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Abstract. Machine-learning based intrusion detection classifiers are able to de-
tect unknown attacks, but at the same time they may be susceptible to evasion
by obfuscation techniques. An adversary intruder which possesses a crucial knowl-
edge about a protection system can easily bypass the detection module. The main
objective of our work is to improve the performance capabilities of intrusion de-
tection classifiers against such adversaries. To this end, we firstly propose several
obfuscation techniques of remote attacks that are based on the modification of
various properties of network connections; then we conduct a set of comprehensive
experiments to evaluate the effectiveness of intrusion detection classifiers against
obfuscated attacks. We instantiate our approach by means of a tool, based on
NetEm and Metasploit, which implements our obfuscation operators on any TCP
communication. This allows us to generate modified network traffic for machine
learning experiments employing features for assessing network statistics and be-
havior of TCP connections. We perform evaluation on five classifiers: Gaussian
Näıve Bayes, Gaussian Näıve Bayes with kernel density estimation, Logistic Re-
gression, Decision Tree, and Support Vector Machines. Our experiments confirm
the assumption that it is possible to evade the intrusion detection capability of
all classifiers trained without prior knowledge about obfuscated attacks, causing
an exacerbation of the TPR ranging from 7.8% to 66.8%. Further, when widen-
ing the training knowledge of the classifiers by a subset of obfuscated attacks,
we achieve a significant improvement of the TPR by 4.21% – 73.3%, while the
FPR is deteriorated only slightly (0.1% – 1.48%). Finally, we test the capability of
an obfuscations-aware classifier to detect unknown obfuscated attacks, where we
achieve over 90% detection rate on average for most of the obfuscations.

Key words: Classification-Based Intrusion Detection • Adversarial Classification
• Non-Payload-Based Obfuscation • Evasion • NetEm • Network Normalizer

1 Introduction

Network intrusion attacks such as exploiting unpatched services continue to be one of
the most dangerous threats in the domain of information security [2], [3]. Due to an
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increasing sophistication in the techniques used by attackers, misuse-based/knowledge-
based [11] intrusion detection suffers from undetected attacks such as zero-day attacks or
polymorphism, enabling an exploit-code to avoid positive signature matching of the packet
payload data. Therefore, researchers and developers are motivated to design new methods
to detect various versions of the modified network attacks including the zero-day ones.
These goals motivate the popularity of Anomaly Detection Systems (ADS) and also the
classification approaches in the context of intrusion detection. Anomaly-based approaches
are based on building profiles of normal users and trying to detect anomalies deviating
from these profiles [11], which might lead to detection of unknown intrusions, but on
the other hand it might also generate many false positives. In contrast, the classification
approaches take advantage of both misuse-based and anomaly-based models in order to
leverage their respective advantages. The classification detection methods firstly build a
model based on the labeled samples from both classes – intrusions and the legitimate
instances. Secondly, they compare a new input to the model and select the more similar
class as the predicted label. Classification and anomaly-based approaches are capable to
detect some unknown intrusions, but at the same time they may be susceptible to evasion
by obfuscation techniques.

Assumptions & Scope: Due to efficiency reasons as well as pervasive encryption, we
assume in this work a classification-based network intrusion detection system that does
not perform deep packet inspection and its model works with TCP connections objects,
not single packets. Also, we assume an adversary who knows design details of such a
system, but cannot modify its training data. The adversary can only modify the input of
the system in a limited way that has to conform the protocol specification of the TCP/IP
stack including victim’s application. There are several ways how it can be achieved: exploit
modification, adding padding at the application layer of exploit code, artificially influenc-
ing network or transport layer protocols. If an adversary wants to take advantage of huge
database of existing exploits to make their obfuscated mutations and massively exploit
targets, adding padding or various changes to exploit code may be time consuming and
unsustainable with newly obtained exploits. Therefore, the easiest way for an adversary
is to design non-payload-based obfuscation techniques working at network and transport
layers, which will mutate instances of known intrusions in an exploit-independent way.
This will make attacks similar to a legitimate traffic. We follow this idea in our paper and
construct exploit-independent modifications of attacks at network and transport layers of
TCP/IP. According to the taxonomy of adversarial attacks against IDS [10], our adver-
sarial approach belongs to evasions of measurement phase of IDS. Considering influence,
security violation, and specificity as dimensions of taxonomy of attacks against learn-
ing systems [5], our obfuscated attacks belong to: 1) exploratory attacks, which exploit
misclassification but do not affect training data, 2) integrity attacks, which compromise
assets via false negatives, and 3) indiscriminate attacks, which compromise wide class of
instances.

