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Abstract In nature, the eastern North American monarch

population is known for its southward migration during the

late summer/autumn from the northern USA and southern

Canada to Mexico, covering thousands of miles. By sim-

plifying and idealizing the migration of monarch butter-

flies, a new kind of nature-inspired metaheuristic

algorithm, called monarch butterfly optimization (MBO), a

first of its kind, is proposed in this paper. In MBO, all the

monarch butterfly individuals are located in two distinct

lands, viz. southern Canada and the northern USA (Land 1)

and Mexico (Land 2). Accordingly, the positions of the

monarch butterflies are updated in two ways. Firstly, the

offsprings are generated (position updating) by migration

operator, which can be adjusted by the migration ratio. It is

followed by tuning the positions for other butterflies by

means of butterfly adjusting operator. In order to keep the

population unchanged and minimize fitness evaluations,

the sum of the newly generated butterflies in these two

ways remains equal to the original population. In order to

demonstrate the superior performance of the MBO algo-

rithm, a comparative study with five other metaheuristic

algorithms through thirty-eight benchmark problems is

carried out. The results clearly exhibit the capability of the

MBO method toward finding the enhanced function values

on most of the benchmark problems with respect to the

other five algorithms. Note that the source codes of the

proposed MBO algorithm are publicly available at GitHub

(https://github.com/ggw0122/Monarch-Butterfly-Optimiza

tion, C??/MATLAB) and MATLAB Central (http://www.

mathworks.com/matlabcentral/fileexchange/50828-mon

arch-butterfly-optimization, MATLAB).

Keywords Evolutionary computation �Monarch butterfly

optimization � Migration � Butterfly adjusting operator �
Benchmark problems

1 Introduction

In the areas of computer science, mathematics, control and

decision making, a relatively new set of algorithms, called

nature-inspired algorithms, has been proposed and used to

address an array of complex optimization problems.

Among various nature-inspired algorithms, swarm-based

algorithms and evolutionary algorithms (EAs) are two of

the most representative paradigms.

Swarm-based algorithms, also called swarm intelligence

(SI) methods [1], are one of the most well-known para-

digms in nature-inspired algorithms which have been

widely used in various applications, such as scheduling,
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directing orbits of chaotic systems [2], wind generator

optimization [3] and fault diagnosis [4]. Swarm intelli-

gence (SI) concerns the collective, emerging behavior of

multiple, interacting agents who follow some simple rules

[5]. Two of widely used SI are particle swarm optimization

(PSO) [6–10] and ant colony optimization (ACO) [11, 12].

The idea of PSO [6] originated from the social behavior of

bird flocking when searching for the food. The ants in

nature are well capable of keeping the past paths in mind

by pheromone. Inspired by this phenomenon, the ACO

algorithm [11] is proposed by Dorigo et al. Recently, more

superior SI algorithms have been proposed, such as artifi-

cial bee colony (ABC) [13, 14], cuckoo search (CS) [15–

19], bat algorithm (BA) [20–22], grey wolf optimizer

(GWO) [23, 24], ant lion optimizer (ALO) [25], firefly

algorithm (FA) [26–29], chicken swarm optimization

(CSO) [30] and krill herd (KH) [31–33]. These are inspired

by the swarm behavior of honey bees, cuckoos, bats, grey

wolves, chickens and krill, respectively.

By simplifying and idealizing the genetic evolution

process, different kinds of EAs have been proposed and

used in a wide range of applications. Genetic algorithm

(GA) [34, 35], evolutionary programming (EP) [36, 37],

genetic programming (GP) [38] and evolutionary strategy

(ES) [39] are four of the most classical EAs among them.

With the development of the evolutionary theory, some

new methods have been proposed over the last decades that

significantly improved the theory and search capacities of

EAs. Differential evolution (DE) [40, 41] is a very efficient

search algorithm that simulates the biological mechanisms

of natural selection and mutation. The best-to-survive cri-

teria are adopted in the above algorithms on a population of

solutions. Stud genetic algorithm (SGA) [42, 43] is a

special kind of GA that uses the best individual and the

other randomly selected individuals at each generation for

crossover operator. By incorporating the sole effect of

predictor variable as well as the interactions between the

variables into the GP, Gandomi and Alavi [44] proposed an

improved version of GP algorithm, called multi-stage ge-

netic programming (MSGP), for nonlinear system model-

ing. Recently, motivated by the natural biogeography,

Simon has provided the mathematics of biogeography and

accordingly proposed a new kind of EA: biogeography-

based optimization (BBO) [45–49]. Inspired by the animal

migration behavior, animal migration optimization (AMO)

[50] is proposed and compared with other well-known

heuristic search methods.

By simulating the migration behavior of the monarch

butterflies in nature, a new kind of nature-inspired meta-

heuristic algorithm, called MBO, is proposed for con-

tinuous optimization problems in this paper. In MBO, all

the monarch butterfly individuals are idealized and located

in two lands only, viz. Southern Canada and the northern

USA (Land 1) and Mexico (Land 2). Accordingly, the

positions of the monarch butterflies are updated in two

ways. At first, the offsprings are generated (position up-

dating) by migration operator, which can be adjusted by

the migration ratio. Subsequently, the positions of other

butterflies are tuned by butterfly adjusting operator. In

other words, the search direction of the monarch butterfly

individuals in MBO algorithm is mainly determined by

the migration operator and butterfly adjusting operator.

Also, migration operator and butterfly adjusting operator

can be implemented simultaneously. Therefore, the MBO

method is ideally suited for parallel processing and well

capable of making trade-off between intensification and

diversification, a very important phenomenon in the field

of metaheuristics. In order to demonstrate the performance

of MBO method, it is compared with five other meta-

heuristic algorithms through thirty-eight benchmark

problems. The results clearly show that the MBO method

is able to find the better function values on most bench-

mark problems as compared to five other metaheuristic

algorithms.

The goal of this paper is twofold. Firstly, the new op-

timization method called MBO is introduced. It is carried

out by first studying the migration behavior of monarch

butterflies and then generalizing it to formulate a general-

purpose metaheuristic method. Secondly, a comparative

study of the performance of MBO with respect to other

population-based optimization methods is done. This has

been addressed by looking at the commonalities and dif-

ferences from an algorithmic point of view as well as by

comparing their performances on an array of benchmark

functions.

Section 2 reviews the migration behavior of monarch

butterflies in nature, and Sect. 3 discusses how the migra-

tion behavior of monarch butterflies can be used to for-

mulate a general-purpose search heuristic. Several

simulation results comparing MBO with other optimization

methods for general benchmark functions are presented in

Sect. 4. Finally, Sect. 5 presents some concluding remarks

along with scope for improvements and expansion of the

present work.

2 Monarch butterfly and its migration behavior

As one of the most familiar North American butterflies, the

monarch butterfly has an orange and black pattern that can

be easily recognized [51]. It is a milkweed butterfly in the

family Nymphalidae. Female and male monarchs have

different wings that can be used to identify them.

The eastern North American monarch is known for its

ability of migrating by flying thousands of miles from the

USA and southern Canada to Mexico every summer. It
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involves which flying over west of the Rocky Mountains to

California. In order to overwinter, they move thousands of

miles to Mexico. Southward movements commence in

August and end at the first frost. However, during the

spring, opposite things happen. The female ones lay eggs

for generating offspring during these movements [52].

Recent research shows some butterflies perform Lévy flight

when they migrate or move [53].

3 Monarch butterfly optimization

In order to make the migration behavior of monarch but-

terflies address various optimization problems, the migra-

tion behavior of monarch butterflies can be idealized into

the following rules.

1. All the monarch butterflies are only located in Land 1

or Land 2. That is to say, monarch butterflies in Land 1

and Land 2 make up the whole monarch butterfly

population.

2. Each child monarch butterfly individual is generated

by migration operator from monarch butterfly in Land

1 or in Land 2.

3. In order to keep the population unchanged, an old

monarch butterfly will pass away once a child is

generated. In the MBO method, this can be performed

by replacing its parent with newly generated one if it

has better fitness as compared to its parent. On the

other hand, the newly generated one is liable to be

discarded if it does not exhibit better fitness with

respect to its parent. Under this scenario, the parent is

kept intact and undestroyed.

4. The monarch butterfly individuals with the best fitness

moves automatically to the next generation, and they

cannot be changed by any operators. This can guar-

antee that the quality or the effectiveness of the

monarch butterfly population will never deteriorate

with the increment of generations.

The next subsections will present a snapshot of the

migration operator and butterfly adjusting operator.

