when a device or
application needs an individual service, it can query the
middleware for nearby devices that are able to fulfill the task.
The middleware understands all capabilities provided by the
environment and can generate the proper events. Middleware
should also facilitate events update through devices [9], as it is
not expected a person can manually manage every single device
in large environments such as smart cities.

Graphical User Interface: A graphical user interface (GUI)
is a must for every modern software, as it makes applications
user-friendly. In IoT middleware, the GUI is often referred as
Dashboard, because many data will be exchanged, and
dashboards present data in a way that is easy to read. Despite
GUIs being so important, it is common for open-source
middleware platforms do not possess a native GUI, relying
instead on integrations with third-party applications such as
Freeboard [82] or Grafana [83] to provide dashboards. These
third-party applications can be deployed on private instances,
are very powerful and relatively easy to use, as the hardest part
is having to configure data-sources when using them.

Security module: IoT will not become popular without plug-
and-play. This means that middleware should be flexible
enough for the average user to handle. Unfortunately, ease of
use (usability) is difficult to achieve with the level of security
needed by middleware. If the data could be tampered or
retrieved by a malicious user or application, the threats would
be limitless. IoT devices are not known for their security, and
middleware platforms should not follow the same trend because
they are the brain of IoT. The amount and value of the collected
data are significant and must be secure, but the solution is not

simple for any IoT scenario including middleware, because
devices are very constrained in resources. Encryption, for
example, is costly (regarding processing), so lightweight
encryption tools or algorithms must be used for this goal, along
with a lightweight cryptographic protocol [84]. Public keys
require that certificates are updated when they expire, and
propagating these updates to every device is not a simple task.
Both cryptography and public keys are basic security features
that are common on the current Internet, and their limitations in
IoT display the problem in hand, so every security aspect that
is efficient and can be included exclusively on a powerful server
is welcome. With that in mind, the paper proposes essential
security aspects for middleware security in IoT. They are: i) Per
device authentication, ii) The credentials to consult and publish
data should be different, iii) devices should access other device
data using their own credentials, and iv) middleware should
know device habits and store their MAC and IP. More details
regarding the proposed security measures, and the reasons
behind them can be found later in this Section.

Fig. 4. Illustration of the proposed reference model for IoT platform modules.

An IoT environment is characterized by its heterogeneity

considering different technologies and data collected will be
used across many IoT verticals. However, some scenarios are
broader than others. Small solutions like weather stations will
just consider data collection and storage, as most of their data
are predictable and repetitive; then, it will most likely perform
basic analytics and expose data for external consultation. In big
verticals, such as smart cities, that can include energy
management, smart parking, smart transportation, mobility,
etc., data are unpredictable. The middleware platform should be
equipped with AI mechanisms to analyze broader scenarios. In
practice, this means that not all possible scenarios require all
the presented modules since in small scenarios such as a
weather station, a simple middleware platform that facilitates
data consultation and storage might suffice.

A. Security aspects related to IoT middleware
Security is an essential aspect of any system, and it seems

IoT developers are relegating it to second plan, so that products
can be developed faster, and the exploits can be later resolved.
It is this paper’s view that IoT middleware should not follow

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

the same path, and should ensure data security. For this reason,
four fundamental aspects are proposed in this paper with the
intention of increasing security in IoT middleware, and are
based on the assumption that device credentials were somehow
compromised.

Per device authentication is crucial for the safety of
middleware data. Every device should have its individual
credentials when accessing the middleware platform. If
credentials get compromised, and the user notices, the threat is
eliminated by revoking or updating the device credentials.
However, if all devices share the same authentication, besides
revoking or updating the credentials, the user also has to insert
them into every other device. Some middleware platforms
already follow this guidance.

Devices should use different credentials to publish and
consult data from the middleware. Some already comply with
the guidance that every device should have its own
authentication. However, the implementation is limited, as the
same credentials to publish device data are the same that are
used to consult. This means that an organization cannot safely
expose its device data to external users, without risking that data
is tampered. For this reason, authentication per device is not
enough, and different credentials should be used to publish and
retrieve data. To the best of this paper’s knowledge, none of the
existing middleware platforms implements this security
measure.