Despite the fact that non-payload-based evasions and obfuscations of network attacks
are not new research topics [14], [22], [23], they are still challenging subjects [7]. There
exist several related works considering non-payload-based adversarial evasions of network
attacks for payload-based intrusion detection [22], [24], [29]. However, to the best of our
knowledge, there are no studies on non-payload-based intrusion detection and obfuscation-
based adversarial evasion.
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Problem statement: In this work we address the following questions:

a) Is it possible to evade the detection of a non-payload-based intrusion detection clas-
sifier by obfuscation techniques?

b) If so, is it possible to increase the resilience of such a classifier against obfuscated
attacks, or even detect unknown ones?

Proposed solution: To address this problem, we define a set of obfuscation oper-
ators based on non-payload-based modifications of connection-oriented communications
accomplished by NetEm utility [15] and ifconfig command. We argue that our obfuscation
transformations, despite not being exhaustive, cover a wide range of network connection
morphing possibilities that can influence the detection performance of a non-payload-
based intrusion detection classifier. Subsequently, we propose several experiments to train
a classifier using obfuscated attacks as well as obfuscated legitimate connections and com-
pare it against another model of a classifier that is unaware of obfuscated attacks.

Contributions: The main contributions of this paper are as follows:

a) We define non-payload-based obfuscation techniques and their influence on a classifi-
cation task in an intrusion detection classifier.

b) We implement several obfuscation techniques as part of our obfuscation tool and later
conduct a data collection experiment that employs the obfuscation tool.

c) We perform an evaluation of non-payload-based obfuscation techniques using our
dataset, and we reveal them as: 1) successful in evading detection by five classifiers
that leverage selected subset of network connection features designed in [16], as well
as 2) successful in an improvement of evasion resistance of the classifiers against
unknown obfuscated attacks.

d) Moreover, we elucidate an alternative view on the outcome of our results, which is
denoted as training data driven approximation of a network traffic normalizer.

e) The collected dataset is provided to the research community.

2 Background

Consider a session of a protocol at the application layer of the TCP/IP stack that serves
for data transfer between the client/server based application. The interpretation of such
application data exchanges between client and server can be formulated, considering the
TCP/IP stack up to the transport layer, by connection k that is constrained to connection
oriented protocol TCP at L4, Internet protocol IP at L3 and Ethernet protocol at L2.
The TCP connection k is represented by start and end timestamps, ports of the client
and the server, IP addresses of the client and the server, sets of packets sent by the client
Pc, and by the server Ps, respectively.

Features Extraction. At this time, we can express characteristics of a TCP connection
by network connection features. The features extraction process is defined as a function
that maps a connection k into space of features F : f(k) 7→ F, F = (F1, F2, . . . , Fn) where
n represents the number of defined features. Each feature fi generating feature space Fi

is defined as a function that maps the connection k into feature space Fi: fi(k) 7→ Fi, i ∈
{1, . . . , n}, and each element of codomain Fi is defined as e = (e0, . . . , en), n ∈ N0,
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ei ∈ N | ei ∈ R | ei ∈ Γ+, i ∈ {0, . . . , n}, Γ = {a− z,A− Z, 0− 9}, where Γ+ denotes
positive iteration of the set Γ . In the context of this work, examples of such features are
show in Table 8 of Appendix.