3.1 Migration operator

As mentioned in Sect. 2, monarch butterflies migrate from

Land 1 to Land 2 during the month of April and from Land

2 to Land 1 during the month of September. By simplifying

and idealizing the migration process, it can be summarized

that the monarch butterflies stay at Land 1 from April to

August (5 months) and Land 2 from September to March

(7 months). Therefore, the number of monarch butterflies

in Land 1 and Land 2 is ceil(p * NP) (NP1) and NP–NP1

(NP2), respectively. Here, ceil(x) rounds x to the nearest

integer greater than or equal to x; NP is the total number of

the population; p is the ratio of monarch butterflies in Land

1. In consideration of clear expression, monarch butterflies

in Land 1 and Land 2 are called Subpopulation 1 and

Subpopulation 2, respectively. This migration process can

be expressed as follows.

xtþ1
i;k ¼ xtr1;k ð1Þ

where xtþ1
i;k indicates the kth element of xi at generation

t ? 1 that presents the position of the monarch butterfly i.

Similarly, xtr1;k indicates the kth element of xr1 that is the

newly generated position of the monarch butterfly r1. t is

the current generation number. Monarch butterfly r1 is

randomly selected from Subpopulation 1. When r � p, the

element k in the newly generated monarch butterfly is

generated by Eq. (1). Here, r can be calculated as

r ¼ rand � peri ð2Þ

peri indicates migration period and is set to 1.2 in our work

(12 months a year). rand is a random number drawn from

uniform distribution. On the contrast, if r[ p, the element

k in the newly generated monarch butterfly is generated by

xtþ1
i;k ¼ xtr2;k ð3Þ

where xtr2;k indicates the kth element of xr2 that is the newly

generated position of the monarch butterfly r2. Monarch

butterfly r2 is randomly selected from Subpopulation 2.

Through the above analyses, it can be seen that the MBO

method can balance the direction of migration operator by

adjusting the ratio p. If p is big, more elements from

monarch butterflies in Land 1 will be selected. This indicates

that the Subpopulation 1 plays a more important role in

newly generated monarch butterfly. If p is small, more ele-

ments from monarch butterflies in Land 2 will be selected.

This indicates Subpopulation 2 plays a more important role

in newly generated monarch butterfly. In the current work,

p is set to 5/12 as per migration period. Accordingly, the

migration operator can be represented in Algorithm 1.
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Algorithm 1 Migration operator
Begin

for i= 1 to NP1 (for all monarch butterflies in Subpopulation 1) do
for k=1 to D (all the elements in ith monarch butterfly) do

Randomly generate a number rand by uniform distribution;

r=rand*peri;

if r ≤ p then
Randomly select a monarch butterfly in Subpopulation 1 (say r1);

Generate the kth element of the 1t
ix + as Eq. (1). 

else
Randomly select a monarch butterfly in Subpopulation 2 (say r2);

Generate the kth element of the 1t
ix + as Eq. (3).

end if
end for k

end for i
End.

3.2 Butterfly adjusting operator

Except migration operator, the positions of the monarch

butterflies can also be updated by the following butterfly

adjusting operator. The process of butterfly adjusting op-

erator can be simply described as follows. For all the ele-

ments in monarch butterfly j, if a randomly generated

number rand is smaller than or equal to p, it can be updated

as

xtþ1
j;k ¼ xtbest;k ð4Þ

where xtþ1
j;k indicates the kth element of xj at generation

t ? 1 that presents the position of the monarch butterfly j.

Similarly, xtbest;k indicates the kth element of xbest that is the

best monarch butterfly in Land 1 and Land 2. t is current

generation number. On the contrast, if rand is bigger than

p, it can be updated as

xtþ1
j;k ¼ xtr3;k ð5Þ

where xtr3;k indicates the kth element of xr3 that is randomly

selected in Land 2. Here, r3 2 f1; 2; . . .;NP2g. Under this

condition, if rand[BAR, it can be further updated as

follows.

xtþ1
j;k ¼ xtþ1

j;k þ a� dxk � 0:5ð Þ ð6Þ

where BAR indicates butterfly adjusting rate. dx is the walk

step of the monarch butterfly j that can be calculated by

performing Lévy flight.

dx ¼ Levy xt
j

� �
ð7Þ

In Eq. (6), a is the weighting factor that is given as

Eq. (8).

a ¼ Smax=t
2 ð8Þ

where Smax is max walk step that a monarch butterfly indi-

vidual can move in one step, and t is the current generation.

The bigger a, signifying long step of search, increases the

influence of dx on xtþ1
j;k and encourages the process of ex-

ploration, while the smaller a, indicating short step of

search, decreases the influence of dx on xtþ1
j;k and encourages

the process of exploitation. Accordingly, the description of

butterfly adjusting operator can be given in Algorithm 2.
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Algorithm 2 Butterfly adjusting operator
Begin

for j= 1 to NP2 (for all monarch butterflies in Subpopulation 2) do
Calculate the walk step dx by Eq. (7);

Calculate the weighting factor by Eq. (8);
for k=1 to D (all the elements in jth monarch butterfly) do

Randomly generate a number rand by uniform distribution;

if rand ≤ p then
Generate the kth element of the 1t

jx + as Eq. (4). 

else
Randomly select a monarch butterfly in Subpopulation 2 (say r3);

Generate the kth element of the 1t
jx + as Eq. (5).

if rand > BAR then

( )1 1
, , + 0.5t t

j k j k kx x dxω+ += × − ;

end if 

end if
end for k

end for j
End.

3.3 Schematic presentation of MBO algorithm

By idealizing the migration behavior of the monarch butterfly

individuals, MBO method can be formed, and its schematic

description can be given as shown in Algorithm 3. A brief

presentation of the MBO algorithm is shown in Fig. 1.

According to Algorithm 3, firstly, all the parameters

are initialized followed by the generation of initial

population and evaluation of the same by means of its

fitness function. Subsequently, the positions of all

monarch butterflies are updated step by step until certain

conditions are satisfied. It should be mentioned that, in

order to make the population fixed and reduce fitness

evaluations, the number of monarch butterflies, generated

by migration operator and butterfly adjusting operator,

are NP1 and NP2, respectively.
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Algorithm 3  Monarch Butterfly Optimization algorithm
Begin

Step 1: Initialization. Set the generation counter t = 1; initialize the population P of NP
monarch butterfly individuals randomly; set the maximum generation MaxGen, 
monarch butterfly number NP1 in Land 1 and monarch butterfly number NP2 in Land 2,
max step SMax, butterfly adjusting rate BAR, migration period peri, and the migration 
ratio p.

Step 2: Fitness evaluation. Evaluate each monarch butterfly according to its position.
Step 3: While the best solution is not found or t < MaxGen do

Sort all the monarch butterfly individuals according to their fitness.
Divide monarch butterfly individuals into two subpopulations (Land 1 and Land 2);
for i= 1 to NP1 (for all monarch butterflies in Subpopulation 1) do

Generate new Subpopulation 1 according to Algorithm 1.
end for i
for j= 1 to NP2 (for all monarch butterflies in Subpopulation 2) do

Generate new Subpopulation 2 according to Algorithm 2.
end for j
Combine the two newly-generated subpopulations into one whole population;
Evaluate the population according to the newly updated positions;
t = t+1.

Step 4: end while
Step 5: Output the best solution.

End.

4 Simulation results

In this section, the MBO method is evaluated from various

aspects by using an array of experiments conducted in

benchmark functions (see Table 1). More detailed de-

scriptions of all the benchmarks can be referred as [45, 54,

55]. Note that the dimensions of functions F01–F25 and

F26–F38 are twenty and two, respectively. That is,

benchmarks F01–F25 and F26–F38 are the high-dimen-

sional functions and low-dimensional functions,

respectively.

In order to obtain fair results, all the implementations

are conducted under the same conditions as shown in [56].

The same parameters for MBO method are set as fol-

lows: max step Smax = 1.0, butterfly adjusting rate

BAR = 5/12, migration period peri = 1.2, and the migra-

tion ratio p = 5/12. Note that, for high-dimensional func-

tions (F01–F25), both population size NP and maximum

generation MaxGen are set to 50; while for low-dimen-

sional functions (F26–F38), less population size NP and

maximum generation MaxGen are used in our experiments,

and both of them are set to 30. Accordingly, for F01–F25,

NP1 and NP2 are 21 and 29, respectively; while for F26–

F38, NP1 and NP2 are 13 and 17, respectively.

Metaheuristic algorithms are based on certain distribu-

tion, and hence, 200 independent trials have been made

with the aim of decreasing the influence of the randomness.

In the following experiments, the optimal solution for each

test problem is highlighted. For all the tables, the total

number of functions in which the optimization method has

the best performance is provided in the last row. It is worth

mentioning that the scales which are used to normalize

values in the tables are fully different with each other and

hence values from different tables are not comparative. The

detailed normalization process can be defined as follows:

Firstly, the real function values are presented by matrix

Am�n ¼ ½A1; A2; . . .; Ai; . . .; Am�T . Ai means the ith row,

and aij is an item in A, 1 B i B m, 1 B j B n. Here,

m = 38 and n = 6 denote the number of benchmark

functions and algorithms used in this paper, respectively.