Devices should access other device data using their own
credentials. The former scenario is an excellent example of a
weather station, where device data can be retrieved by any
interested party, but makes it difficult to discover which device
credentials were compromised. Imagine that one day a close
friend visits the user house and says he hacked one of the
devices and now he always knows what is in the refrigerator.
The solution would be to change the consultation credentials of
the refrigerator and propagate them to every device that needs
it (and that is the problem). A few days later the same friend is
back, and compliments for changing the password but says he
can consult it again. The friend also says that changing the
refrigerator password is pointless, because he hacked another
device to get the password. The cycle would go infinitely,
because the user cannot determine which device was breached.
However, if it is possible for devices to access other device data
using their own credentials, by checking the middleware logs,
one can determine which device credential was used from an
external source, and the user can take proper actions. When
configuring devices, users should be able to determine what
other devices or pre-defined group of devices have access to
consulting rights. Also, some devices that simply sensor data
and never retrieve it should not have rights to either consult
other devices, or its own data. To the best of this paper’s
knowledge, none of the existing middleware platforms
implements this security measure.

Middleware should know device habits and store their
MAC and IP address. All past scenarios assume that the user
notices credential theft, but in real life it is hard to notice such
breaches, especially if the middleware does not comprehend the
devices habits. For this reason, middleware should know device

habits and store their MAC and IP address. If the middleware
notices that a device is consulting or publishing in different
intervals than it regularly does, or is consulting devices that it
usually does not, it is an indicator that the device was
compromised, and the user should be alerted of the anomaly to
take proper actions. However, if the attacker knows this security
feature, he can just disable the original device and keeps
sending tampered data from any part of the globe. The
middleware platform can counter this if it can extract the MAC
and IP address directly from the HTTP header, and alert the
user. In the Internet, IP changes, so the middleware has to detect
if the device IP has changed in a reasonable range. The only
scenario where the credential theft is not detected with this
security features is if the attacker manages to spoof the device
regular IP address, clone the MAC address, and keeps the
device transmission habits. To the best of this paper knowledge,
none of the existing middleware platforms implements this
security measure.

VI. OPEN ISSUES AND RESEARCH OPPORTUNITIES
IoT poses significant challenges and opportunities for

companies and scholars in every field. The significant number
of connected devices that are expected calls the attention of
academia, industry, and regulators, as the total annual economic
impact due to IoT is estimated to range from 2.7 to 6.2 trillion
USD (United State Dollars) by 2025 [85]. New needs will
emerge, and an entirely new ecosystem might rise; researchers
should be quick identifying new fields, the industry should be
quick implementing innovative ideas.

When organizations choose a particular software, it is a long-
term commitment, in IoT, it will not be different. Middleware
who are not supported by the community or major players are
in disadvantage, as currently, hundreds are available (especially
as services in the cloud).

It is extremely important developing an objective and
detailed way for comparing middleware systems. Currently,
comparing middleware solutions comes down to preference.
The “go to” for researchers currently consists of elaborating a
list of relevant features (that reflect some requirements of
middleware), and mark which ones accomplish them, such
approach is often confusing for the readers because in theory,
they all accomplish the same goals. Comparing middleware
located in the Cloud is even harder since a fair comparison
among different solutions implies that the conditions for all of
them are the same across all the experiments. For software, this
means that they will have the same available resources
(memory, processing power, disk space, etc.). This pre-
condition turns the comparison between solutions that are only
available in the cloud, and local instances very complicated. As
it is not possible to determine what resources are allocated to
the cloud instance. In practice, this means that with more
resources, the local instance can perform better in comparison
with fewer resources. Another challenge related to comparing
cloud solutions is related to the cost. The current business
model of most cloud platforms consists on billing monthly or
yearly per number of requests, analysis, stored records, or sent
emails. Perhaps the biggest challenge in IoT is related to

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

security. Many tech experts do not advise consumers to
purchase devices, such as, door locks or children toys that are
connected to the Internet. They mention such advises because
IoT is seen as insecure, mainly, because developers neglect
important security aspects to deliver products faster. If IoT
image does not change soon, regaining public (users) trust will
be difficult.