Intrusion Detection Classification Task. Referring to [19], let X = V × Y be the
space of labeled samples,1 where V represents the space of unlabeled samples and Y
represents the space of possible labels. Let Dtr = {x1, x2, . . . , xn} be a training dataset
consisting of n labeled samples, where xi = (vi ∈ V, yi ∈ Y ). Consider classifier C which
maps unlabeled sample v ∈ V to a label y ∈ Y : y = C(v), and learning algorithm A which
maps the given dataset D to a classifier C: C = A(Dtr). The notation ypredict = A(Dtr, v)
denotes the label assigned to an unlabeled sample v by the classifier C, build by learning
algorithmA on the datasetDtr. Now, all extracted features of the connection k can be used
as an input of the trained classifier C that predicts the target label:ypredict = A

(
Dtr, f(k)

)
,

where ypredict ∈ {Intrusion,Legitimate}.

3 Proposed Approach

Considering the background from the previous section, now we describe non-payload-
based obfuscations that aim at modification of the behavioral characteristics of a remote
attack connection, and thus can influence the outcome of the intrusion detection classifi-
cation task.

Non-payload-based Obfuscations. Consider connection ka representing a remote at-
tack communication executed without any obfuscation. Then, ka can be represented by
features f(ka) 7→ F a = (F a

1 , F
a
2 , . . . , F

a
n ), which are delivered to the previously trained

classifier C. Assume that C can correctly predict the target label as an intrusive one,
because its knowledge base is derived from training dataset Dtr containing intrusive con-
nections having similar (or the same) behavioral characteristics.

Now, consider connection k′a which represents intrusive communication ka executed
by employment of non-payload-based obfuscations aimed at modification of its network
behavioral properties. The obfuscations can modify the Pc and Ps packet sets of the
original connection ka by insertion, removal and transformation of the packets. The
modifications of Pc and Ps of the connection ka can cause alteration of the original
features’ values F a to new ones. Thus, features extracted over k′a are represented by
f(k′a) 7→ F a′

= (F a′

1 , F a′

2 , . . . , F a′

n ) and have different values than features F a of the
connection ka. Therefore, we conjecture that the likelihood of a correct prediction of k′a-
connection’s features F a′

by the previously assumed classifier C is lower than in the case
of connection ka. Also, we conjecture that classifier C ′ trained by learning algorithm A
on training dataset D′tr, containing some obfuscated intrusion instances, will be able to
correctly predict higher number of unknown obfuscated intrusions than classifier C. These
assumptions will be evaluated and analyzed later.

Obfuscation Tool. We designed a tool that morphs network characteristics of a TCP
connection at network and transport layers of the TCP/IP stack by applying one or a com-
bination of several non-payload-based obfuscation techniques. Execution of direct com-

1 A sample refers to the vector of the network features extracted over a connection.
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Fig. 1: Behavioral state diagram of the obfuscation tool

munications (non-obfuscated ones) is also supported by the tool as well as capturing net-
work traffic related to a communication. The tool is capable of automatic/semi-automatic
run and restoring of all modified system settings and consequences of attacks/legitimate
communications on a target machine. After the successful execution of each desired obfus-
cation on the selected communication, the output contains several network packet traces
associated with pertaining obfuscations. The behavioral state diagram of the obfuscation
tool is depicted in Figure 1.

Description of Data Collection. We applied the obfuscation tool for a specific set of
vulnerable network services and obtained samples of network packet traces related to ma-
licious as well as legitimate communications executed with the employment of particular
obfuscations in a virtual network environment. Also, we collected network traffic dump
samples of direct attacks for each vulnerable service. These network packet traces were
passed to a feature extraction process that first identified all TCP connections and then ex-
tracted features per each TCP connection. The collection of these TCP connection-based
feature vectors is referred to as dataset, which is analyzed in further machine learning
experiments.