Secondly, the minimum of the ith row bi is calculated

according to the Eq. (9).

bi ¼ minðAiÞ ð9Þ

Thirdly, the normalized results Cm9n can be obtained as

shown in Eq. (10).

cij ¼
aij

bi
ð10Þ

The values in the following tables are cij that are nor-

malized by the above method. As an example, if matrix A

is defined as
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A ¼
2 5 4 3

3 4 9 8

5 4 8 7

2
4

3
5 ð11Þ

After normalized, the matrix C is defined as

C ¼
1:00 2:50 2:00 1:50
1:00 1:33 3:00 2:67
1:25 1:00 2:00 1:75

2
4

3
5 ð12Þ

4.1 Comparisons of the MBO method with other

methods

The performance of MBO was compared with five opti-

mization methods (ABC [13], ACO [11], BBO [45], DE [40]

and SGA [42]) on thirty-eight optimization problems. For the

parameters used in the other methods, their settings can be

referred as [45, 57]. The results obtained by the six algorithms

on an array of benchmarks are recorded in Table 2.

From Table 2, it can be seen that, on average, MBO has

the fifth performance on six out of thirty-eight benchmarks.

SGA, ABC, BBO and DE have better performance than

MBO method, and they rank 1, 2, 3 and 4, respectively.

For the best solutions, Table 2 shows that MBO is well

capable of finding the optimal solutions on thirty-four out

of thirty-eight benchmarks. DE and ABC can search for the

best solutions on twelve and eleven out of thirty-eight

benchmarks. Generally, ABC, ACO, DE and SGA have

identical performance with respect to each other and this is

Is termination 
condition met?

Output the bestsolution

Y

N

Fitness evaluation

End

t=t+1

Initialization

Start

t=0

For all monarch butterflies in Subpopulation 
1, generate new Subpopulation 1 as

Algorithm 1.

Migration operator

For all monarch butterflies in Subpopulation 
2, generate new Subpopulation 2 as

Algorithm 2.

Butterfly adjusting 
operator

Fig. 1 Schematic flowchart of MBO method
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more evident for ACO and SGA. By carefully looking at

the Table 2, we found that, for twenty-five high-dimen-

sional complicated functions, MBO has absolute advantage

over the other five methods. For thirteen low-dimensional

functions, all the methods can solve them well under the

given conditions.

For the worst function values shown in Table 2, the first

two algorithms are ABC and BBO, and they perform the

best on nineteen and fifteen out of thirty-eight benchmarks,

respectively. MBO and ACO are well capable of finding

the best solutions on thirteen functions, which are nothing

but inferior to the above two methods.

From Table 2, for low-dimensional benchmarks

(D = 2), the performance of the six methods has little

difference. In particular, ABC and DE are the two best

methods when dealing with 2D functions. For high-di-

mensional benchmarks (D = 20), especially for the best

average performance, MBO is the best method at searching

for the optimal function values.

In addition, to demonstrate and prove the superiority of

the MBO method, convergence trajectories of six methods

are also illustrated in the current work. Full details are

beyond the scope of this manuscript, and hence, only the

illustrations of some of the most representative benchmarks

will be provided, as shown in Figs. 2, 3, 4, 5, 6, 7 and 8.

From Fig. 2, there is no ambiguity in concluding that

even though all the methods commence the process of

optimization at the beginning of same fitness, MBO can

find the satisfactory function values faster and the function

values found by MBO are always smaller than other five

methods during the whole optimization process.

For this test problem, it is obvious that, though BBO and

SGA perform well and have the similar performance, both

of them are outperformed by MBO from the beginning of

the optimization process. Looking carefully at generations

1–5 from Fig. 3, MBO has a faster convergence than other

methods.

As shown in Fig. 4, it is obvious that the convergent

trajectory of MBO is far away from others. This indicates

that MBO significantly outperforms other five methods for

Pathological function. Furthermore, DE and SGA rank 2

and 3 among six methods.

For this case, though MBO and SGA have similar final

fitness value, the convergent trajectory of MBO is always

below SGA. This implies that the fitness found by MBO is

better than SGA during the convergent process.

For this case as shown in Fig. 6, SGA and BBO have

similar convergent trajectories and final fitness values, and

both of them are only inferior to MBO method. MBO

method has better fitness from generation 1 to generation

50.

For this case, the convergent trajectory of MBO is far

below other methods, and this indicates MBO has found

much better function value than other five comparative

methods. Furthermore, for other five methods, SGA and

ACO are only worse than MBO and rank 2 and 3,

respectively.

From the above analyses about the Figs. 2, 3, 4, 5, 6 and

7, we can arrive at a conclusion that MBO algorithm sig-

nificantly outperforms the other five comparative algo-

rithms. On most of the occasions, SGA and BBO have

better performance as compared to the other methods, but

worse only than that of MBO.

4.2 Comparisons with other optimization methods

by using t test

Based on the final search results of 200 independent trials

on thirty-eight functions, Table 3 presents the t values on

thirty-eight functions of the two-tailed test with the 5 %

level of significance between the MBO and other opti-

mization methods. In the table, the value of t with 398

degrees of freedom is significant at a = 0.05 by a two-

tailed test. Boldface indicates that MBO performs sig-

nificantly better than the comparative algorithm. For the

last three rows, the ‘‘Better’’, ‘‘Equal’’, and ‘‘Worse’’ rep-

resent that MBO is better than, equal to, and worse than

certain comparative method for this case. Here, we take the

comparison between the MBO and the ACO for instance.

The MBO method performs better and worse than ACO on

twenty and seven functions, respectively. What’s more, the

MBO method performs similarly with ACO method on 11

Table 1 Benchmark functions

No. Name No. Name

F01 Ackley F20 Schwefel 2.21

F02 Alpine F21 Sphere

F03 Brown F22 Step

F04 Dixon and price F23 Sum function

F05 Fletcher-Powell F24 Zakharov

F06 Griewank F25 Wavy1

F07 Holzman 2 function F26 Beale

F08 Levy F27 Bohachevsky #1

F09 Pathological function F28 Bohachevsky #2

F10 Penalty #1 F29 Bohachevsky #3

F11 Penalty #2 F30 Booth

F12 Perm F31 Branin

F13 Powel F32 Easom

F14 Quartic with noise F33 Foxholes

F15 Rastrigin F34 Freudenstein-Roth

F16 Rosenbrock F35 Goldstein-price

F17 Schwefel 2.26 F36 Hump

F18 Schwefel 1.2 F37 Matyas

F19 Schwefel 2.22 F38 Shubert
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Table 2 Mean, best and worst function values obtained by six

