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Abstract-MIMO radars use multiple waveforms simultane-
ously to improve performance. A beamforming method that
exploits this waveform diversity has been proposed previously.
This method works by optimizing the covariance matrix of the
waveforms to obtain an approximation of a desired beampattern.
The previous method uses gradient descent to optimize the
beampattern with the constraint on the power of each antenna
element. We show how this method can be extended to obtain
rank-deficient covariance matrices and also to handle the total
power constraint. The conjugate gradient method is used in
addition to the gradient descent.

In this paper, we also propose converting the constrained
beampattern optimization problem into an unconstrained one.
This can be done by using the method of Lagrange multipliers,
but also removing all constraints and then scaling the result so
that the total power constraint is satisfied. Using this approach,
the beampattern optimization can be written as a least squares
problem.

I. INTRODUCTION

MIMO radar is a novel radar paradigm in which radars use
multiple waveforms simultaneously to improve performance.
The development of MIMO radars has been motivated by the
advances made in the MIMO communication systems, which
have been shown to increase rate and reliability of radio links.

Recently, several techniques extending the MIMO concept
to radars have been proposed[1]-[6]. These techniques aim at
enhancing the radar, but they differ how the waveforms are
employed. The waveform diversity can be used to improve
the performance of the radars in many different ways.
A beamforming method using the correlation of the trans-

mitted waveforms was introduced in [1]. Beamforming is
useful in phased-array radars, which need to maximize the
energy transmitted to the direction of a target. The beamform-
ing method proposed in [1] allows much higher control over
the beampattem than ordinary beamforming. For example, this
method can be applied to do beamspoiling, which is useful in
reducing backscatter clutter and scanning time[2]. The ability
to form a wide focus is useful especially when transmitting
fully correlated waveforms would result in a beam that is too
narrow. Transmit beamforming using signal correlation offers
flexibility in the beampattem synthesis that is not achieved
with the traditional phased array techniques or MIMO radars
that use completely uncorrelated signals.
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The beampattern synthesis can be done by changing the
correlation matrix of the transmitted signals so that a cost
function measuring the difference between the desired and
the actual beampattern is minimized. An optimization method
that results in full-rank covariance matrix was proposed in
[1]. However, it can be useful to form a correlation matrix
that is not of full rank if the number of available waveforms
is smaller than the number of transmitters, for example. A
method for obtaining a rank-deficient covariance matrix was
previously discussed in [7], but in the suggested method, the
problem needs to be first solved without the rank constraint
and then a separate algorithm is applied to get the final result.
We demonstrate that the rank of the correlation matrix can be
easily limited simply by adjusting the method in [1].
A gradient descent method was used in [1] with a rotational

update to prevent violation of constraints set on the power of
the individual transmitters. In this paper, we show how the
algorithm can be extended to constrain the total power of the
antenna array. The use of different optimization algorithms
in the beampattem optimization problem is also studied. In
addition, we propose converting the constrained optimization
problem into an unconstrained one. This can be done with
the method of Lagrange multipliers. We also show that for
total power constraint, it is possible to remove the constraint
altogether and scale the result after optimization. Based on
this property, we propose obtaining approximate beampatterns
by formulating the beampattern optimization as a least squares
problem.

This paper is organized as follows: The transmit beampat-
tern synthesis method originally presented in [1] is briefly
reviewed in Section II. We also show how to modify the
method to limit the rank of the covariance matrix. The uncon-
strained version of the method is discussed in Section III and
the least squares formulation in Section IV. Section V shows
numerical results of the discussed optimization methods. Final
conclusions are made in Section VI.

II. BEAMPATTERN OPTIMIZATION

Beamforming can be done by modifying the covariance
matrix of the transmitted signals. If the typical far-field and
narrowband assumptions hold, the radiation intensity (power
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per solid angle) of a linear array of N elements is

I(0 )= 1 VH (0, )Rv(0, ),4w
where v(0) is an N x 1 steering vector and R is the l\
N covariance matrix of the signals transmitted by the ar
elements[1]. The steering vector for a linear array is defii
as

v(0) = [exp(-j27w sin 0) ... exp(-j27 zN sin 0)]
where zi's are the positions of the elements relative t(
reference point in the array. The problem is finding sigr
with such R that the beampattern 1(0, q) would have a desi
shape. Because the steering vector of a linear array depe
only on 0, the same is true for the beampattern I.

