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Abstract—We study the problem of optimal placement and
capacity of energy storage devices in a distribution network to
minimize total energy loss. A continuous tree with linearized
DistFlow model is developed to model the distribution network.
We analyze structural properties of the optimal solution when all
loads have the same shape. We prove that it is optimal to place
storage devices near the leaves of the network away from the
substation, and that the scaled storage capacity monotonically
increases towards the leaves. Moreover, under optimal storage
placement, the locational marginal value of storage is equalized
wherever nonzero storage is deployed and increases from the
substation towards any leaf node over places where there is zero
storage deployment. We illustrate through simulations that these
structural properties are robust in that they hold approximately
when some of our modeling assumptions are relaxed.

Index Terms—Energy storage, distribution networks, optimal
power flow

I. INTRODUCTION

Energy storage devices shift energy generation and con-
sumption across time, which helps integrate intermittent gen-
erations and loads. There is a large amount of literature on
energy storage integration, and one important direction is to
study the use of storage to minimize operational cost of the
power system as well as to maintain power grid reliability,
assuming that the storage devices are operated by system
operators. For example, [1] treats the stochastic control of dis-
tributed energy storage devices using a surrogate LQ problem;
[2], [3] propose methods to incorporate distributed energy stor-
age systems with wind generation, and conduct case studies to
evaluate the benefit of storage; [4]–[6] propose algorithms to
find the optimal placement of energy storage using different
power flow models; [7] proves a particular structural property
of optimal storage placement using DC power flow model;
[8] proposes a discrete optimization formulation for energy
storage placement and characterizes conditions under which
the placement value function is submodular; [9] relates the
locational marginal value of storage with the upward variation
of the locational marginal price at each bus when the storage
capacity is sufficiently small.

In this paper we study the problem of optimally placing
and sizing energy storage devices in distribution networks,
where the system operator has a certain budget for energy
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storage and needs to decide where to deploy storage devices
and their capacities so as to minimize the total energy loss
of the network. We focus on analytically deriving structural
properties of the optimal solution that can provide insight
for deployment. This problem is difficult in that the cost
function depends on the detailed charging and discharging
schedule of storage, and so the placement of storage devices
and their charging and discharging schedules over time should
be determined jointly, resulting in an optimization problem
whose time and space dimensions are strongly coupled.

Our main contribution is two-fold. First, a continuous
tree model equipped with DistFlow equations [10], [11] is
proposed in Section II for modeling single-phase distribution
networks. A similar model is used in [12] for analyzing a
single feeder; our model here extends it to a radial network. It
turns out that the proposed continuous model is very powerful
for theoretical analysis, and can be used to prove results which
seem hard to derive by the commonly-used discrete models.

Second, we derive some structural results for the optimal
storage placement and capacity where the total loss of the
network is minimized. They are presented in Section III
for a line network and in Section IV for a radial network.
Specifically, we show that, when all loads have the same shape,
on each path connecting the substation to a leaf, there exists
a threshold location that splits the path into two parts: the
optimal strategy deploys zero storage in the part near the
substation and strictly positive amount of storage at every
point in the other part. Moreover, the optimal capacity scaled
by the variation of the load increases as we move from
the substation towards the leaf. We also show that, under
the optimal storage placement, the locational marginal value
of storage strictly increases from the substation towards the
threshold location over the part where zero storage is deployed,
and is equalized over the entire network everywhere nonzero
storage is deployed.

We employ models and assumptions that simplify our
analysis but still capture the core features of the storage
placement problem. We present in Section V simulation results
to demonstrate that these structural properties continue to hold
approximately when some of our modeling assumptions are
relaxed. We conclude in Section VI. Due to space limit, all
proofs are relegated to [13].

II. PROBLEM FORMULATION

A. Continuous Trees

A continuous tree is a continuum of nodes that embeds a
discrete tree structure. To be precise, let N be a set with partial
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order ≤. Let T = (V, E) be a discrete tree graph, with V being
the set of vertices and E being the set of edges. We say that
N is a continuous tree with the underlying tree structure T if
for each k ∈ V , there is an associated subset Nk ⊆ N such
that

1)
⋃

k∈V Nk = N .
2) ≤ is a total order on each Nk so that Nk admits the

order topology generated by ≤.
3) Each Nk is equipped with a (positive) Borel measure

µk, and there is a bijection ψk : Nk → [0, µk(Nk)]
such that for any x1, x2 ∈ Nk with x1 < x2, we have

µk({y ∈ Nk : x1 < y < x2})
=ψk(x2)− ψk(x1) > 0.