Description of Machine Learning Experiments. We performed several classification
experiments in order to evaluate the effectiveness of the proposed obfuscation techniques
as well as feedback of a classifier having obfuscated data included in its training process.
All of our experiments considered two class prediction, discerning between legitimate and
malicious TCP connections. Therefore, obfuscated and direct attacks were represented by
the same class. We executed the following experiments:
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1. For the purpose of finding the best subset of network connection features, we ran
the Forward Feature Selection (FFS) method. FFS started to run with an empty set
of features and in each iteration executing cross validation, it added a new feature
contributing by the best improvement of average recall of all classes. In order to
alleviate the possibility of the selection process becoming stuck in local extremes, we
allowed acceptance of one iteration without improvement.

2. Considering the selected subset of features, we evaluated evasion resistance of a clas-
sifier trained on direct attacks and legitimate traffic only, while testing was performed
on the whole dataset including obfuscated attacks.

3. Next, we widened the knowledge of a classifier by adding some obfuscated attacks
into the training set and compared its evasion resistance with the previous case.

4. Another experiment tested capability of the classifier to detect unknown obfuscated
attacks by customized leave-one-out validation.

5. Finaly, we analyzed the success rate of evasion per particular vulnerable service.

4 Evaluation

The proposed obfuscation techniques had been instantiated as part of the obfuscation
tool designed and implemented in the Unix environment. Parametrized instances of these

Table 1: Experimental obfuscation techniques with parameters and IDs

Technique Parametrized Instance ID

Spread out packets
in time

• constant delay: 1s (a)
• constant delay: 8s (b)
• normal distribution of delay with 5s mean 2.5s standard
deviation (25% correlation)

(c)

Packets’ loss • 25% of packets (d)

Unreliable network
channel simulation

• 25% of packets damaged (e)
• 35% of packets damaged (f)
• 35% of packets damaged with 25% correlation (g)

Packets’ duplication • 5% of packets (h)

Packets’ order
modification

• reordering of 25% packets; reordered packets are sent
with 10ms delay and 50% correlation

(i)

• reordering of 50% packets; reordered packets are sent
with 10ms delay and 50% correlation

(j)

Fragmentation

• MTU 1000 (k)
• MTU 750 (l)
• MTU 500 (m)
• MTU 250 (n)

Combinations

• normal distribution delay (µ = 10ms, σ = 20ms) and
25% correlation; loss: 23% of packets; corrupt: 23% of
packets; reorder: 23% of packets

(o)

• normal distribution delay (µ = 7750ms, σ = 150ms)
and 25% correlation; loss: 0.1% of packets; corrupt: 0.1%
of packets; duplication: 0.1% of packets; reorder: 0.1% of
packets

(p)

• normal distribution delay (µ = 6800ms, σ = 150ms)
and 25% correlation; loss: 1% of packets; corrupt: 1% of
packets; duplication: 1% of packets; reorder 1% of packets

(q)
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techniques are present in Table 1. The selection of particular obfuscation techniques was
primarily motivated by the need for achieving divergent behavior of obfuscated network
attacks as well as by capabilities of Unix OS. We experimented with various parameters’
values with the intention to cover a wide range of divergent behaviors and moreover for the
case of attacks preserve their exploitation successful. Although they are not exhaustive,
we believe such obfuscation operators are comprehensive enough to demonstrate a wide
range of network connection morphing possibilities. The methodology presented in this
paper allows for a straightforward extension of the proposed obfuscation set.

Implementation Notes and Network Infrastructure. The obfuscation tool is based
on open source tools and is written in the Python and Ruby programming languages. For
the purpose of an automatic attack execution an utility from Metasploit framework was
used. Tcpdump tool was chosen to perform network traffic capture between the attacker’s
machine and the legitimate one. Most obfuscations were carried out by Linux tc utility
and its extension NetEm [15], respectively. NetEm enabled us to add latency of packets,
loss of packets, duplication of packets, reordering of packets, and other outgoing traffic
characteristics of the selected network interface. The modification of MTU was performed
by the Linux utility ifconfig.