In standard beamforming, each element of the array tra
mits one signal phase-shifted so that the phases are exactly
same in a desired direction. Assuming that all the elements
transmit with unit power, R= v(00)vH (00), where 0 is
direction of interest, and thus,

I(0)= 1 1vH(00)v(0)12
4w

In the desired direction, the transmitted power is

I(0o)= -IIv(0o)0 N4=
4w 4w

so there is N-fold beamforming gain in power compared t
single transmitter. On the other hand, if a MIMO radar tra
mitting uncorrelated signals is used, R = I and 1(0)
for any 0.

Traditional beamforming results in highly focused bez
patterns, whereas the beampattern of a MIMO radar v
uncorrelated signals would be omnidirectional. Sometime
might be necessary to synthesize a beampattern that is betw
these two extremes so that wide focus areas can be forn
without wasting power to directions that are of no inter
This can be achieved by adjusting the covariance matrix
the transmitted signals.

In order to obtain a beampattern of a desired shape,
appropriate covariance matrix R has to be found. This can
done by minimizing the difference between the desired ,

the actual beampatterns according to some error criterion 1
depends on R. However, R cannot be chosen freely beca
the covariance matrix has to be positive-semidefinite. One v

to ensure positive-semidefiniteness is to use the square roo
R so that

R = QQH,
where Q is the square root[1]. Matrix Q was chosen to b
complex-valued N x N matrix in [1]. However, the maxim
rank of R can be easily controlled with the size of Q, as
rank of R can be at most the same as the number of colur
in Q.
Power of the transmitter elements imposes another c

straint on R. If all antenna elements are assumed to transmi
the same maximum power, all diagonal elements ofR must

equal. As before, we assume each transmitter transmits with
unit power so that the total power of the array would be N.

Suppose that Q consists of 1 x M row vectors qn. The
power constraint then requires that llqrll2 = 1. In other
words, the optimization of Q needs to be done on the oblique
manifold ofCN AM [8].

The beampattern can be optimized by choosing Q to min-
imize a cost function C that measures the difference between
the desired and the actual beampattern. The optimization
method proposed in [1] is based gradient descent. The gradient
of a cost function C with respect to matrix Q is projected first
into the tangent space of the manifold. Denoting a row of the
gradient matrix G by gr, the projection to the tangent space
is

HqH
tngn n gnt~~~

ll nl'2 (6)

A line search is then done on the manifold to minimize the
cost function by rotating the vectors qn by

q(i+l) = q(i) cos(cnt) ) H sin(o Itn) 1),
ltn)

(7)

where a is a scalar that is same for every n.
The optimization on the manifold can be alternatively done

by retraction[8], so that

(8)q(i+l) 2n H t 2
qn +/ll~1q(i) 11 2 + t32 lit(i) 11 2

This methods uses a square root instead of the sine and cosine
vith

required in the rotational update. In addition to simple gradient
s it

descent, it is also possible to use the conjugate gradient method
ned as was done in [9] for a different problem.
'est. Instead of constraining the power of the individual trans-
of mitters, the total power can be required to be constant[7]. The

total power is

bne trace(R) = trace(QQH) = vecH (Q)vec(Q), (9)

hat so the problem is finding the optimal vector with a fixed 2-
norm in CAMN,. Both the rotation and retraction can be easily
modified to cope with this constraint.vay

Iaof As mentioned before, the maximum rank of R can be
controlled with the number of columns in Q. However, rank-

(5) one case poses a problem as the projection of the gradient in
(6) is always zero for complex scalars. We propose solving

)e a this by optimizing on the oblique manifold in RN 2M. With
um the previous notation, this can be done simply by replacing
the qnHgn in (6) with
nns

real(qnj)real(gn) + imag(qnj)imag(gn)
,on-
it at When M is greater than one, the results are very similar
t be regardless of the space used.
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III. UNCONSTRAINED OPTIMIZATION

The beampattem optimization problem at hand can be
written as

min C(Q) s.t. l1q.12 = 1, ni=...N

In order to optimize using the least squares criterion, we
use a cost function

K

C(R, Id)= E Id(0k)
k=1(10)

vH(ok)Rv(ok) 2 W(Ok), (15)

We propose transforming this constrained optimization prob-
lem into unconstrained one. This can be done in several
different ways, but we will consider the method of Lagrange
multipliers in this paper.