We denote sk = ψ−1k (0) and ek = ψ−1k (µk(Nk)).
4) Let k, k′ ∈ V be two different vertices. Then

Nk∩Nk′ =


{ek} = {sk′}, k is the parent of k′,
{sk} = {sk′}, k and k′ are siblings,
∅, otherwise.

5) For any x ∈ Nk and y ∈ Nk′ with k 6= k′, if x ≤ y,
then either k′ is a descendant of k in T , or k′ is not a
descendant of k but x = sk and k′ is a descendant of
the parent of k.

Roughly speaking, the first condition says that the continuous
tree consists of a collection of segments, denoted by Nk. The
second and third conditions state that each individual segment
can be treated just like a closed interval in R with a total order
and Lebesgue measure. Then the forth condition states that the
individual segments are connected according to the structure
of an ordinary discrete tree. The fifth condition indicates that
the partial order relation is compatible with the discrete tree
structure T , and so x ≤ y can be interpreted as y being in the
continuous subtree rooted at x.

The point sk for a non-root vertex k will be called a branch
point. The unique path connecting x and y will be denoted by
[x, y], i.e.,

[x, y] = {w ∈ N : x ≤ w ≤ y} .

We will use 0 to denote the root node, i.e., 0 ≤ x for all
x ∈ N .

As we have pointed out, each segment Nk can be treated
like a closed interval. For this reason we will simply write∫
Nk

f(x)µk(dx) as
∫
Nk

f(x) dx. For an arbitrary subset B ⊆
N , we define∫

B

f(x) dx =
∑
k∈Vk

∫
B∩Nk

f(x) dx.

Figure 1 gives an example of a continuous tree and its
underlying tree structure.

B. Power Flows on Continuous Trees

We use continuous trees to model single-phase distribution
networks.

Let z(x) be the impedance per unit length in the sense that∫
[x,y]

z(x) dx gives the impedance of the line between x and y.

Fig. 1. Illustration of a continuous tree and its underlying tree structure. Here
the set of vertices is V = {0, 1, 2, . . . , 11}. It can be seen that x1 ∈ N1,
x2 ∈ N9 and x3 ∈ N3. Moreover, x1 < e1 = s4 < e4 = s9 < x2 and
x1 < e1 = s3 < x3, but x2 and x3 are not comparable.

We assume that z is continuously differentiable when restricted
to any Nk. We denote the real part of z(x) (the resistance per
unit length) by r(x), and assume that r(x) > 0 for all x ∈ N .

Let s(x) = p(x) + jq(x) be the complex power injection,
and v(x) be the squared voltage magnitude at node x. For
simplicity we assume v(0) = 1 pu. Let S(x) = P (x)+ jQ(x)
be the complex power flow towards the substation (the root
node) on the distribution line at node x. Then the continuous
power flow equations are given by

S(x) =

∫
y≥x

(
s(y)− z(y) |S(y)|

2

v(y)

)
dy,

v(x) = 1 +

∫
[0,x]

2Re(z∗(y)S(y)) dy,

(1)

from which we can see that the total power loss is given by

Ploss =

∫
N
p(x) dx− P (0) =

∫
N
r(x)
|S(x)|2

v(x)
dx.

These equations are the continuous version of the DistFlow
model for radial networks [10], [11], and can be obtained
by taking limits of the original DistFlow equations; see [12]
for a version modeling a continuous feeder line. Furthermore,
the continuous model reduces to the discrete model if we set
s(x) =

∑N
j=1 sjhj(x;n) and take the limit n→∞, where sj

is the power injection at bus j, hj(x;n) tends to a Dirac delta
function located at xj as n → ∞ and xj is the location of
bus j. This means that we don’t lose any modeling capability
when using the continuous model.

In most cases the continuous DistFlow equations can be
rewritten as a set of nonlinear ordinary differential equations
with boundary conditions at branch points, leaf nodes and the
root node.

C. Storage Model and Load Profiles

Load profiles often exhibit a cyclic behavior, and so we use
a finite time horizon in this paper and equip it with a cyclic
structure. The time horizon T will be defined as

T = [0, T ),
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where T is the length of the whole period. To incorporate
cyclic structure of the time domain, for 0 ≤ t2 < t1 < T , we
define the intervals

(t1, t2) := [0, t2) ∪ (t1, T ),

[t1, t2] := [0, t2] ∪ [t1, T ).

The topology of T is then generated by the family {(t1, t2) :
t1, t2 ∈ T}, and we denote

∫ t2
t1

=
∫
[t1,t2]

. It can be shown
that a continuous function f on domain T will automatically
be cyclic in the sense that f(0) = limt↑T f(t).

We assume that at each node x at time t, the real power
injection consists of two parts, one being the power consump-
tion by the storage device which we denote by u(x, t), and the
other being the sum of all other types of background injections
which we denote by p̃(x, t).