VII. CONCLUSION
The Internet of Things is a scenario where most devices are

constrained in resources, which means that the intelligence will
be delegated to a more capable entity. This entity is a software
identified as IoT middleware or IoT middleware platform, and
sometimes it is simply referred as IoT platform although it is
not the only type of IoT platform. Choosing the right platform
for a particular scenario can be the difference between a good
and bad IoT solution because it is a long-term investment.
Understanding what middleware should accomplish, and
recognizing their role in IoT solutions will be crucial for
organizations or individuals interested in the IoT market.
Middleware developers should spend additional time making
them more user-friendly without compromising security, as
usability with a certain degree of quality might be the key to
prosperity in this already overloaded market. Currently, there is
no objective way of comparing the different middleware.
Therefore, a performance assessment based on objective
metrics can substantially contribute to selecting middleware for
each environment, so further effort should be placed in this
regard.

REFERENCES
[1] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “ Internet of

Things, Blockchain and Shared Economy Applications,” Procedia
Computer Science, vol. 98, pp. 461–466, 2016.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “ Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “ Internet of
Things (IoT): A vision, architectural elements, and future
directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–
1660, Sep. 2013.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
survey,” Comput. Networks, vol. 54, no. 15, pp. 2787–2805, Oct.
2010.

[5] International Telecommunication Union, “Recommendation ITU-
T Y.2060: Overview of the Internet of things,” pp. 1–22, Jun. 2012.

[6] D. Evans, “The Internet of Things - How the Next Evolution of the
Internet is Changing Everything,” CISCO white Paper, pp. 1–11,
Apr. 11, 2011.

[7] Ofcom, “The communications market report: UK,” pp. 1-431,
Aug. 6, 2015.

[8] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng,
“ IoT Middleware: A Survey on Issues and Enabling technologies,”
IEEE Internet Things J., vol. 4, no. 1, pp. 1–20, Feb. 2016.

[9] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla,
“Middleware for internet of things: A survey,” IEEE Internet
Things J., vol. 3, no. 1, pp. 70–95, Feb. 2016.

[10] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh,
“Middleware technologies for cloud of things-a survey,” Digit.

Commun. Networks, Apr. 2017.
[11] J.-C. Lee, J.-H. Jeon, and S.-H. Kim, “Design and

implementation of healthcare resource model on IoTivity
platform,” in 2016 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju, South
Korea, October 19-21, 2016, pp. 887–891.

[12] O. Tomanek and L. Kencl, “Security and privacy of using AllJoyn
IoT framework at home and beyond,” Proc. 2nd Int. Conf. Intell.
Green Build. Smart Grid, IGBSG 2016, Prague, Czech Republic,
June 27-29, 2016, pp. 1-6.

[13] J. Zhou, Z. Cao, X. Dong, and A. V Vasilakos, “Security and
Privacy for Cloud-Based IoT: Challenges,” IEEE Commun. Mag.,
vol. 55, no. 1, pp. 26–33, Jan. 2017.

[14] K. Wang, Y. Wang, Y. Sun, S. Guo, and J. Wu,	“Green Industrial
Internet of Things Architecture: An Energy-Efficient Perspective,” 	
IEEE Commun. Mag., vol. 54, no. 12, pp. 48–54, Dec. 2016.

[15] R. K. Ghosh, Wireless Networking and Mobile Data
Management. Singapore: Springer Singapore, 2017.

[16] B. Reynders, W. Meert, and S. Pollin, “Range and coexistence
analysis of long range unlicensed communication,” in 2016 23rd
International Conference on Telecommunications (ICT),
Thessaloniki, Greece, May 16-18, 2016, pp. 1-6.

[17] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-
range communications in unlicensed bands: the rising stars in the
IoT and smart city scenarios,” IEEE Wirel. Commun., vol. 23, no.
5, pp. 60–67, Oct. 2016.

[18] B. Badihi, L. F. Del Carpio, P. Amin, A. Larmo, M. Lopez, and
D. Denteneer, “Performance Evaluation of IEEE 802.11ah
Actuators,” in 2016 IEEE 83rd Vehicular Technology Conference
(VTC Spring), 2016, vol. 9, no. 26, pp. 1–5.