The Lagrangian of the problem is

LC(Q, m) = C(Q) + mTh(Q) (11)

which can be seen as an approximation of (14) with p = 2. To
form the LS problem, we need find vectors i and iv(O) such
that vT(0)i = vH(O)Rv(O). As was shown in [7], this can
be done by constructing a matrix B such that vec(R) = Bi,
where i is an N2 x 1 real-valued vector consisting of the
real and imaginary parts of the elements of R and (B)mn E
{0, 1, +j}. Thus,

where elements of the vector-valued constraint function h are

hn(Q) = llqn 12 _ 1 (12)

in case of an elemental power constraint. For a total power

constraint, the constraint equation is

v (0)Rv(0) [vT(o) vH(0)]Bi = v (Q)r

Let
[Id (01) VT (01

P [= and I=

-Id (OK )_ _V(OK)_
N

h(Q) = Eq ll n112 - N.

n=l

(13)

A critical point of the Lagrangian can be found numerically
using, for example, a quasi-Newton method.

For certain cost functions, the total power constraint need
not be considered in the optimization. This is seen if the cost
function is written as a function of the signal covariance matrix
and the desired beampattem and is of the form

C(R,Id)= J id(O) vH(0)Rv(0)Pw(0). (14)

We showed in [10] that (14) with piecewise constant Id(O),
w(0) = cos 0 and p = 2 can be evaluated in closed form
for uniform linear arrays. Although the choice of cost func-
tion affects the performance of the beampattern optimization,
different cost functions are not compared due to lack of space.

Now, if Ro is a (local) minimum of C(R, Id), then avRo is
a (local) minimum of C(R, aId). Therefore, we can minimize
the cost with arbitrary scaling of Id and then find such an

a that avRo meets the total power constraint. The positive-
semidefiniteness of R is guaranteed by the optimizing the
square root Q. In essence, the beampattern is optimized to the
shape of the desired beampattern; there is no need to optimize
the scale as was done in [7].
We take advantage of the ability to optimize the beampattem

without any constraints in the next section, in which the
beampattern synthesis is considered as least squares problem.

IV. BEAMPATTERN OPTIMIZATION AS LEAST SQUARES
PROBLEM

In the previous section, beampattem optimization was con-

sidered constraining R to be only positive-semidefinitene. In
this section, we show how the beampattern optimization can

be represented in least squares form by relaxing this constraint.

so that the beampattern error vector is

&.
.

£ = ]p-Ar

and C(R, Id) = £HW£ with the minimum

ir = (ATWA) -lATWjp

(17)

(18)

where W is a diagonal matrix with (W)kk = w(Ok). How-
ever, resulting R constructed from io is not valid as it is not
positive-semidefinite.
A positive-semidefinite R can be obtained from the LS

solution by using either singular value decomposition or

eigenvalue decomposition. If USVH is the singular value
decomposition of a nondefinite matrix, VSVH is positive-
definite. A rank-deficient covariance matrix can be obtained
by omitting some of the singular values and vectors. If the
eigenvalue decomposition is used, all negative eigenvalues
have to be omitted when constructing the covariance matrix
from the eigenvalues and eigenvectors. Therefore, the resulting
matrix is generally rank-deficient.

It should be noted that the covariance matrices obtained
using the decompositions are not generally solutions to the
problem min C (R, Id) s.t. R positive-definite.