methods

ABC ACO BBO DE MBO SGA

F01

Mean 2.16 2.45 1.33 1.95 1.00 1.42

Best 1.2E5 1.4E5 6.2E4 1.2E5 1.00 7.2E4

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F02

Mean 11.80 19.87 4.07 23.27 1.00 5.16

Best 2.8E5 5.2E5 8.7E4 7.1E5 1.00 8.0E4

Worst 1.00 3.09 3.09 3.09 3.09 3.09

F03

Mean 8.80 12.55 1.39 2.16 2.42 1.00

Best 3.4E7 2.4E8 1.6E7 3.5E7 1.00 1.3E7

Worst 1.10 1.00 1.59 1.59 1.59 1.59

F04

Mean 31.96 53.35 2.25 10.18 16.04 1.00

Best 1.5E4 3.0E4 783.47 6.3E3 1.00 272.34

Worst 371.34 618.56 10.60 266.90 1.00 83.07

F05

Mean 2.61 10.04 1.00 3.97 5.80 1.20

Best 2.51 21.50 1.00 7.73 9.32 1.34

Worst 5.39 23.31 1.00 8.60 8.86 7.36

F06

Mean 4.70 1.57 1.04 2.54 1.68 1.00

Best 15.77 4.98 3.17 13.62 1.00 3.44

Worst 27.98 12.97 4.16 19.64 1.00 12.93

F07

Mean 33.21 56.60 2.94 12.93 16.01 1.00

Best 2.9E16 1.8E17 1.7E15 7.6E16 1.00 9.5E14

Worst 1.8E3 2.7E3 21.74 112.65 1.00 150.45

F08

Mean 6.29 10.61 1.41 7.67 1.28 1.00

Best 1.6E8 5.1E8 5.7E7 4.7E8 1.00 4.8E7

Worst 1.00 1.32 1.10 1.11 1.10 1.10

F09

Mean 3.47 3.62 2.92 1.90 1.00 2.62

Best 195.13 216.54 164.82 75.47 1.00 137.17

Worst 1.13 1.00 2.66 2.66 2.66 2.66

F10

Mean 6.0E3 1.8E5 81.64 707.18 79.71 1.00

Best 1.0E17 1.00 2.4E16 8.7E16 5.9E6 1.1E16

Worst 3.2E5 1.00 77.01 7.3E4 2.36 2.36

F11

Mean 383.00 6.7E3 14.05 95.25 48.23 1.00

Best 2.8E20 1.00 1.5E17 1.2E21 8.8E7 4.7E16

Worst 7.9E5 3.8E7 4.0E3 8.9E4 1.00 1.2E3

F12

Mean 7.3E4 5.2E4 4.1E5 1.00 1.4E5 1.1E4

Best 2.8E4 5.9E8 5.9E8 1.00 6.0E3 5.9E8

Worst 1.6E6 7.8E5 1.0E8 1.00 7.8E5 7.8E5

Table 2 continued

ABC ACO BBO DE MBO SGA

F13

Mean 5.39 30.11 1.98 14.09 3.27 1.00

Best 1.5E6 5.4E6 5.2E5 6.8E6 1.00 2.0E5

Worst 11.91 16.14 1.51 21.06 1.00 1.33

F14

Mean 32.44 33.33 2.75 13.53 16.31 1.00

Best 7.0E13 4.4E14 2.5E13 3.6E14 1.00 6.2E12

Worst 1.00 18.16 18.16 18.16 18.16 18.16

F15

Mean 2.58 4.76 1.03 4.19 1.00 1.37

Best 3.6E6 9.9E6 1.5E6 9.0E6 1.00 2.1E6

Worst 3.97 7.89 1.00 5.94 3.10 1.77

F16

Mean 6.24 35.89 2.14 5.56 1.00 2.21

Best 2.3E5 1.1E6 7.1E4 2.4E5 1.00 8.3E4

Worst 25.84 81.22 9.43 21.26 1.00 5.26

F17

Mean 3.07 2.07 1.00 3.97 1.72 1.15

Best 7.4E6 2.4E6 1.2E6 1.0E7 1.00 1.2E6

Worst 4.73 3.36 1.00 5.66 3.71 1.61

F18

Mean 1.82 1.69 1.00 2.27 1.44 1.47

Best 1.9E8 1.5E8 7.6E7 2.3E8 1.00 1.1E8

Worst 1.51 2.06 1.00 1.85 1.17 1.62

F19

Mean 2.57 7.06 1.00 3.07 1.19 1.42

Best 4.6E4 8.5E4 1.8E4 6.6E4 1.00 3.0E4

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F20

Mean 3.66 2.32 2.58 2.97 1.00 2.17

Best 1.5E3 872.07 847.55 1.3E3 1.00 693.45

Worst 1.00 160.40 160.40 160.40 160.40 160.40

F21

Mean 5.11 13.22 1.00 2.58 1.27 1.08

Best 3.0E7 7.0E7 3.2E6 2.0E7 1.00 4.1E6

Worst 1.00 5.44 21.21 21.21 21.21 21.21

F22

Mean 5.76 2.66 1.17 2.94 2.66 1.00

Best 3.9E18 2.3E18 1.5E18 3.9E18 1.00 8.6E17

Worst 3.03 1.23 1.00 2.40 2.40 2.40

F23

Mean 4.98 10.92 1.06 2.31 2.22 1.00

Best 7.4E6 1.3E7 1.3E6 4.2E6 1.00 1.2E6

Worst 5.45 17.28 1.00 5.18 2.24 1.39

F24

Mean 1.72 1.3E4 1.00 2.09 1.99 1.57

Best 4.0E5 3.1E5 1.7E5 5.9E5 1.00 2.6E5

Worst 2.82 1.15 1.59 2.91 1.00 17.13
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functions out of thirty-eight functions. In other words, we

can say, the MBO performs better than or equally to ACO

for most cases. Furthermore, for ABC, the number of

‘‘Better’’, ‘‘Equal’’, and ‘‘Worse’’ are 22, 4 and 12, re-

spectively. This shows that MBO has better performance

than ABC on most functions. Therefore, MBO is not worse

than ABC for twenty-six cases. Although the MBO per-

formed equally to, or slightly poorer than the comparative

methods on some functions, Table 3 indicates that it out-

performs the other five methods for most of the functions.

4.3 The study of the number of fitness evaluations

In order to further investigate the performance of MBO

method, fitness evaluations are also studied from the fol-

lowing two respects.
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Fig. 2 Comparison of six methods for the F01 Ackley function with

50 generations

Table 2 continued

ABC ACO BBO DE MBO SGA

F25

Mean 2.33 1.82 1.00 2.49 1.18 1.05

Best 1.7E5 1.1E5 6.6E4 1.9E5 1.00 5.5E4

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F26

Mean 1.01 1.03 1.07 1.00 1.44 1.14

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 1.00 1.00 1.80 1.00

F27

Mean 1.00 2.27 5.91 1.13 69.49 2.01

Best 1.00 1.13 1.30 1.00 1.00 1.00

Worst 1.00 1.63 3.55 1.15 293.62 2.05

F28

Mean 1.00 1.99 6.25 1.10 58.76 1.45

Best 1.00 1.00 1.24 1.00 1.00 1.00

Worst 1.00 3.20 8.77 1.11 1.46 1.42

F29

Mean 1.00 1.93 7.06 1.07 83.07 1.54

Best 1.00 1.04 1.04 1.00 1.00 1.00

Worst 1.00 3.44 3.78 1.09 4.43 1.40

F30

Mean 1.03 1.03 1.23 1.00 2.08 1.03

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.02 1.05 1.36 1.00 1.98 1.98

F31

Mean 1.00 1.04 1.09 1.06 1.46 1.05

Best 1.00 1.01 1.01 1.00 1.00 1.01

Worst 1.00 1.13 1.02 1.07 1.23 2.77

F32

Mean 1.00 1.07 1.13 1.09 1.04 1.05

Best 1.5E3 2.0E3 1.2E4 3.2E3 1.00 91.68

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F33

Mean 1.00 1.00 1.01 1.00 5.80 1.00

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F34

Mean 2.82 2.50 9.35 2.30 15.43 1.00

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 3.55 66.68 3.55 3.55

F35

Mean 1.43 1.09 1.58 1.00 4.74 2.33

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 1.97 1.02 6.13 1.00

F36

Mean 1.00 1.01 1.02 1.00 1.19 1.01

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.00 1.00 1.00 1.00 303.21 303.21

Table 2 continued

ABC ACO BBO DE MBO SGA

F37

Mean 1.01 1.01 1.02 1.00 1.02 1.01

Best 1.00 1.00 1.00 1.00 1.00 1.00

Worst 1.01 1.00 1.00 1.00 1.08 2.05

F38

Mean 1.00 63.93 34.42 31.31 82.54 2.76

Best 2.54 452.25 452.25 237.31 1.00 452.25

Worst 1.00 21.89 1.00 2.81 1.00 1.00

Total

Mean 8 1 7 7 6 13

Best 11 10 8 12 34 10

Worst 19 13 15 10 13 8

The best value obtained by each method is indicated by bold
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4.3.1 Fixed fitness

In this subsection, we are analyzing the number of fitness

evaluations on twenty-five high-dimensional functions for

each method to the fixed fitness that are set to opt ? 1. opt

indicates the theoretical optimal solution for each function.

The maximum generation is set to 1000, and the maximum

of fitness evaluations is therefore 50,000. In other words, a

method will return 50,000 if it cannot find the required

fitness, or return the fitness evaluations if it can find

opt ? 1 under given conditions (see Table 4). Table 4

indicates that, for fourteen functions, MBO can success-

fully find the required fitness by using the least fitness

evaluations. SGA is only inferior to MBO method and can

successfully search for opt ? 1 by using least CPU re-

sources on the ten functions. DE and BBO rank 3 and 4,

and are well capable of finding the required opt ? 1 on

eight and five functions, respectively. Both ABC and ACO

are able to find the required opt ? 1 on four functions. In

particular, for F02 (Alpine), F08 (Levy), F09 (Pathological

function), F19 (Schwefel 2.22) and F21 (Sphere), MBO is

well capable of finding the required function value by only

using 1680, 1135, 3235, 2420 and 1520 fitness evaluations

that are far less than the other five comparative methods. It

should be mentioned that, for F05 (Fletcher-Powell func-

tion), F06 (Griewank), F12 (Perm) and F18 (Schwefel 1.2),

all the methods fail to find the required opt ? 1 within

500,000 function evaluations. We have made great effort to
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Fig. 3 Comparison of six methods for the F02 Alpine function with

50 generations
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find the required values by increasing population size and

maximum generations. However, finally, no one method

can find the required opt ? 1 under given conditions. To

sum up, for most benchmarks, MBO has the strong ability

of finding the required function values by using the least

fitness evaluations.