We established a virtual network environment for vulnerability exploitation, where all
virtual machines (VM) were configured with private static IP addresses in order to enable
easy automation of the whole exploitation process. Our testing network infrastructure
consisted of the attacker’s machine equipped with Kali Linux and vulnerable machines
that were running Metasploitable 1, 2,2 and Windows XP with SP 3.

Vulnerable Services. For proof-of-concept purpose, we aimed at selection of vulnerable
services with the high severity of their successful exploitation leading to remote shell
code execution through an established backdoor communication. Although there exist
plethora of publicly available exploit-codes for contemporary vulnerabilities, the situation
with corresponding available vulnerable SW is different due to understandable prevention
reasons. Therefore, we selected older available high-severity vulnerable services that are
outdated but may serve as a demonstration of our approach. The following listing contains
an enumeration of vulnerable services involved in our experiments, complemented by brief
description of their exploitation. Common Vulnerabilities and Exposures (CVE) IDs with
Common Vulnerability Scoring System (CVSS) values are shown in square brackets:

– Apache Tomcat 5.5: [CVE-1999-0502: 7.5; CVE-2009-3843: 10.0] – firstly, a dictio-
nary attack was executed in order to obtain access credentials into the application
manager instance. Further, the server’s application manager was exploited for trans-
mission and execution of malicious code.

– Microsoft SQL Server 2005: [CVE-1999-0506: 7.2; CVE-2000-1209: 10.0] – a dic-
tionary attack was employed to obtain access credentials of MSSQL user and then the
procedure xp cmdshell enabling the execution of an arbitrary code was exploited.

– Samba 3.0.20-Debian: [CVE-2007-2447: 6.0] – vulnerability in Samba service en-
abled the attacker of arbitrary command execution, which exploited MS-RPC func-
tionality when configuration username map script was allowed. There was no need
of authentication in this attack.

2 https://information.rapid7.com/metasploitable-download.html
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– Server Service of Windows XP: [CVE-2008-4250: 10.0] – the service enabled the
attacker of arbitrary code execution through crafted RPC request resulting into stack
overflow during path canonicalization.

– PostgreSQL 8.3.8: [CVE-1999-0502: 7.5; CVE-2007-3280: 9.0] – a dictionary attack
was executed in order to obtain access credentials into the PostgreSQL instance.
Standard PostgreSQL Linux installation had write access to /tmp directory and it
could call user defined functions (UDF) that utilized shared libraries located on an
arbitrary path (e.g., /tmp). An attacker exploited this fact and copied its own UDF
code to /tmp directory and then executed it.

– DistCC 2.18.3: [CVE-2004-2687: 9.3] – vulnerability enabled the attacker remote
execution of an arbitrary command through compilation jobs that were executed on
the server without any permission check.

An example of a TCP sequence diagram comparing direct and obfuscated attacks on
Samba service is depicted in Figure 2, where each arrow contains the timestamp of send
event and short description with the size of transmitted data. TCP handshakes and end-
shakes are represented by dashed arrows, exploitation of a vulnerability is depicted in red.
The new and different transmissions of obfuscated attack against direct one are depicted
in blue, while another difference can be seen in values of transmission time. These changes
were caused by obfuscation (o) that generated a loss of one or more SYN/ACK packets
at the 3-way handshake phase, loss of ACK packet after SMB Request and also addition
of delay into delivery of all packets.