V. EXAMPLES

In this section, we show the results of optimizing a beam-
pattern for 12-element ULA with half-wavelength interelement
spacing. Five different optimization methods that were dis-
cussed in the previous sections are compared. These methods
are the gradient descent with rotation (GD Rot.), conjugate
gradient with retraction (CG Retr.), Lagrange multipliers us-

ing the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
unconstrained BFGS, and the rank-deficient least squares

solution (LS). The cost function used was that of (15) with
w(0) _ 1.
The desired beampattern had two separate beams from -600

to -300 and from 200 to 500. The optimization was done
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Fig. 1. Beampatterns with elemental power constraint and full-rank R. The
resulting beampatterns are quite similar, although the LS method has slightly
higher sidelobes. The conjugate gradient (CG) has best convergence in this
case, closely followed by gradient descent (GD).

first with elemental power constraint and full-rank R. The
results are shown in Fig. 1, in which Fig.l1(a) shows the
achieved beampattemns after 20 iterations and 1(b) the squared
beampattern approximation error as a function of the iteration.
The resulting beampattemns are quite similar, although the
LS method has somewhat higher sidelobes than the other
methods. The conjugate gradient has the best convergence in
this case. Also the gradient descent has similar performance.
The convergence of the unconstrained optimization with BFGS
in slightly slower than CG and GD. The method of Lagrange
multipliers has the slowest convergence among the considered
methods.

Fig. 2 shows the result of optimizing the beampatterns also
with elemental power constraint but rank-one R. The desired
beampattern was too complex for rank-one phased array with
uniform power, but CG and GD achieved quite reasonable

l-
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mE
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(a) beampattems after 20 iterations
Approximation Error

u 0 -u -l
Iteration

(b) squared approximation error

Fig. 2. Beampatterns with elemental power constraint and rank-one R. The
desired beampattern is not well suited for a phased array, but the gradient
descent (GD) and the conjugate gradient (CG) produce the best beampatterns
results. The unconstrained methods suffer from scaling of the weights to
satisfy the elemental power constraint. This is also reflected in the convergence
of the approximation error.

beampattems. The performance of the unconstrained method
is particularly bad in this case, as scaling each element of the
N x 1 matrix Q to have unit modulus changes R with adverse
effect on the optimization.

The squared approximation error for the cases with total
power constraint are shown in Figure 3. Fig.3(a) is the full-
rank and Fig.3(b) the rank-one case. CG performs slightly
better than GD again, but the unconstrained optimization
methods also work well in this case.

All in all, the conjugate gradient performed the best of
the tested methods. The method of Lagrange multipliers
had the slowest convergence and provided good results only
when the total power constraint was used. Due to the higher
computational cost, it is not practical. The unconstrained
optimization provided good results with total power constraint
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fashion to obtain signal covariance matrices with reduced
GD Rot. rank. Reducing the rank can be done real time and it also

-3x-CG Retr. reduces the computational complexity. We also showed how
O BFGS Lagr.
-- BFGS Unc. the optimization method can be extended to use the total power
---LS constraint in addition to the elemental power constraint.

We also proposed converting the constrained optimization
problem into an unconstrained problem. This can be done
using the method of Lagrange multipliers, but it was shown
that in case of a total power constraint, the optimization
can be done without the constraint and the result can be
scaled to satisfy the constraint on the total power. Taking
advantage of this, we proposed that approximate beampatterns
can be obtained by formulating the beampattern optimization

I problem as a least squares problem that can be solved with
15 20 low computational complexity.

The use of various optimization methods in the beampattern
full-rank R optimization was studied using numerical examples in Section

V. It was seen that the proposed conjugate gradient method
GD Rot. with retraction worked well. The results demonstrated that

BE-CG Retr. proposed changes in the optimization algorithm and also
BFGS Unc. the unconstrained and the least squares approaches result in
-LS feasible beampatterns.
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Fig. 3. Beampattern approximation errors with total power constraint. The
conjugate gradient and the gradient descent perform well also in these cases,
but the performance of the unconstrained methods is good as well as the rows
of Q do not need to be scaled.

but outperformed CG only in the rank-one case. CG had the
best overall performance among the considered methods for
beampattern optimization that exploits the correlation of the
transmitted waveforms.

VI. CONCLUSIONS

Beamforming is used in radars to maximize the gain in
the direction of the target. A transmit beamforming method
exploiting signal correlation was proposed in [1]. This method
can be used for shaping the beampattern flexibly.
We have demonstrated in this paper that the beampattern

optimization method in [1] can be modified in a very simple
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