4.3.2 Fixed fitness evaluations

In this section, the fitness is investigated on twenty-five

high-dimensional functions for each method by using the

fixed number of fitness evaluations. The fixed fitness

evaluation is set to 6000. The average and best results are

recorded in Table 5 after 6000 fitness evaluations. From

Table 5, it can be seen that, on average, SGA can find the

most satisfactory fitness on thirteen functions by using

fixed fitness evaluations (6000). MBO is only inferior to

SGA and find the best fitness on nine functions after 6000

evaluations. For the best performance as shown in Table 5,
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Fig. 7 Comparison of six methods for the F20 Schwefel 2.21

function with 50 generations
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Table 3 Comparisons between MBO and other methods at a = 0.05

on a two-tailed t tests

ABC ACO BBO DE SGA

F01 14.67 18.19 4.18 12.13 5.34

F02 31.91 42.91 10.61 58.56 13.55

F03 3.30 5.22 -0.54 -0.13 -0.75

F04 2.88 6.42 -2.68 -1.14 -2.93

F05 -18.14 16.35 -28.89 -10.51 -27.46

F06 12.87 -0.51 -3.00 4.05 -3.22

F07 3.25 6.72 -2.67 -0.63 -3.07

F08 12.73 18.77 0.34 16.31 -0.80

F09 39.70 42.85 30.18 13.44 24.70

F10 9.52 7.01 0.04 8.27 -1.87

F11 8.28 8.24 -1.27 1.72 -1.77

F12 -2.23 -3.10 4.60 -5.16 -4.75

F13 2.85 21.29 -1.76 13.25 -3.15

F14 2.92 3.21 -2.72 -0.55 -3.07

F15 13.87 31.34 0.27 27.77 3.31

F16 13.59 42.65 3.23 12.44 3.43

F17 8.96 2.25 -4.83 14.98 -3.76

F18 2.92 1.90 -3.36 6.34 0.24

F19 7.85 29.35 -1.14 10.70 1.30

F20 31.38 15.85 17.71 24.92 12.26

F21 9.63 23.83 -0.73 3.44 -0.52

F22 6.88 0.02 -3.50 0.66 -3.89

F23 6.50 16.69 -2.85 0.23 -2.99

F24 -1.27 1.87 -4.67 0.50 -1.95

F25 9.06 5.00 -1.41 10.31 -0.99

F26 -5.72 -5.30 -4.72 -5.79 -3.46

F27 -4.36 -4.27 -4.03 -4.35 -4.29

F28 -5.04 -4.95 -4.57 -5.03 -5.00

F29 -3.74 -3.69 -3.45 -3.73 -3.71

F30 -4.29 -4.29 -3.41 -4.40 -4.28

F31 -4.38 -3.97 -3.41 -3.73 -3.93

F32 -0.64 0.65 2.14 0.99 0.15

F33 -1.55 -1.55 -1.55 -1.55 -1.55

F34 -3.86 -4.24 -1.70 -4.03 -4.82

F35 -4.54 -5.27 -4.48 -5.42 -2.95

F36 -3.18 -3.07 -2.83 -3.17 -3.05

F37 -1.61 -2.62 -0.73 -3.52 -1.85

F38 -5.99 -1.07 -3.19 -3.58 -5.85

Better 22 20 7 15 6

Equal 4 7 12 10 12

Worse 12 11 19 13 20

The best value obtained by each method is indicated by bold
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MBO significantly outperforms other five compared

methods, and is able to search for the optimal function

values on twenty-three functions by using 6000 fitness

evaluations. To sum up, for most benchmarks, MBO is well

capable of finding the best function values by using the

fixed fitness evaluations.

With the aim of further investigation of the fixed fitness

emulations, we have recorded the fitness at intervals of fifty

evaluations that are illustrated in Figs. 8, 9, 10, 11, 12 and

13.

From Fig. 8, it can be seen that, BBO and SGA have

almost the same fitness when using the same fitness

evaluations. MBO has better fitness than BBO and SGA

when using the same fitness evaluations during the opti-

mization process.

For this test problem, though MBO has the similar

performance with BBO and SGA that perform well too at

the beginning of the search, MBO outperforms them after

100 fitness evaluations. Finally, MBO has far better fitness

than BBO and SGA.

Table 4 The number of fitness evaluations for different methods

ABC ACO BBO DE MBO SGA

F01 47,232 50,000 36,145 18,090 19,085 33,135

F02 25,480 50,000 5585 27,450 1680 4500

F03 16,922 50,000 3315 6880 1365 2740

F04 50,000 50,000 48,835 27,460 42,860 47,350

F05 50,000 50,000 50,000 50,000 50,000 50,000

F06 50,000 50,000 50,000 50,000 50,000 50,000

F07 21,787 50,000 11,130 13,990 7235 6055

F08 17,710 50,000 4405 12,540 1135 3850

F09 50,000 50,000 50,000 13,600 3235 50,000

F10 21,455 45,005 8630 17,490 35,340 5435

F11 27,020 50,000 16,700 18,890 35,515 9440

F12 50,000 50,000 50,000 50,000 50,000 50,000

F13 46,777 50,000 30,730 46,900 36,310 22,670

F14 7,875 2485 830 4230 860 940

F15 50,000 50,000 34,125 50,000 26,420 35,035

F16 50,000 50,000 50,000 50,000 40,595 50,000

F17 50,000 50,000 50,000 50,000 45,135 44,690

F18 50,000 50,000 50,000 50,000 50,000 50,000

F19 26,565 50,000 16,245 15,590 2420 18,125

F20 50,000 50,000 50,000 46,810 50,000 50,000

F21 16,152 50,000 3640 8550 1520 4015

F22 37,205 50,000 48,995 19,920 31,260 26,400

F23 27,230 50,000 22,345 14,830 18,560 14,020

F24 50,000 50,000 50,000 50,000 45,230 50,000

F25 48,440 50,000 50,000 29,150 28,325 50,000

Total 4 4 5 8 14 10

The best value obtained by each method is indicated by bold

Table 5 Mean function values with the fixed evaluations

ABC ACO BBO DE MBO SGA

F01

Mean 7.02 5.35 2.11 4.84 1.00 2.04

Best 1.3E4 9.3E3 3.5E3 8.8E3 1.00 3.1E3

F02

Mean 1.1E3 732.21 76.42 1.2E3 1.00 72.60

Best 1.4E5 8.6E4 5.9E3 1.3E5 1.00 4.5E3

F03

Mean 1.7E3 566.72 20.46 116.53 1.00 10.42

Best 8.4E6 5.4E6 9.5E4 9.1E5 1.00 4.4E4

F04

Mean 3.1E3 233.30 3.48 114.24 978.41 1.00

Best 9.8E4 6.5E3 54.42 4.6E3 1.00 32.11

F05

Mean 7.34 16.02 1.00 6.17 2.60 1.19

Best 17.45 40.36 1.00 20.76 3.07 2.49

F06

Mean 50.64 3.16 1.50 8.48 31.10 1.00

Best 50.57 2.40 1.45 8.53 1.00 1.39

F07

Mean 1.2E4 802.84 7.85 599.97 811.66 1.00

Best 4.0E13 3.6E12 3.0E10 4.2E12 1.00 1.6E9

F08

Mean 52.55 20.08 1.52 23.65 4.54 1.00

Best 1.6E8 4.8E7 3.8E6 6.7E7 1.00 3.3E6

F09

Mean 18.80 17.50 11.08 7.95 1.00 10.16

Best 270.96 242.87 145.71 65.85 1.00 128.36

F10

Mean 2.0E7 1.4E8 3.26 1.1E5 5.8E5 1.00

Best 1.8E14 1.0E8 4.1E8 4.6E10 1.00 1.3E8

F11

Mean 1.2E7 4.2E7 21.31 2.0E5 1.8E4 1.00

Best 6.4E14 6.8E7 2.4E8 1.5E12 1.00 6.5E7

F12

Mean 1.2E6 1.6E5 4.5E6 1.00 1.9E6 7.3E4

Best 6.5E5 2.7E9 2.7E9 1.00 1.0E6 2.7E9

F13

Mean 70.58 100.47 2.04 60.12 28.39 1.00

Best 8.3E5 1.6E6 2.2E4 1.2E6 1.00 1.0E4

F14

Mean 7.6E3 294.50 6.56 389.58 367.33 1.00

Best 6.3E12 2.7E11 3.6E9 7.4E11 1.00 3.4E8

F15

Mean 10.93 11.90 1.50 12.06 1.00 2.10

Best 2.3E6 2.4E6 2.7E5 2.8E6 1.00 3.7E5

F16

Mean 10.86 22.38 1.06 3.48 1.00 1.03

Best 2.2E5 4.2E5 1.5E4 6.3E4 1.00 1.3E4
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As shown in Fig. 10, similarly with Figs. 8 and 9,

though SGA has better fitness than BBO finally, both of

them have the similar convergent trend with the same fit-

ness evaluations. MBO has better fitness than other five

methods, including BBO and SGA.