[19] J. G. Andrews et al., “What Will 5G Be?,” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[20] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M.
Mohammadi, “Toward better horizontal integration among IoT
services,” IEEE Commun. Mag., vol. 53, no. 9, pp. 72–79, Sep.
2015.

[21] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet
protocols for web enablement of sensors using constrained
gateway devices,” in 2013 International Conference on
Computing, Networking and Communications (ICNC), San Diego,
CA, USA, January 28-31, 2013, pp. 334-340.

[22] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware,” in 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), Singapore, Singapore, April 21-24, 2014, pp. 1-6.

[23] E. P. Frigieri, D. Mazzer, and L. F. C. G. Parreira, “M2M
Protocols for Constrained Environments in the Context of IoT : A
Comparison of Approaches,” XXXIII Brazilian Telecommun.
Symp., Juiz de Fora - MG, Brazil, September 1-4, 2015, pp. 1-5.

[24] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta,
“Comparison of JSON and XML Data Interchange Formats: A
Case Study,” Scenario, vol. 59715, pp. 1–6, 2009.

[25] H. Lampesberger, “Technologies for Web and cloud service
interaction: a survey,” Serv. Oriented Comput. Appl., vol. 10, no.
2, pp. 71–110, Jun. 2016.

[26] A. Clements, Principles of computer hardware, 4th ed. Oxford:
Oxford University Press, 2006.

[27] A. Tiwana, Platform Ecosystems Aligning Architecture,
Governance, and Strategy. Elsevier, 2013.

[28] I. Sommerville, Software Engineering, 10th ed. Addison-Wesley,
2010.

[29] M. Glinz, “On Non-Functional Requirements,” in 15th IEEE
International Requirements Engineering Conference (RE 2007),
2007, pp. 21–26.

[30] K. Wang, X. Qi, L. Shu, D. Deng, and J. J. P. C. Rodrigues,

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

“Toward trustworthy crowdsourcing in the social internet of
things,” IEEE Wirel. Commun., vol. 23, no. 5, pp. 30–36, Oct.
2016.

[31] P. Dempsey, “The Teardown: Google Home personal assistant,”
Eng. Technol., vol. 12, no. 3, pp. 80–81, Apr. 2017.

[32] L. Miller, Public PaaS for dummies, 2nd ed. Hoboken, New
Jersey No: John Wiley & Sons, Inc., 2016.

[33] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware
solutions for the internet of things,” in 2012 International
Conference on Collaboration Technologies and Systems (CTS),
Denver, CO, USA, May 21-25, 2012, pp. 21-26.

[34] Open Mobile Alliance, “Device Management Requirements:
Approved Version 2.0,” pp. 1–14, 2016.

[35] Slashdot Media, “SourceForge - Download, Develop and
Publish Free Open Source Software.” [Online]. Available:
https://sourceforge.net/. [Accessed: 22-Oct-2017].

[36] Amazon Web Services, “AWS IoT - Amazon Web Services.”
[Online]. Available: https://aws.amazon.com/iot/. [Accessed: 22-
Oct-2017].

[37] SAMSUNG, “ IoT Cloud Platform — Samsung ARTIK Cloud.”
[Online]. Available: https://artik.cloud/.

[38] Autodesk Inc., “Autodesk Fusion Connect. Enterprise IoT
Software Platform.” [Online]. Available:
https://autodeskfusionconnect.com/. [Accessed: 22-Oct-2017].

[39] Carriots, “Carriots - Internet of Things Platform | Home.”
[Online]. Available: https://www.carriots.com/. [Accessed: 22-
Oct-2017].

[40] M. Autili, P. Inverardi, and M. Tivoli, “Choreography
Realizability Enforcement through the Automatic Synthesis of
Distributed Coordination Delegates,” Sci. Comput. Program., vol.
1, pp. 1–27, Oct. 2017.

[41] Chorevolution, “chorevolution.eu: (Main.WebHome).”
[Online]. Available: http://www.chorevolution.eu/bin/view/Main/.