For storage devices, we employ the simple model

u(x, t) =
∂b(x, t)

∂t
, 0 ≤ b(x, t) ≤ B(x),

where b(x, t) is the energy level (SoC) at time t, and B(x)
is the energy capacity of the storage device at node x. We
ignore reactive power injections from storage. Although some
fine features of practical storage devices, such as power limit
and round-trip efficiency, are not considered in this simple
linear model, this model will be sufficient for demonstrating
broad structures of the optimal placement and sizing strategy.

For the background injections, we assume they are de-
terministic and fixed. In practice p̃(x, t) can be obtained
from historical data. We further assume that the background
injection p̃(x, t) takes the form

p̃(x, t) = α(x)p(t) + β(x),

where α(x) > 0. This means that load profiles at different
nodes have a common shape p(t), while α(x) represents the
relative variation and β(x) is an offset. This assumption is
based on the observation that the electricity usage pattern
of a large group of residential consumers can be categorized
into a relatively small set of signature load shapes [14]–[16].
In practice, the assumption that all load profiles have the
same shape rarely holds with accuracy, but we will show by
simulation that it can be relaxed to some extent and our main
results will hold approximately.

Without loss of generality we assume that α(x) and β(x)
are continuously differentiable when restricted to an arbitrary
segment. For the load shape p(t), we assume that

1) It is twice continuously differentiable on T.
2) There are finitely many solutions to ṗ(t) = 0, each of

which is either a local maximum or a local minimum
with a non-vanishing second-order derivative. The set of
solutions to ṗ(t) = 0 will be denoted by

tmax
0 , tmin

0 , tmax
1 , tmin

1 , . . . , tmax
M−1, t

min
M−1

such that ṗ(t) < 0 for t ∈ (tmax
m , tmin

m ) and ṗ(t) > 0 for
t ∈ (tmin

m−1, t
max
m ) for each m (addition and subtraction

on the subscript m are modulo M ).
3) It has a vanishing time average, i.e.,

∫
T p(t) dt = 0.

As any continuous function on T with a vanishing average can
be approximated by a function satisfying the above properties

to any given precision, these assumptions impose no essential
but only technical restrictions on p(t).

The net power injection is then given by

p(x, t) = p̃(x, t)− u(x, t)

= α(x)p(t) + β(x)− ∂b(x, t)

∂t
.

(2)

D. Optimal Placement and Sizing
The cost we wish to minimize is the total energy loss of

the network during T, which is given by

Eloss =

∫
T
Ploss(t) dt =

∫
T

∫
N
r(x)
|S(x, t)|2

v(x, t)
dx dt.

This cost function has a rather complicated form, making
its minimization hard to analyze. We adopt the following
approximation: The voltage v(x, t) is not far from some fixed
nominal value vnom(x) as time proceeds. As a consequence,
the energy loss can be approximately given by

Eloss =

∫
T

∫
N
r(x)
|S(x, t)|2

v(x, t)
dx dt

≈
∫
T

∫
N

r(x)

vnom(x)
P 2(x, t) dx dt+ const,

(3)

where we have used the assumption that storage does not
influence reactive power. We assume that vnom(x) is positive
and continuously differentiable when restricted to any Nk.
Similar approximation has been employed in, for instance,
[11], [17], [18].

Loss minimization is commonly employed for operating
distribution networks. Even if the loss is small compared to
the loads, loss minimization can lead to other advantages such
as increased voltage stability [19] and reduced branch power
flows (as can be seen from (3)). This is partly why voltage
and line limits are sometimes relaxed in loss minimization.

The nonlinearity of the power flow equations (1) also adds
significant difficulty to analysis. We adopt the approximation
that the power loss

∫
y≥x z(y)|S(y, t)|

2/v(y, t) dy is small
compared to the line flow S(x, t) for each t ∈ T. Then

S(x, t) ≈
∫
y≥x

s(y, t) dy,

and so

P (x, t) ≈
∫
y≥x

(
α(y)p(t) + β(y)− ∂b(y, t)

∂t

)
dy (4)

by (2). It can be seen that the power flow along the lines is
now linear in power injections. Similar linearization has been
employed in [10], [17], [20].

Now let Btot be the total storage budget. The optimal
storage placement problem is then formulated as

min
b(·,·),B(·)

∫
T

∫
N
w(x)P 2(x, t) dx dt (5a)

s.t. P (x, t) =

∫
y≥x

(
α(y)p(t) + β(y)− ∂b(y, t)

∂t

)
dy

(5b)
0 ≤ b(x, t) ≤ B(x), ∀x ∈ N , t ∈ T, (5c)∫
N
B(x) dx ≤ Btot. (5d)
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Here we denote w(x) := r(x)/vnom(x). We call b∗(x, t) the
optimal schedule and B∗(x) the optimal storage capacity if
they solve the problem (5). The optimal value, which is a
function of Btot, will be denoted by F ∗(Btot).