For this case, MBO has far better fitness than other

methods with the same fitness evaluations. For other

methods, DE, SGA and BBO rank 2, 3, and 4 among six

methods, respectively. In addition, ACO and ABC have the

similar convergent curves that indicate their fitness de-

crease little with the increment of fitness evaluations.

For this case as shown in Fig. 12, at first glance, the six

methods can easily be divided into two groups: MBO,

BBO, SGA and ABC, ACO, DE. It is quite clear that the

first group has far better fitness than the second one with

the same fitness evaluations. In more detail, MBO and

ABC have the best fitness among three methods in group

one and group two, respectively.

Similar to Rastrigin function as shown in Fig. 12, the six

methods can be divided into two groups: MBO, BBO, SGA

and DE, ABC, ACO. It is quite clear that the first group has

far better fitness than the second one with the same fitness

evaluations. Furthermore, MBO and DE have the best fit-

ness among three methods in group one and group two,

respectively.

From above analyses about the Figs. 8, 9, 10, 11, 12 and

13, we can infer that MBO algorithm is well capable of

finding far better function values with the same fitness

evaluations. For the other methods, in most cases, SGA and

BBO have better fitness as compared to the rest with the

Table 5 continued

ABC ACO BBO DE MBO SGA

F17

Mean 13.17 3.34 1.34 13.01 7.82 1.00

Best 1.1E7 1.4E6 5.7E5 1.0E7 1.00 3.5E5

F18

Mean 2.96 1.69 1.00 3.06 2.28 1.57

Best 1.9E3 609.84 570.97 2.1E3 1.00 738.67

F19

Mean 10.41 14.27 1.12 6.08 1.00 1.42

Best 2.0E4 2.4E4 1.9E3 1.3E4 1.00 2.5E3

F20

Mean 2.53 1.26 1.32 1.70 1.08 1.00

Best 108.74 33.67 39.73 69.79 1.00 23.21

F21

Mean 3.0E6 1.7E6 5.3E4 4.2E5 1.00 3.6E4

Best 1.2E8 6.1E7 1.3E6 1.6E7 1.00 8.5E5

F22

Mean 124.97 8.69 2.58 19.84 27.72 1.00

Best 2.0E19 1.6E18 2.9E17 3.5E18 1.00 1.6E17

F23

Mean 86.30 59.00 1.74 11.94 6.44 1.00

Best 3.0E7 1.7E7 2.0E5 4.8E6 1.00 1.9E5

F24

Mean 3.03 4.1E4 1.28 3.50 1.00 1.76

Best 6.9E4 3.2E4 1.9E4 8.6E4 1.00 2.2E4

F25

Mean 8.23 2.61 1.10 5.00 2.74 1.00

Best 6.3E4 1.9E4 7.1E3 4.3E4 1.00 5.1E3

Total

Mean 0 0 2 1 9 13

Best 0 0 1 1 23 0

The best value obtained by each method is indicated by bold
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same fitness evaluations though they are worse as com-

pared to that of MBO.

4.4 Comparisons of the MBO method with other

methods on higher dimensions

In order to further investigate the performance of MBO

method, it is further investigated on twenty-five higher-

dimensional functions. Population size and maximum

generations are set to 100. For other parameters used in this

section, they are the same as the Sect. 4.1, except the di-

mension of test functions.

4.4.1 D = 60

Here, the dimension of test function is set to 60. The results

obtained by six methods are recorded in Table 6.

From Table 6, it can be seen that, on average, MBO is

well capable of finding the optimal solutions on twenty-two

out of twenty-five benchmarks. ACO, BBO and DE can

search for the best solutions on only one out of twenty-five

benchmarks. Generally, ACO, BBO and DE have the

similar performance each other.

For the best solutions, Table 6 indicates that MBO has

the best performance on nineteen out of twenty-five

benchmarks. BBO and DE have better performance than

ABC, ACO and SGA methods, and they rank 2 and 3,

respectively.

For the worst function values shown in Table 6, the first

two algorithms are MBO and BBO, and they perform the

best on seventeen and twelve out of twenty-five bench-

marks, respectively. SGA is well capable of finding the

best solutions on eight functions, which are only inferior to

the above two methods.

4.4.2 D = 100

Here, the dimension of test function is set to 100. The

results obtained by six methods are recorded in Table 7.

The notation ‘‘–’’ in Table 7 indicates that the function

cannot be solved by the corresponding method.

From Table 7, for average values, MBO is well capable

of finding the optimal solutions on eighteen out of twenty-

five benchmarks. BBO and SGA can search for the best
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Table 6 Mean, best and worst function values obtained by six