[42] CloudPlugs Inc., “CloudPlugs :: Internet Of Things Platform,
IoT, public cloud ::” [Online]. Available: https://cloudplugs.com/.
[Accessed: 22-Oct-2017].

[43] DataArt Solutions, “DeviceHive - Open Source IoT Data
Platform with the wide range of integration options.” [Online].
Available: https://devicehive.com/. [Accessed: 22-Oct-2017].

[44] EVRYTHNG, “EVRYTHNG IoT Smart Products Platform |.”
[Online]. Available: https://evrythng.com/. [Accessed: 22-Oct-
2017].

[45] Fiware, “Fiware-Orion.” [Online]. Available: https://fiware-
orion.readthedocs.io/en/develop/. [Accessed: 22-Oct-2017].

[46] Fiware, “Fiware-STH-Comet.” [Online]. Available:
https://fiware-sth-comet.readthedocs.io/en/latest/. [Accessed: 22-
Oct-2017].

[47] Grovestreams, “Welcome - Storage and Analytics for the
Internet of Things.” [Online]. Available:
https://grovestreams.com/. [Accessed: 22-Oct-2017].

[48] Linux Foundation, “Home | IoTivity.” [Online]. Available:
https://www.iotivity.org/. [Accessed: 22-Oct-2017].

[49] KaaIoT Technologies, “Kaa Open-Source IoT Platform 2017 —
IoT cloud platform the Internet of Things solutions and
applications that set the standard.” [Online]. Available:
https://www.kaaproject.org/. [Accessed: 22-Oct-2017].

[50] Konker Labs, “Konker - Your solutions connected in a fast and
simple way!” [Online]. Available: http://www.konkerlabs.com/.
[Accessed: 22-Oct-2017].

[51] Linksmart, “LinkSmart® Documentation Home - Home -
LinkSmart® Docs.” [Online]. Available:
https://docs.linksmart.eu/. [Accessed: 22-Oct-2017].

[52] Losant IoT, “Losant | Losant.” [Online]. Available:
https://www.losant.com/. [Accessed: 22-Oct-2017].

[53] M2MLabs, “Home | m2mlabs.com.” [Online]. Available:
http://www.m2mlabs.com/. [Accessed: 22-Oct-2017].

[54] Microsoft IoT, “Azure IoT Suite—IoT Cloud Solution |
Microsoft.” [Online]. Available: https://www.microsoft.com/en-
us/internet-of-things/azure-iot-suite. [Accessed: 22-Oct-2017].

[55] Nimbits Inc., “Nimbits Platform.” [Online]. Available:
https://www.nimbits.com/. [Accessed: 22-Oct-2017].

[56] Nitrogen, “nitrogenjs · GitHub.” [Online]. Available:
https://github.com/nitrogenjs. [Accessed: 22-Oct-2017].

[57] OpenIoT Consortium, “OpenIoT – Open Source cloud solution
for the Internet of Things.” [Online]. Available:
http://www.openiot.eu/. [Accessed: 22-Oct-2017].

[58] SiteWhere, “SiteWhere | The Open Platform for the Internet of
Things.” [Online]. Available: http://www.sitewhere.org/.
[Accessed: 22-Oct-2017].

[59] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito,
“Stack4Things: a sensing-and-actuation-as-a-service framework
for IoT and cloud integration,” Ann. des Telecommun.
Telecommun., vol 72, no. 1-2, pp. 53–70, February 2017.

[60] Stack4Things, “Stack4Things | An OpenStack-based Internet of
Things Framework.” [Online]. Available:
http://stack4things.unime.it/. [Accessed: 22-Oct-2017].

[61] Tago LLC, “Tago - Home.” [Online]. Available: https://tago.io/.
[Accessed: 22-Oct-2017].

[62] Telit, “ IoT Platform Overview – Telit.” [Online]. Available:
https://www.telit.com/products/iot-platforms/iot-platform-
overview/. [Accessed: 22-Oct-2017].

[63] Temboo Inc, “Temboo.” [Online]. Available:
https://temboo.com/. [Accessed: 22-Oct-2017].