E. Locational Marginal Value of Storage

The locational marginal value of storage characterizes the
marginal decrease in the total cost when a small amount of
storage capacity is added at a specific location [9]. To be
precise, we define the locational marginal value of storage
as follows: Suppose the capacity function B(x) is fixed and
we consider the following optimization problem:

min
b(·,·)

∫
T

∫
N
w(x)P 2(x, t) dx dt (6a)

s.t. P (x, t) =

∫
y≥x

(
α(y)p(t) + β(y)− ∂b(y, t)

∂t

)
dy

(6b)
0 ≤ b(x, t) ≤ B(x), ∀x ∈ N , t ∈ T, (6c)

and denote its optimal value by J∗(B). We say that lmv(·;B) :
N → R is the locational marginal value function of storage
if for every nonnegative continuous function δ defined on N ,
we have

J∗(B + εδ) = J∗(B)− ε
∫
N
δ(x) lmv(x;B) dx+ o(ε) (7)

as ε ↓ 0, where ε is a positive real number.
This definition is the natural generalization of locational

marginal value of storage in discrete networks where it is
defined by the negative gradient of J∗ with respect to storage
capacities as in [9].

III. MAIN RESULTS FOR LINE NETWORKS

A continuous line network is essentially a closed interval
[0, L] where L is the total length of the network. The structural
results for the optimal storage placement problem on line
networks have been presented in [18] and the detailed theory
can be found in [13]. Here we give a summary of these results.

Theorem (Line Networks). Suppose the shape p(t) has only
one minimum and one maximum, and the storage budget
satisfies

Btot <
1

2

∫ L

0

α(x) dx

∫
T
|p(t)| dt.

Then the optimal storage capacity B∗(x) satisfies the follow-
ing properties.

1) There exists a location ξ ∈ (0, L] such that B∗(x) = 0
for every location x ≤ ξ, while B∗(x) > 0 for every
x > ξ.

2) For x ≥ ξ, the scaled optimal storage capacity
B∗(x)/α(x) increases as one moves away from the
substation, i.e., B∗(x)/α(x) is an increasing function
of x on [ξ, L].

3) The larger the storage budget Btot, the closer ξ is to the
substation, i.e., there is a continuous bijection between
Btot and the corresponding ξ ∈ (0, L], and ξ decreases
as Btot increases.

4) The larger the storage budget Btot, the higher the
storage capacity B∗(x) for x > ξ.

Although line networks are a special case of continuous
trees, the approach of analyzing line networks is quite differ-
ent from that for general radial networks, and the theorems
will rely on different conditions and give slightly different
conclusions.

IV. MAIN RESULTS FOR RADIAL NETWORKS

The main results for radial networks are derived by an-
alyzing the generalized KKT conditions1 of (5). In order
to apply the generalized KKT conditions to obtain a set of
Lagrange multipliers, we need certain technical assumptions
on the existence and regularity of the optimal solution. Those
technical assumptions are summarized in [13], and we’ll
assume throughout this paper that those assumptions hold.

We present three structural results in the following subsec-
tions. The first result generalizes the theorem in Section III on
the monotonicity of optimal placement and sizing from a line
network to a radial network. The second result establishes the
monotonicity of locational marginal value of storage. The last
result describes the optimal charging and discharging schedule.
The proofs of these results are presented in [13].

Define

Bm :=

∫
N
α(x) dx · max

t1,t2∈T

∫ t2

t1

p(t) dt.

A. Optimal Placement and Sizing

Theorem 1. 1) If Btot < Bm, then the optimal storage
capacity B∗(x) is unique. Furthermore, for any leaf
node ` ∈ N , there exists some ξ` ∈ (0, `] such that

B∗(x) = 0, for all x ≤ ξ`,
B∗(x) > 0, for almost all x > ξ`.

2) If Btot < Bm and p(t) has only one minimum and one
maximum, then for any leaf node ` ∈ N , the scaled op-
timal capacity B∗(x)/α(x) is monotonically increasing
along [ξ`, `]; in other words, for each x1, x2 ∈ [ξ`, `],

x1 < x2 =⇒ B∗(x1)

α(x1)
≤ B∗(x2)

α(x2)
.

3) If Btot ≥ Bm, then we can choose

B∗(x) ≥ α(x) max
t1,t2∈T

∫ t2

t1

p(t) dt,

∂b∗(x, t)

∂t
= α(x)p(t)

for all x ∈ N .