methods when D = 60

ABC ACO BBO DE MBO SGA

F01

Mean 4.18 4.80 2.09 4.43 1.00 2.66

Best 6.8E4 8.0E4 3.0E4 7.5E4 1.00 3.9E4

Worst 1.00 1.10 1.00 1.02 1.00 1.00

F02

Mean 84.47 158.42 14.21 158.89 1.00 30.83

Best 1.1E6 2.5E6 1.9E5 2.6E6 1.00 3.8E5

Worst 2.56 4.27 1.00 4.66 1.00 1.00

F03

Mean 1.3E5 1.0E10 3.3E3 2.1E4 1.00 2.4E3

Best 6.4E17 1.00 2.8E16 2.2E17 2.3E9 2.6E16

Worst 20.30 2.28 1.00 5.13 1.00 1.00

F04

Mean 188.93 614.44 2.04 127.94 1.00 2.43

Best 3.8E6 1.8E7 2.9E4 3.3E6 1.00 3.0E4

Worst 1.2E5 3.0E5 768.16 5.0E4 1.00 1.4E3

F05

Mean 5.05 16.32 1.00 7.42 11.24 1.24

Best 4.69 17.75 1.00 9.00 11.47 1.05

Worst 6.64 18.58 1.00 9.16 15.36 2.06

F06

Mean 15.82 2.85 1.04 14.27 1.00 1.87

Best 250.71 47.38 15.12 286.12 1.00 27.79

Worst 20.67 2.54 1.00 15.98 3.19 2.37

F07

Mean 661.78 2.3E3 9.38 523.02 1.00 10.92

Best 4.9E18 2.0E19 3.4E16 4.1E18 1.00 4.9E16

Worst 6.8E3 2.9E4 54.63 3.9E3 1.00 110.50

F08

Mean 14.23 35.30 1.00 24.00 1.36 1.67

Best 4.1E8 9.6E8 2.4E7 7.0E8 1.00 4.0E7

Worst 1.00 2.74 1.00 2.14 1.00 1.00

F09

Mean 8.28 7.95 6.29 6.70 1.00 5.66

Best 1.8E3 1.7E3 1.3E3 1.4E3 1.00 1.1E3

Worst 1.19 1.14 1.00 1.00 1.00 1.00

F10

Mean 1.7E7 2.8E7 1.6E4 1.5E7 1.00 978.27

Best 4.7E17 1.8E8 4.5E11 3.4E17 1.00 1.8E11

Worst 2.3E6 2.5E6 380.40 2.2E6 1.00 1.71

F11

Mean 7.2E3 1.4E4 35.00 6.1E3 1.00 11.93

Best 3.3E16 1.0E9 1.9E13 2.8E16 1.00 6.9E12

Worst 5.0E7 1.00 5.6E4 4.5E7 2.7E3 6.7E4

F12

Mean 7.4E10 2.2E10 3.2E11 1.00 7.9E10 4.0E9

Best 1.2E13 7.0E14 7.0E14 1.00 1.0E13 7.0E14

Worst 1.0E11 1.0E11 4.2E12 1.00 5.6E11 1.1E10

Table 6 continued

ABC ACO BBO DE MBO SGA

F13

Mean 148.91 165.11 14.29 390.71 1.00 10.28

Best 2.5E9 3.6E9 9.2E7 7.2E9 1.00 1.4E8

Worst 17.44 16.18 1.14 46.21 1.00 1.06

F14

Mean 105.27 306.90 1.00 79.78 4.33 1.51

Best 2.1E17 7.6E17 2.2E15 2.2E17 1.00 9.8E14

Worst 2.49 6.51 1.00 2.04 1.00 1.00

F15

Mean 7.07 14.69 1.74 11.12 1.00 3.81

Best 4.1E7 8.9E7 7.4E6 6.4E7 1.00 1.9E7

Worst 4.00 9.45 1.00 6.26 2.05 2.39

F16

Mean 10.71 48.30 1.03 12.17 1.00 1.27

Best 3.2E5 1.6E6 3.2E4 3.8E5 1.00 3.3E4

Worst 37.63 224.41 5.41 43.88 1.00 4.23

F17

Mean 7.06 4.06 1.71 9.47 1.00 2.72

Best 1.2E7 5.4E6 2.1E6 1.8E7 1.00 3.5E6

Worst 84.64 48.52 26.79 108.91 1.00 37.36

F18

Mean 1.77 2.85 1.00 2.67 2.21 1.13

Best 378.19 607.80 174.11 611.18 1.00 157.11

Worst 485.06 661.79 249.21 783.07 1.00 300.79

F19

Mean 2.3E3 4.6E3 411.10 3.1E3 1.00 993.53

Best 1.2E5 2.5E5 1.9E4 1.6E5 1.00 4.7E4

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F20

Mean 5.06 4.07 3.43 5.02 1.00 3.28

Best 3.2E4 2.2E4 1.8E4 3.2E4 1.00 1.7E4

Worst 1.00 5.6E4 5.6E4 5.6E4 5.6E4 5.6E4

F21

Mean 7.1E6 2.1E7 4.3E5 5.7E6 1.00 1.1E6

Best 2.7E8 9.4E8 1.5E7 2.3E8 1.00 3.7E7

Worst 1.00 2.93 106.52 106.52 106.52 106.52

F22

Mean 37.92 20.20 2.49 31.40 1.00 4.36

Best 1.6E20 8.6E19 8.1E18 1.3E20 1.00 1.3E19

Worst 14.09 7.56 1.00 310.54 310.54 310.54

F23

Mean 43.45 107.82 2.81 28.86 1.00 5.77

Best 5.9E8 1.6E9 3.2E7 4.0E8 1.00 7.1E7

Worst 813.93 1.8E3 36.08 484.62 1.00 101.38

F24

Mean 1.33 9.5E8 1.00 1.78 109.21 1.24

Best 798.75 347.30 537.91 1.1E3 1.00 598.94

Worst 8.32 5.8E9 6.32 10.29 1.00 261.56
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Table 6 continued

ABC ACO BBO DE MBO SGA

F25

Mean 9.67 8.67 2.09 12.20 1.00 3.64

Best 4.9E5 4.1E5 :.0E4 6.3E5 1.00 1.6E5

Worst 1.00 1.00 1.00 1.00 1.00 1.00

Total

Mean 0 0 5 1 19 0

Best 0 1 1 1 22 0

Worst 6 3 12 4 17 8

The best value obtained by each method is indicated by bold

Table 7 Mean, best and worst function values obtained by six

methods when D = 100

ABC ACO BBO DE MBO SGA

F01

Mean 9.68 9.94 5.63 10.13 1.00 7.63

Best 2.9E4 2.9E4 1.6E4 3.1E4 1.00 2.2E4

Worst 1.00 1.00 1.00 1.03 1.00 1.00

F02

Mean 8.5E3 1.4E4 1.5E3 1.3E4 1.00 3.8E3

Best 2.8E5 4.6E5 4.9E4 4.2E5 1.00 1.2E5

Worst 6.77 11.05 1.20 9.79 1.00 2.91

F03

Mean 1.6E8 3.1E13 174.23 1.4E4 1.00 81.69

Best 9.0E10 1.6E5 5.0E6 1.5E8 1.00 2.8E6

Worst 4.0E6 1.21 3.69 283.69 1.00 1.97

F04

Mean 58.62 51.96 1.00 48.15 1.17 3.36

Best 2.6E7 2.5E7 3.3E5 1.9E7 1.00 1.2E6

Worst 99.81 84.28 1.00 84.78 20.40 4.87

F05

Mean 5.11 12.09 1.00 6.82 8.24 1.26

Best 6.05 13.98 1.00 7.88 8.58 1.18

Worst 5.43 11.59 1.00 7.14 8.16 1.64

F06

Mean 16.83 2.40 1.36 17.16 1.00 2.87

Best 1.1E3 124.95 72.58 1.0E3 1.00 152.28

Worst 67.01 9.27 5.34 71.93 1.00 9.54

F07

Mean 715.21 581.76 10.31 605.13 1.00 32.33

Best 6.9E17 3.5E17 7.6E15 5.6E17 1.00 2.0E16

Worst 2.5E4 2.2E4 397.86 1.6E4 1.00 1.0E3

F08

Mean 204.85 263.04 15.50 326.96 1.00 38.53

Best 9.6E8 9.3E8 6.5E7 1.5E9 1.00 1.7E8

Worst 1.71 2.24 1.00 2.88 1.00 1.00

Table 7 continued

ABC ACO BBO DE MBO SGA

F09

Mean 6.89 6.32 5.46 6.03 1.00 4.91

Best 49.17 44.17 36.34 41.71 1.00 32.61

Worst 1.83 1.67 1.43 1.59 1.00 1.40

F10

Mean 2.0E7 3.2E7 6.3E4 2.9E7 1.00 8.7E4

Best 2.4E17 4.0E9 1.7E14 3.6E17 1.00 4.8E12

Worst 2.8E6 4.9E5 1.6E3 4.1E6 1.00 1.9E4

F11

Mean 4.8E7 5.8E7 4.7E5 5.9E7 1.00 7.2E5

Best 1.6E16 1.8E10 7.7E13 2.2E16 1.00 8.4E13

Worst 9.8E7 2.7E4 4.0E5 1.1E8 1.00 7.5E5

F12

Mean – – – – – –

Best – – – – – –

Worst – – – – – –

F13

Mean 2.4E3 1.8E3 232.31 4.2E3 1.00 249.88

Best 1.4E8 1.4E8 1.4E7 3.3E8 1.00 1.7E7

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F14

Mean 54.98 100.66 1.00 52.55 1.42 2.62

Best 4.5E17 1.0E18 7.3E15 5.2E17 1.00 1.7E16

Worst 25.02 54.13 1.00 30.85 1.00 1.57

F15

Mean 7.21 11.78 1.86 9.61 1.00 4.65

Best 1.6E7 2.6E7 3.8E6 2.3E7 1.00 1.0E7

Worst 9.11 16.91 2.83 12.93 1.00 6.35

F16

Mean 96.51 245.71 7.24 113.11 1.00 13.92

Best 4.9E4 1.5E5 3.4E3 5.3E4 1.00 6.9E3

Worst 14.38 32.90 1.00 17.60 5.26 5.26

F17

Mean 3.56 2.35 1.00 4.35 1.27 1.78

Best 1.7E7 8.8E6 4.2E6 2.2E7 1.00 6.1E6

Worst 3.39 2.40 1.00 4.11 1.72 1.30

F18

Mean 1.86 3.50 1.02 2.82 3.00 1.00

Best 103.86 171.96 47.83 161.13 1.00 56.85

Worst 2.26 3.37 1.45 3.96 4.24 1.00

F19

Mean 134.12 200.41 26.65 154.27 1.00 68.72

Best 9.5E4 1.5E5 1.6E4 1.1E5 1.00 4.5E4

Worst 1.00 1.00 1.00 1.00 1.00 1.00

F20

Mean 2.58 2.41 1.98 2.57 1.00 1.83

Best 20.99 16.73 15.30 21.26 1.00 13.77

Worst 1.00 9.6E4 9.6E4 9.6E4 9.6E4 9.6E4
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solutions on five and one out of twenty-five benchmarks,

respectively.

For the best solutions, Table 7 indicates that MBO is

well capable of finding the optimal solutions on twenty-two

out of twenty-five benchmarks. ACO and BBO can search

for the best solutions on only one out of twenty-five

benchmarks. Hence, it is safe to conclude that MBO has the

absolute advantage over other five methods at this respect.

For the worst function values shown in Table 7, MBO is

a little better than BBO that significantly outperforms the

other four methods. ABC and SGA have the similar per-

formance, and they can find the best solutions on six func-

tions, which are only inferior to the above two methods.

We must point out, for F12 Perm function, its formu-

lation can be given as

f ð x!Þ ¼
XD
k¼1

XD
i¼1

ik þ 0:5
� � xi

i

� �k

�1

� �" #2

ð13Þ

Its function values are related to dimension, and it is too

large to be represented by MATLAB. In our experiment, it

can be up to 10E4000. Therefore, the six methods cannot

solve this function in our experiment.

From Tables 6 and 7, it can be seen, for high-dimen-

sional functions, MBO has the absolute advantage over

other five methods. This indicates that MBO can solve

more complicated problem more efficiently and effectively

than the other five comparative algorithms.