Collected Network Traffic Dataset. Our obfuscation tool was leveraged for auto-
matic exploitation of the enumerated vulnerable services using the proposed obfuscations

Attacker Service
0 ms
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Fig. 2: Comparison of direct and obfuscated attacks on Samba service
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and for the capturing of related malicious network traffic, which was further passed to
TCP connection-level feature extractor. When an exploitation leading to a remote shell
was successful, simulated attackers performed simple activities involving various shell
commands (such as listing directories, opening and reading files). The average number of
issued commands was around 10 and text files of up to 50kB were opened/read. Note that
we labeled each TCP connection representing dictionary attacks as legitimate ones due
to two reasons: 1.) from the behavioral point of view, they independently appeared just
as unsuccessful authentication attempts, which may occur in legitimate traffic as well,
2.) more importantly, we employed ASNM features whose subset involved surroundings
(context) of an analyzed TCP connection for their computation, and thus they captured
relations to other TCP connections initiated from/to a service. On the other hand, legit-
imate network traffic was collected from two sources:

– Common usage of all previously mentioned services was captured in a real campus
network and further anonymized. We observed that a lot of expected legitimate traffic
contained malicious activity, as many students did not care about up-to-date software.
Therefore, we filtered out network connections yielding high and medium severity
alerts by signature-based Network Intrusion Detection Systems (NIDS) – Suricata
and Snort – through Virus Total API [4]. Herein, the activities performed by real
users of campus network are not known.

– The second source represented legitimate traffic simulation in our virtual network
architecture and also employed all of our non-payload-based obfuscations for the pur-
pose of partially addressing overstimulation in adversarial attacks against IDS [10],
and thus making the classification task more challenging. However, only 109 TCP
connections were obtained from this stage, which was also caused by the fact that
services such as Server and DistCC were hard to emulate.3 Simulation of legitimate
traffic was aimed at various SELECT and INSERT statements when interacting with

3 Note that additionally to those 109 TCP connections that were explicitly simulated, other
2252 TCP connections from obfuscated dictionary attacks were also considered as legitimate,
and thus also helped in a resistance against the overstimulation attacks.

Table 2: Distribution of TCP connection objects in collected dataset

Network Service
Count of TCP Connections

Legitimate Direct
Attacks

Obfuscated
Attacks

Summary

Apache Tomcat 809 61 163 1033
DistCC 100 12 23 135
MSSQL 532 31 103 666

PostgreSQL 737 13 45 795
Samba 4641 19 44 4704
Server 3339 26 100 3465

Other Legitimate
Traffic

647 n/a n/a 647

Summary 10805 162 478 11445
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the database services (i.e., PostgreSQL, MSSQL); several GET and POST queries
to our custom pages as well as downloading of high volume data when interacting
with our HTTP server (i.e., Apache Tomcat); and several queries for downloading
and uploading small files into Samba share.

The final dataset is summarized in Table 2 and is also available from http://www.fit.

vutbr.cz/~ihomoliak/asnm/ASNM-NPBO.html.

4.1 Machine Learning Experiments

All machine learning experiments were performed in Rapid Miner Studio [1] using five
different classifiers: two with parametric models – Gaussian Näıve Bayes and Logistic
Regression; and three with nonparametric models – Gaussian Näıve Bayes with kernel
density estimation, SVM with radial kernel function, and Decision Tree with maximal
depth of 10 levels. Note that parametric models make assumptions about the data, which
means that they use a finite set of parameters for modeling the data. This makes them
simple and fast, but on the other hand they are not flexible in modeling of data that
do not contain their assumed distribution. In contrast, non-parametric models have no
assumptions about the data, and thus they may use unlimited number of parameters.
The advantage of these models is their flexibility, but on the other hand they may over-
fit the training data. Across all of our experiments, network connection features were
instantiated by FFS-selected subset of ASNM features (e.g., Table 8), whose full list is
available in Appendix D of [17]. Note that some features of ASNM may lead to over-
fitting of training data due to laboratory conditions of VMs’ setup where attacks were
executed. Therefore, such features were removed from the dataset in the preprocessing
phase of our experiments and consist of TTL-based features, IP addresses, ports, MAC
addresses, occurrence of source/destination host in monitored network. Considering our
current dataset’s class distribution, we decided to select 5-fold cross validation, which
creates big enough folds for binary classification. All cross validation experiments have
been adjusted to employ stratified sampling during assembling of folds, which ensured
equally balanced class distribution of each fold.