We now discuss the implications of Theorems 1 on optimal
storage placement and capacity.

The first part of Theorem 1 establishes the existence of
the threshold point ξ` that divides the path [0, `] into two
sections, one with no storage deployed and the other with

1See [21] for the generalized KKT conditions of convex optimization
problems over general linear spaces.
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storage allocated almost everywhere, when the total budget
does not exceed Bm. The third part of Theorem 1 then shows
that when the total budget exceeds Bm, the optimal capacities
and schedules can be explicitly given, and the net power
injection is then p(x, t) = β(x), which is a constant with
respect to time. In other words, the storage devices can flatten
the power injections completely at every bus.

The second part of Theorem 1 generalizes the monotonicity
of B∗(x)/α(x) from line networks [18] to radial networks.
It indicates that priorities should be given to nodes near the
leaves or far from the substation when allocating the storage
budget; if α(x) is roughly uniform, then more storage capacity
should be placed as we move from the substation towards
the leaf nodes of the network. But even when α(x) is not
uniform at all, the scaled optimal capacity B∗(x)/α(x) is
still monotonically increasing. Although the second part of
Theorem 1 further relies on the assumption that p(t) has
only one minimum and one maximum, simulation suggests
that the monotonicity of B∗(x)/α(x) still holds when p(t)
has more complicated patterns. Figure 2 gives an example
that demonstrates the monotonicity of B∗(x)/α(x) for radial
networks.

Some of the results in Theorem 1 are in accordance with
the intuition that, in order to reduce losses optimally, storage
should be put near the leaf nodes because higher losses and
voltage drops are observed as power travels further along
the network towards the leaf nodes. This simple intuition,
however, does not always hold, and the structure of the optimal
storage placement can be complicated if we allow arbitrary
load shapes at different nodes (see Section V-B and Figure 7).
Theorem 1 proves rigorously sufficient conditions under which
such intuitions hold. As far as we know, this is the first time
monotonicity of scaled optimal capacity in radial networks is
formalized and proved rigorously.

In contrast to the theorem for line networks, in Theorem
1 the existence of the threshold location ξ` can be proved
without assuming that p(t) has only one minimum and one
maximum.

As we have mentioned before, discrete radial networks can
be viewed as a limiting case of continuous trees. Consider the
case where we have a discrete network, and the background
power injection at bus i is given by p̃i(t) = αip(t) + βi. We
let

α(x) =
∑
j

αjhj(x;n), β(x) =
∑
j

βjhj(x;n), (8)

where hj(x;n) tends to a Dirac delta function located at xj
as n→∞ and the sequence of sets

{x ∈ N : hj(x;n) ≥ n−1}, n = 1, 2, . . .

converges to {xj}. Then we can obtain the optimal storage
capacity at bus i by

B∗i = lim
n→∞

∫
hi(x;n)≥n−1

B∗(x) dx,

and it can be shown that the discrete version of Theorem 1
holds for B∗i .

Fig. 2. An example of B∗(x)/α(x) on a radial network.

Fig. 3. An example of the location marginal value of storage lmv(x;B∗).

B. Locational Marginal Value

Theorem 2. Suppose Btot < Bm. Then the locational
marginal value function lmv(x;B∗) for the optimal capacity
B∗(x) exists and is unique. Furthermore, for any leaf node
` ∈ N ,

1) lmv(x;B∗) is continuous for x ∈ [0, `].
2) For any x ∈ [ξ`, `],

lmv(x;B∗) = −F ∗′(Btot).

3) lmv(x;B∗) is strictly increasing on [0, ξ`].
4) lmv(0;B∗) = 0.

Theorem 2 gives structural properties of the locational
marginal value of storage with optimal storage placement. It
shows that the locational marginal values are equalized over
the entire network where B∗(x) > 0; otherwise we can further
decrease the total cost by moving storage in regions with lower
values to regions with the highest value. Then on [0, ξ`] where
there is no storage deployed, the locational marginal value is
strictly increasing from the substation towards ξ`; this suggests
that if we want to further add a small amount of storage
to new places, it should be placed far from the substation
to achieve higher reduction in the objective. Moreover, with
optimal storage placement, the locational marginal values at
places with B∗(x) > 0 will always be higher than those at
places with B∗(x) = 0.

Figure 3 shows a typical example of the locational marginal
value function lmv(x;B∗) on the path [0, `], where ` is an
arbitrary leaf node.