[64] The MathWorks Inc, “ IoT Analytics - ThingSpeak Internet of
Things.” [Online]. Available: https://thingspeak.com/. [Accessed:
22-Oct-2017].

[65] PTC, “ThingWorx IoT Platform | PTC.” [Online]. Available:
https://www.ptc.com/en/products/iot/technology-platform-
thingworx. [Accessed: 22-Oct-2017].

[66] Ubidots, “ IoT platform | Internet of Things | Ubidots.” [Online].
Available: https://ubidots.com/. [Accessed: 22-Oct-2017].

[67] WSO2, “WSO2 IoT Server - Flexible Open Source IoT
Platform.” [Online]. Available: https://wso2.com/iot. [Accessed:
22-Oct-2017].

[68] Webinos Foundation, “webinos | The webinos Foundation.”
[Online]. Available: http://webinos.org/. [Accessed: 22-Aug-
2017].

[69] Xively, “ IoT Platform for Connected Devices| Xively by
LogMeIn.” [Online]. Available: https://www.xively.com/.
[Accessed: 22-Oct-2017].

[70] A. R. S. Hammergren, Thomas C., Data warehousing for
dummies, 2nd ed. Hoboken, N.J.: Wiley, 2009.

[71] KaaIoT, “Kaa IoT Product Development Platform — IoT
Application Enablement.” [Online]. Available:
https://www.kaaiot.io/. [Accessed: 22-Oct-2017].

[72] Pivotal Software Inc, “Tools.” [Online]. Available:
https://spring.io/tools. [Accessed: 22-Oct-2017].

[73] M. Eisenhauer, P. Rosengren, and P. Antolin, “A Development
Platform for Integrating Wireless Devices and Sensors into
Ambient Intelligence Systems,” in 6th IEEE Annual Comm. Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks Workshops, Rome, Italy, June 22-26, 2009, pp. 1-3.

[74] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L.
Du, “Connecting IoT Sensors to Knowledge-based Systems by
Transforming SenML to RDF,” Procedia Comput. Sci., vol. 32, pp.
215–222, 2014.

[75] “nitrogen.io.” [Online]. Available:
http://domain.hacker.sh/parked.html?domain=nitrogen.io.
[Accessed: 22-Oct-2017].

[76] WP3, “D3.7: Final webinos specification,” 2013.
[77] G. Fersi, “Middleware for Internet of Things: A Study,” in 2015

International Conference on Distributed Computing in Sensor

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2796561, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Systems, Fortaleza, Brazil, June 10-12, 2015, pp. 230-235.
[78] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?,”

Computer (Long. Beach. Calif)., vol. 43, no. 2, pp. 12–14, Feb.
2010.

[79] Lihong Jiang, Li Da Xu, Hongming Cai, Zuhai Jiang, Fenglin
Bu, and Boyi Xu, “An IoT-Oriented Data Storage Framework in
Cloud Computing Platform,” IEEE Trans. Ind. Informatics, vol.
10, no. 2, pp. 1443–1451, May 2014.

[80] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Context aware computing for the internet of things: A survey,”
IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[81] F. C. Delicato, P. F. Pires, and T. Batista, Middleware Solutions
for the Internet of Things. London: Springer London, 2013.

[82] “ freeboard - Dashboards For the Internet Of Things.” [Online].
Available: https://freeboard.io/. [Accessed: 27-Sep-2017].

[83] “Grafana - The open platform for analytics and monitoring.”
[Online]. Available: https://grafana.com/. [Accessed: 27-Sep-
2017].

[84] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced
lightweight encryption algorithms for IoT devices: survey,
challenges and solutions,” J. Ambient Intell. Humaniz. Comput.,
2017.

[85] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and Marrs,
“Disruptive technologies: Advances that will transform life,
business, and the global economy,” McKinsey Glob. Insitute, no.
May, p. 163, 2013.

Mauro A. A. da Cruz received the Master
degree in Telecommunications at the National
Institute of Telecommunications (Inatel), Brazil
and a five-year BSc degree (licentiate) in
informatics engineering from the Universidade
Católica de Angola (UCAN), Angola. His
research interests include Internet of Things,
middleware for IoT, and mobile computing.