Forward Feature Selection. The experiment consisted of two executions of the FFS
per each classifier. In each of executions, we optimized a few important parameters of the
classifiers using grid approach. In the cases of both Näıve Bayes classifiers, we enabled
Laplace correction in order to prevent models from high influence by zero probabilities
of some values, and moreover in the kernel-based version we optimized the bandwidth of
kernels. In SVM, we optimized: 1) parameter C that represents trade-off between a soft
and hard boundary of the hyperplane and 2) parameter gamma of the Gaussian radial
kernel that influences the variance of the Gaussian kernel. The regularization parameter
lambda was optimized in the case of Logistic Regression – the parameter controls overfit-
ting of the model at the expense of incorporating the bias. And finally in the case of the
decision tree, we used gain ratio as a criterion for selection of attributes for splitting, while
we optimized minimal gain required for splitting, which controls the number of splits.

The first execution set of FFS took as input just legitimate traffic and direct attack
entries, and represented the case where intrusion detection classifiers were trained without
knowledge about obfuscated attacks. We denote the selected features as FFS DL (Direct
+ Legitimate). The second execution set took as input the whole dataset of network
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Table 3: Direct attacks & legitimate traffic cross validation (ordered by F1)

Classifier TPR FPR F1 Avg. Recall

N. Bayes (kernels) 98.15% 0.02% 98.45% 99.07%
Decision Tree 95.68% 0.09% 94.80% 97.80%

SVM 82.72% 0.01% 90.24% 91.36%
Log. Regression 70.99% 0.20% 76.92% 85.40%

N. Bayes 97.53% 8.14% 26.33% 94.70%

Table 4: Prediction of obfuscated/all attacks (ordered by TPR)

(a) Obfuscated attacks

Classifier TPR ∆ TPR

N. Bayes 81.80% -13.26%
Log. Regression 63.18% -7.81%

N. Bayes (kernels) 52.30% -45.85%
Decision Tree 36.61% -59.07%

SVM 15.90% -66.82%

(b) All attacks

Classifier TPR ∆ TPR

N. Bayes 86.09% -8.97%
Log. Regression 66.25% -4.74%

N. Bayes (kernels) 64.38% -33.77%
Decision Tree 52.03% -43.65%

SVM 26.25% -56.47%

traffic – consisting of legitimate traffic, direct attacks as well as obfuscated ones, and thus
represented the case where classifiers were aware of obfuscated attacks. Here, we denote
the selected features as FFS DOL (Direct + Obfuscated + Legitimate). We assume FFS
DL features set as less informed (and thus less tuned) than FFS DOL features, therefore
when FFS DL features are used we assume that classifiers do not have knowledge about
obfuscated attacks, while FFS DOL features are used when we assume the opposite case.
As the example of both FFS-selected feature sets see Table 8 of Appendix (columns FFS
DOL and FFS DL).

Evasion of Intrusion Detection Classifiers. A 5-fold cross validation was performed
using direct attacks with legitimate traffic considering FFS DL features. The performance
measures of the classifiers validated by cross validation are shown in Table 3. Then the
classifiers trained on all direct attacks and legitimate traffic instances were applied for
the prediction of the obfuscated attacks and all attacks, respectively (see Table 4). Here
TPRs were deteriorated for all classifiers, which means that some obfuscated attacks
were successful – they were predicted as legitimate traffic, and thus caused evasion of the
classifiers.

Note that in the case of direct attacks and legitimate traffic cross validation, non-
parametric classifiers achieved better performance than parametric classifiers, while in the
case of obfuscated attacks non-parametric classifiers were more significantly deteriorated
in TPR, which was caused by their property of overfitting known data.