On the other hand, since locational marginal values only
give first order approximation of the functional J∗(B),

J∗(B∗ + δ) ≈ J∗(B∗)−
∫
N
δ(x) lmv(x;B∗) dx,

decisions based purely on locational marginal values will
in general be approximations of the true optimal decisions.
For example, suppose we want to add a small amount of
storage to the network. If we only base our decision on the
current locational marginal values lmv(x;B∗), then it seems
to suggest that the extra storage can be arbitrarily placed in
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regions with B∗(x) > 0 because those regions have the same
and highest locational marginal values. Although the resulting
cost J∗ of such placement will be close to the optimal cost
F ∗, the placement itself can be very different from the optimal
placement. In order to determine the optimal placement, we
may need second order or even higher order information of
J∗.

There is also a discrete counterpart of Theorem 2 that holds
for discrete networks.

C. Optimal Schedule

Theorem 3. Suppose Btot < Bm. Let x ∈ N be arbitrary with
B∗(x) > 0. Then there exist D(x) disjoint open intervals

(τ ld(x), τ
r
d (x)) ⊂ T, d = 1, . . . , D(x)

for some D(x) ∈ N, satisfying

{tmax
m , tmin

m }M−1m=0 ⊂
D(x)⋃
d=1

(τ ld(x), τ
r
d (x)),

and D(x) offsets δd(x) ∈ R, d = 1, . . . , D(x) such that
1) The optimal schedule satisfies

∂b∗(x, t)

∂t

=

{
α(x)(p(t)− δd(x)), t ∈ (τ ld(x), τ

r
d (x)),

0, otherwise,

and
M−1∑
m=0

(
∂b∗

∂t
(x, tmax

m )− ∂b∗

∂t
(x, tmin

m )

)

=α(x)
M−1∑
m=0

(p(tmax
m )− p(tmin

m )).

2) For any t /∈
⋃D(x)

d=1 (τ ld(x), τ
r
d (x)),

b∗(x, t) =

{
B∗(x), ṗ(t) < 0,

0, ṗ(t) > 0.

This paper focuses on the planning problem rather than
the real-time operation of storage. In addition, the optimal
schedule derived here is non-causal and cannot be directly
used for real-time operation of storage. Nevertheless, some of
its structures may be useful for designing real-time control
policies of storage.

Theorem 3 shows that, the time horizon T can be divided
into several intervals, and on each interval ∂b∗(x, t)/∂t is
either zero or follows the background injection p̃(x, t) except
for an offset. When ∂b∗(x, t)/∂t does not follow the back
ground injection, the SoC b∗(x, t) either is zero (when p(t) is
increasing) or reaches full capacity (when p(t) is decreasing).
We see that the optimal schedule is a load shifting policy that
shaves the peaks and fills the valleys.

Figure 4 shows a typical example of the optimal schedule
which illustrates Theorem 3, where we have D(x) = 5.

It should be noted that, for discrete networks, the structure
of the optimal schedule is more complicated than in the

(a) p(t) and its maximum and minimum points.

(b) Illustration of τ ld(x), τ
r
d (x) and δd(x). The dashed curve is p(t) and the

solid curve is (α(x))−1∂b∗(x, t)/∂t.

(c) The optimal schedule ∂b∗(x, t)/∂t. We have b∗(x, t) = B∗(x) on the
intervals marked by solid green bars and b∗(x, t) = 0 on the intervals marked
by striped orange bars.

Fig. 4. An example of a typical charging and discharging curve ∂b∗(x, t)/∂t.

continuous case. By employing (8), the optimal schedule for
bus i will be given by

∂b∗i (t)

∂t
= lim

n→∞

∫
hi(x;n)≥n−1

∂b∗(x, t)

∂t
dx.

It can be shown by theory and simulation that for each i, the
sequence of sets

{τ ld(x) : hi(x;n) ≥ n−1}, n = 1, 2, . . . ,

will in general converge to a non-singleton set; in other words,
the values of τ ld(x) over {x : hi(x;n) ≥ n−1} do not
shrink to a single element as n → ∞ (and similarly for τ rd ).
Therefore the resulting ∂b∗i (t)/∂t will be a mix of schedules
with different τ ld and τ rd , meaning that there will be transition
periods between the intervals on which ∂b∗i (t)/∂t = 0 and
the intervals on which ∂b∗i (t)/∂t follows the background
injection.

V. SIMULATIONS

In this section, we present simulation results and check
whether Theorem 1 holds or approximately holds when some
of the restrictive assumptions are relaxed.
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Fig. 5. Load profile with multiple peaks and valleys.

The network for simulation is a modified version of the
IEEE 123 node test feeder [22]. We employ its network
topology, line impedances, shunt capacitors and default switch
settings, and simplify it as a single-phase network with all
constant power loads. We also adopt two of the voltage
regulators and fix their taps, so that the voltage regulator near
the substation has tap ratio 1 : 1.04375 and the one near bus
60 has tap ratio 1 : 1.03125.