5 Discussion and conclusion

By simulating the migration behavior of the monarch

butterflies in nature, a new kind of nature-inspired meta-

heuristic algorithm, called MBO, is presented for con-

tinuous optimization problems in this paper. In MBO, all

the monarch butterfly individuals are idealized and only

located in two lands: southern Canada and the northern

USA (Land 1) and Mexico (Land 2). Accordingly, the

positions of the monarch butterflies are updated in two

ways. Firstly, the offsprings are generated (position up-

dating) by migration operator, which can be adjusted by the

migration ratio. And then, for other butterflies, their posi-

tions are tuned by means of butterfly adjusting operator. In

other words, the search direction of the monarch butterfly

individuals in MBO algorithm are mainly determined by

the migration operator and butterfly adjusting operator.

With the aim of showing the performance of MBO method,

it is compared with five other metaheuristic algorithms

through thirty-eight benchmark problems. The results show

that the MBO method is able to find the better function

values on most benchmark problems than five other

metaheuristic algorithms.

In addition, MBO algorithm is simple and has no

complicated calculation and operators. This makes the

implementation of MBO algorithm easy and fast.

Despite various advantages of the MBO method, the

following points should be clarified and focused on in the

future research.

Firstly, it is well known that the parameters used in a

metaheuristic method have great influence on its perfor-

mance. In the present work, we do little effort to fine-tune

the parameters used in MBO method. The best parameter

settings will be selected through theoretical analyses or

empirical experiments.

Secondly, computational requirements are of vital im-

portance for any metaheuristic method. It is imperative to

improve the search speed by analyzing the MBO method.

Thirdly, we use only thirty-eight benchmark functions to

test our proposed MBO method. In future, more benchmark

problems, especially real-world applications, should be

used for effective implementation of the MBO method,

such as image segmentation, constrained optimization,

knapsack problem, scheduling, dynamic optimization, an-

tenna and microwave design problems, and water,

geotechnical and transport engineering.

Table 7 continued

ABC ACO BBO DE MBO SGA

F21

Mean 18.32 36.28 1.45 17.64 1.00 5.06

Best 3.3E8 5.8E8 2.1E7 2.6E8 1.00 6.2E7

Worst 1.00 2.02 300.50 300.50 300.50 300.50

F22

Mean 39.77 25.78 3.14 40.29 1.00 6.94

Best 4.9E20 2.5E20 3.7E19 5.0E20 1.00 6.4E19

Worst 13.07 10.39 1.00 926.54 926.54 926.54

F23

Mean 69.36 75.70 5.21 54.62 1.00 16.70

Best 2.2E9 2.1E9 1.3E8 1.7E9 1.00 4.2E8

Worst 19.64 19.08 1.00 13.62 597.00 597.00

F24

Mean 1.24 6.2E10 1.00 1.47 2.9E3 1.07

Best 9.98 1.00 8.06 11.04 1.37 7.70

Worst 1.22 1.1E11 1.00 1.22 2.19 393.64

F25

Mean 8.08 7.61 1.89 9.94 1.00 3.86

Best 3.2E5 2.7E5 6.9E4 3.9E5 1.00 1.3E5

Worst 1.00 1.00 1.00 1.00 1.00 1.00

Total

Mean 0 0 5 0 18 1

Best 0 1 1 0 22 0

Worst 6 4 13 3 15 6

The best value obtained by each method is indicated by bold
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Fourthly, in the current work, the characteristics of the

migration behavior (essentially migration operator and

butterfly adjusting operator) are idealized to form the MBO

method. In future, more characteristics, such as swarm,

defense against predators, and human interactions, can be

idealized and simplified to be added to the MBO method.

Fifthly, as discussed in Sect. 4, MBO method has the

absolute advantage over other five methods on best per-

formance. However, for the average performance, MBO is

not the best one among six methods. Furthermore, bad

average performance must lead to bad standard deviation

(SD). Efforts should be made to improve the average per-

formance by updating the search process.

Sixthly, as shown in Sect. 4, MBO method has the ab-

solute advantage over other five methods when dealing

with high-dimensional functions. However, for the low-

dimensional functions, MBO performs equally to or worse

than other five methods. We plan to investigate this and

endeavor to find out the reasons and thereby address this

disadvantage in our future research.

And last, in the current work, the performance of MBO

method is experimentally tested only using benchmark

problems. The convergence of MBO method will be ana-

lyzed theoretically by dynamic systems and Markov chain.

This can ensure stable implementation of MBO method.
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Carvalho A, Herrera F, Pai V (eds) Proceeding of world congress

on nature & biologically inspired computing (NaBIC 2009),

Coimbatore, December 2009. IEEE Publications, USA,

pp 210–214

16. Ouaarab A, Ahiod B, Yang X-S (2014) Discrete cuckoo search

algorithm for the travelling salesman problem. Neural Comput

Appl 24(7–8):1659–1669. doi:10.1007/s00521-013-1402-2

17. Yang X-S, Deb S (2013) Cuckoo search: recent advances and

applications. Neural Comput Appl 24(1):169–174. doi:10.1007/

s00521-013-1367-1

18. Li X, Wang J, Yin M (2013) Enhancing the performance of cuckoo

search algorithm using orthogonal learning method. Neural Com-

put Appl 24(6):1233–1247. doi:10.1007/s00521-013-1354-6

19. Wang G-G, Gandomi AH, Zhao X, Chu HCE (2014) Hybridizing

harmony search algorithm with cuckoo search for global numerical

optimization. Soft Comput. doi:10.1007/s00500-014-1502-7

20. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd

edn. Luniver Press, Frome

21. Mirjalili S, Mirjalili SM, Yang X-S (2013) Binary bat algorithm.

Neural Comput Appl 25(3–4):663–681. doi:10.1007/s00521-013-

1525-5

22. Fister Jr I, Fong S, Brest J, Fister I Towards the self-adaptation in

the bat algorithm. In: Proceedings of the 13th IASTED interna-

tional conference on artificial intelligence and applications, 2014.

doi:10.2316/P.2014.816-011

23. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61. doi:10.1016/j.advengsoft.2013.12.007

24. Saremi S, Mirjalili SZ, Mirjalili SM (2014) Evolutionary

population dynamics and grey wolf optimizer. Neural Comput

Appl. doi:10.1007/s00521-014-1806-7

25. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw

83:80–98. doi:10.1016/j.advengsoft.2015.01.010

26. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable

structural optimization using firefly algorithm. Comput Struct

89(23–24):2325–2336. doi:10.1016/j.compstruc.2011.08.002

27. Yang XS (2010) Firefly algorithm, stochastic test functions and

design optimisation. Int J Bio-Inspired Comput 2(2):78–84.

doi:10.1504/IJBIC.2010.032124

28. Wang G-G, Guo L, Duan H, Wang H (2014) A new improved

firefly algorithm for global numerical optimization. J Comput

Theor Nanos 11(2):477–485. doi:10.1166/jctn.2014.3383

29. Guo L, Wang G-G, Wang H, Wang D (2013) An effective hybrid

firefly algorithm with harmony search for global numerical op-

timization. Sci World J 2013:1–10. doi:10.1155/2013/125625

Neural Comput & Applic

123

http://dx.doi.org/10.1007/s00521-011-0675-6
http://dx.doi.org/10.1007/s00521-007-0092-z
http://dx.doi.org/10.1007/s00521-007-0092-z
http://arxiv.org/abs/1307.4186
http://arxiv.org/abs/1307.4186
http://dx.doi.org/10.1007/s00521-014-1629-6
http://dx.doi.org/10.1007/s00521-014-1629-6
http://dx.doi.org/10.1007/s00521-015-1914-z
http://dx.doi.org/10.1007/s00521-015-1914-z
http://dx.doi.org/10.1108/EC-10-2012-0232
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1504/IJBIC.2014.062634
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s00521-012-1285-7
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1007/s00521-013-1354-6
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.2316/P.2014.816-011
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00521-014-1806-7
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1166/jctn.2014.3383
http://dx.doi.org/10.1155/2013/125625


30. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired

algorithm: chicken swarm optimization. In: Tan Y, Shi Y, Coello

CC (eds) Advances in swarm intelligence, vol 8794. Lecture

notes in computer science. Springer, New York, pp 86-94. doi:10.

1007/978-3-319-11857-4_10

31. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired

optimization algorithm. Commun Nonlinear Sci Numer Simulat

17(12):4831–4845. doi:10.1016/j.cnsns.2012.05.010

32. Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd

algorithm: krill herd with linear decreasing step. Appl Math

Comput 234:356–367. doi:10.1016/j.amc.2014.01.146

33. Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-

swarm krill herd algorithm for global numerical optimization.

Kybernetes 42(6):962–978. doi:10.1108/K-11-2012-0108

34. Goldberg DE (1998) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, New York

35. Gao XZ, Ovaska SJ (2002) Genetic algorithm training of Elman

neural network in motor fault detection. Neural Comput Appl

11(1):37–44. doi:10.1007/s005210200014
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