Joel José P. C. Rodrigues [S’01, M’06, SM’06]
is a professor and senior researcher at the
National Institute of Telecommunications
(Inatel), Brazil and senior researcher at the
Instituto de Telecomunicações, Portugal. He is
the leader of the Internet of Things Research
Group (Inatel), Member of the IEEE ComSoc
Board of Governors as Director for Conference
Development, IEEE ComSoc Distinguished

Lecturer, the President of the scientific council at ParkUrbis – Covilhã
Science and Technology Park, the Past-Chair of the IEEE ComSoc
Technical Committee on eHealth and on Communications Software,
Steering Committee member of the IEEE Life Sciences Technical
Community and Publications Co-Chair, and Member Representative
of the IEEE Communications Society on the IEEE Biometrics Council.
He is the editor-in-chief of the International Journal on E-Health and
Medical Communications, the editor-in-chief of the Recent Advances
on Communications and Networking Technology, the editor-in-chief
of the Journal of Multimedia Information Systems, and editorial board
member of several high-reputed journals. He has been general chair
and TPC Chair of many international conferences. He is a member of
many international TPCs and participated in several international

conferences organization. He has authored or coauthored over 500
papers in refereed international journals and conferences, 3 books, and
2 patents. He had been awarded several Outstanding Leadership and
Outstanding Service Awards by IEEE Communications Society and
several best papers awards. Prof. Rodrigues is a licensed professional
engineer (as senior member), member of the Internet Society, an
IARIA fellow, and a senior member ACM and IEEE.

Jalal F. Al-Muhtadi, PhD, is the Director of the
Center of Excellence in Information Assurance
(CoEIA) at King Saud University. He is also an
Assistant Professor at the department of
Computer Science at King Saud University.
Areas of expertise include cybersecurity,
information assurance, privacy, and Internet of
Things. He received his PhD and MS degrees in

Computer Science from the University of Illinois at Urbana-
Champaign, USA. He has over 50 scientific publications in the areas
of cybersecurity and IoT.

Valery V. Korotaev is a head of Department of
Optical-Electronic Devices and Systems at ITMO
University, St. Petersburg, Russian Federation.
He received honorary Doctor of Engineering,
PhD degree in optical engineering, Specialist
degree in optical-electronic systems from the
Institute of Fine Mechanics and Optics (now
ITMO University), St. Petersburg, Russian
Federation. His main research interests include

optical-electronic measuring devices and systems, linear and angular
measurements, the polarization properties of optical systems and their
components, nondestructive testing and fault detection, inspection of
large-scale objects. He is the leader of International Laboratory
“Technosphere Safety” (http://irc.ifmo.ru/en/87809/), Honorary
Worker of Higher Professional Education of the Russian Federation,
corresponding member of the Prokhorov Academy of Engineering
Sciences, member of the Rozhdestvensky Optical Society (part of
EOS), member of Educational Council for the direction "Optical
engineering", member of the Educational association of Russian
universities for instrumentation technology and optical engineering.
He has authored over 200 papers in refereed international and domestic
journals and conferences and 21 patents.

Victor Hugo C. de Albuquerque [M’17] has a PhD
in Mechanical Engineering with emphasis on Materials
from the Federal University of Paraíba (UFPB, 2010),
an MSc in Teleinformatics Engineering from the
Federal University of Ceará (UFC, 2007), and he
graduated in Mechatronics Technology at the Federal
Center of Technological Education of Ceará
(CEFETCE, 2006). He is currently Assistant VI
Professor of the Graduate Program in Applied
Informatics at the University of Fortaleza (UNIFOR).

He has experience in Computer Systems, mainly in the research fields of:
Applied Computing, Intelligent Systems, Visualization and Interaction, with
specific interest in Pattern Recognition, Artificial Intelligence, Image
Processing and Analysis, Internet of Things, Internet of Health Things, as well
as Automation with respect to biological signal/image processing, image
segmentation, biomedical circuits and human/brain-machine interaction,
including augmented and virtual reality simulation modeling for animals and
humans.