The network will be treated as a discrete network. The
objective is still minimizing the total energy loss with a limited
storage budget given by Btot. We denote the optimal capacity
at bus i by B∗i .

A. Load Shapes with Multiple Extrema

We first show that the monotonicity of the scaled optimal
capacity holds when p(t) is allowed to have multiple maxima
and minima. The load shape shown in Figure 5 is taken from
Southern California Edison [23], which consists of (normal-
ized) load consumptions spanning a 72-hour period, and has
multiple peaks and valleys. We employ this load shape as
−p(t), and assume that at bus i, the background injection is
given by αip(t), where the scaling factor αi is the original
load consumption of bus i from the IEEE 123 node test case.
To make results clearer, we add a small amount of load to each
bus that originally has no load consumption, so that αi > 0
and the scaled optimal capacities are well defined for all i.
The amount of load added is 1/4 of the smallest original load
consumption of a single bus. Approximation and linearization
analogous to (3) and (4) are used in the simulation.

The scaled optimal capacities B∗i /αi are shown in Figure
6. It can be verified that B∗i /αi ≥ B∗j /αj whenever B∗j > 0
and node i is in the subtree rooted at node j. This suggests
that the monotonicity of the scaled optimal capacity will hold
without assuming that p(t) has only one maximum and one
minimum.

B. Nonlinear Model with More General Load Profiles

In this part we run simulations to check whether the
structural properties in Theorem 1 will hold when we use the
more accurate nonlinear power flow model, and also allow
different shapes of background injections.

Through our simulations, we find that how the background
injection profiles at different nodes are correlated is crucial
to the structure of the optimal storage placement, and if we
allow arbitrary shapes of background injections for different
buses, the structural properties in Theorem 1 may not hold.
Figure 7 shows such a “counterexample”, where the network
has 31 buses connected as a line topology 0 − 1 − 2 −
· · · − 29 − 30, with bus 0 being the substation and bus 30
being the leaf node. Injections at different buses have differ-
ent shapes of background injections but the same variation
maxt1,t2∈T

∫ t2
t1

(p̃i(t)− pi) dt where pi = T−1
∫
T p̃i(t) dt. It

can be seen that most of the storage is placed in the middle
of the line rather than near the leaf.

However, if we consider the case where the background
injections at each bus do not precisely have a common shape,
but are given by

p̃i(t) = αi(p(t) + δpi(t)),

where δpi(t) represents some small deviation from the as-
sumption of uniform shape, then simulation shows that, the
structural properties in Theorem 1 approximately hold.

In this simulation, for each bus i, we generate δpi(t) from an
interpolated Gaussian random noise originally sampled every 2
hours, and for each bus i, the stochastic processes (δpi(t))t∈T
are independent of each other and identically distributed. We
also scale the deviations by a common factor so that

maxt |δpi(t)|
maxt p(t)−mint p(t)

≤ 1/3

for all i. Figure 8 gives a typical deviation pattern for all the
buses.

We employ the full nonlinear discrete DistFlow model to do
the simulation in this part. The reactive background injection
follows the same shape as the real background injection at each
bus, and we adopt the ratio of reactive load to real load from
the original IEEE 123 bus test case. We use the second-order
cone relaxation developed in [24]–[26] to find the optimal
solutions. All relaxations have been checked to be exact.

Figure 9 shows the scaled optimal capacities for a particular
instance of δpi(t). It can be seen that the storage should still be
distributed near the leaf nodes and far from the substation, and
a threshold point can still be found for each path connecting
the substation and a leaf node that divides the path into a
section with no storage and a section with storage everywhere.
This suggests that the first part of Theorem 1 is still a good
characterization of the optimal placement in the more realistic
situations. On the other hand, the monotonicity of B∗i /αi does
not hold strictly, but is not violated severely either (especially
when Btot is small); we can still find some monotonic pattern
which roughly characterizes the optimal placement. This sug-
gests that the second part of Theorem 1 does not strictly hold
in the situations where the background injections deviate from
the common load shape and the nonlinear power flow model is
used, but is an approximate characterization of the true optimal
placement strategy. Further simulations suggest that it will be
a satisfactory approximation as long as maxt |δpi(t)| are small
and Btot is small.
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Fig. 6. Optimal storage placement for the modified IEEE 123 node test feeder with linearized power flow when p(t) has multiple peaks and valleys. The
radius of each colored solid circle is proportional to B∗

i /αi, and different colors correspond to different Btot.

Fig. 7. A “counterexample” of Theorem 1 when different nodes have different
shapes of background injections.

Fig. 8. Load profiles that deviate from the common load shape. The light-
colored curves represent −(p(t) + δpi(t)).

C. Applying Monotone Placement to More Realistic Situations
In this part, we consider the situation where we apply the

optimal capacity obtained from the simplified formulation (5)
to more realistic situations and evaluate its performance.

The simulation procedure involves two stages: the planning
stage and the operating stage. In the planning stage, we
assume linearized DistFlow and the same shape of background
injections, and solve (5) to get the optimal capacity, just as
what we did in Section V-A. The resulting optimal storage
capacity will be denoted by B̂∗i , and we apply this mono-
tone optimal capacity to the network. Then in the operating
stage, we assume nonlinear power flow model and that the
background injections deviate from the common shape in the
form p̃i(t) = αi(p(t) + δpi(t)) as in Section V-B. We fix the
storage placement B̂∗i and optimize only over the charging
schedule bi(t). After we obtain the optimal charging schedule,
we calculate the corresponding reduction in total energy loss.

The above procedure is then repeated, but we instead
assume nonlinear power flow model and background injections
of the form p̃i(t) = αi(p(t) + δpi(t)) in the planning stage,
just as what we did in Section V-B. The operating stage will
remain the same, and we calculate the resulting reduction in
total energy loss, which is the optimal loss reduction we can
achieve.

Finally, we compare these two loss reductions to see if they
are close to each other.

We carry out this experiment on three instances of δpi(t),
and the results are shown in Table I. It can be seen that,
the differences between the loss reduction with B̂∗i and the
optimal loss reduction are very small, showing that B̂∗i is a
very good suboptimal solution to the more realistic situations
with load profile deviations and nonlinear DistFlow model.
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Fig. 9. Optimal storage placement for the modified IEEE 123 node test feeder with nonlinear DistFlow model when p̃i(t) deviates from the common load
shape. The radius of each colored solid circle is proportional to B∗

i /αi, and different colors correspond to different Btot.

TABLE I
COMPARISON OF LOSS REDUCTION

Btot = 1 MWh

Loss reduction with B̂∗
i Optimal loss reduction

Instance 1 45.457 kWh 45.484 kWh

Instance 2 45.037 kWh 45.054 kWh

Instance 3 46.303 kWh 46.323 kWh

Btot = 0.5 MWh

Loss reduction with B̂∗
i Optimal loss reduction

Instance 1 32.123 kWh 32.148 kWh

Instance 2 31.828 kWh 31.846 kWh

Instance 3 32.546 kWh 32.556 kWh

Btot = 0.25 MWh

Loss reduction with B̂∗
i Optimal loss reduction

Instance 1 19.639 kWh 19.640 kWh

Instance 2 19.485 kWh 19.489 kWh

Instance 3 19.880 kWh 19.882 kWh

These simulation results suggest that, although in practice the
background injections at each bus do not exactly follow the
same shape and the nonlinear DistFlow model is more accurate
in characterizing the power flow, Theorem 1, which is derived
by assuming all loads have the same shape and using the
linearized DistFlow model, is still very useful for practical
applications.

VI. CONCLUSION

We study the problem of optimal placement and sizing
of energy storage in distribution networks. We model a dis-
tribution network as a continuous tree with the linearized
DistFlow model, and formulate the problem as an optimal

power flow problem. The structure of the optimal solution has
been analyzed when all loads have the same shape, which
demonstrates that storage devices should be placed near the
leaves of the network and far from the substation, and that
the scaled capacity increases towards the leaves. Then, under
optimal storage placement, the locational marginal value of
storage is increasing as we move from the substation towards
a leaf node and reaches the highest value in places with
storage deployed. Moreover the locational marginal value is
equalized over the entire network where storage is deployed.
Simulations show that these structural properties still hold (or
approximately hold) when some of the modeling assumptions
are relaxed.

Some interesting future directions are as follows.
1) We have proved that B∗(x) increases and ξ` moves to-

wards the substation as Btot increases for line networks,
and simulation suggests that this also holds for general
radial networks. It will be interesting to formally prove
this property for radial networks.

2) We have made some simplifying assumptions in this
paper. It will be interesting to generalize the theory here
to more realistic models. We are especially interested in
a theory with line flow constraints like |S(x)| ≤ Smax,
and capacity constraints like B(x) ≤ Bmax(x) where
Bmax(x) is a predetermined function.

3) As mentioned in previous sections, through simulations,
we have found that the pattern of the optimal storage
placement is closely related to how the background in-
jection profiles at different nodes are correlated spatially.
Here we use the simplest assumption that they have
the same shape. It will be interesting to study if more
complicated spatial structure of background injections
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can lead to other or more general patterns for the
problem of optimal storage placement and sizing.
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