Widening the Knowledge of the Classifiers. In order to improve the resistance of
the classifiers against evasions, we widened their knowledge about different mixtures of
obfuscated attack instances, which was accomplished by random 5-fold cross validation
of the whole dataset. In this experiment, it is justified to use FFS DOL features that
consider knowledge about obfuscated attacks for updating not only the model of a classifier
but also underlying feature set. Additionally, we show the results with FFS DL features,
which consider updating model only. The results of this experiment are shown in Table 5.
Comparing against the results from the previous experiment (see FPRs from Table 3
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Table 5: Whole dataset cross validation (ordered by F1)

(a) FFS DL features

Classifier TPR FPR
∆

TPR
∆

FPR
F1

Avg.
Recall

N. Bayes (kernels) 93.28% 0.73% +28.90% +0.71% 90.73% 96.28%
SVM 80.31% 0.05% +54.06% +0.04% 88.70% 90.13%

Log. Regression 74.69% 0.33% +20.00% +0.13% 82.85% 87.18%
Decision Tree 67.34% 0.36% +15.31% +0.27% 77.65% 83.49%

N. Bayes 60.31% 1.87% -34.07% -6.27% 62.87% 79.22%

(b) FFS DOL features

Classifier TPR FPR
∆

TPR
∆

FPR
F1

Avg.
Recall

SVM 99.53% 0.13% +73.28% +0.12% 98.68% 99.70%
Decision Tree 98.44% 0.19% +46.41% +0.10% 97.60% 99.13%

N. Bayes (kernels) 98.75% 0.99% +34.37% +0.97% 91.66% 98.88%
Log. Regression 97.50% 1.68% +31.25% +1.48% 86.37% 97.91%

N. Bayes 98.59% 3.75% +4.21% -4.39% 75.30% 97.42%

and TPRs from Table 4b), most of the classifiers were significantly improved in TPR,
while FPR was deteriorated only slightly. This confirms the fulfilled assumption that
the classifiers trained with knowledge about some obfuscated attacks are able to detect
the same or similar obfuscated attacks. The only exception is the Gaussian Näıve Bayes
classifier when updating model only, not the underlying feature set (Table 5a). Here is
important to note that this classifier makes strong assumptions about the modeled data
and when we searched for the optimal feature set with direct and legitimate traffic (FFS
DL), it was unable to further optimize FPR, which remained high in contrast to other
classifiers. Therefore, when obfuscated attacks were added into the cross validation, the
classifier was unable to use the same features and the same strong assumptions about the
original data for fitting the different data. However, in the case of updating the feature
set (Table 5b), both TPR and FPR of the classifier were improved.

Detection of Unknown Obfuscated Attacks. For the purpose of explicitly test-
ing the classifiers’ capability to detect new kinds of obfuscated attacks, we performed
customized leave-one-out validation using FFS DOL features, where the classifier was
step-by-step trained on all permutations of the whole dataset excluding only obfuscated
attack samples created by a single obfuscation technique, or its instance, respectively;
while it was validated on the excluded part of the dataset. Table 6 presents ordered ratios
of correctly detected unknown obfuscated attacks per obfuscation technique as well as
per its instance. Comparing detection performance of unknown obfuscated attacks, either
per instance or per obfuscation technique, we concluded that in most of the obfuscations,
there were achieved high detection rates that indicate the acceptable resistance of the
obfuscations-aware classifiers against unknown obfuscated attacks. The only exceptions
are obfuscation techniques that modify MTU. This can be explained by the fact that the
majority of the features employed in our experiments is mostly sensitive to packet lengths,
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Table 6: Ratios of correctly detected unknown obfuscated attacks

(a) Per instance

Unknown
Instance of
Obfuscation
Technique

The
Number
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Samples

Ratio of Correctly Detected Samples
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(a) 28 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(b) 22 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(j) 27 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(p) 33 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(c) 30 96.67% 100.00% 100.00% 100.00% 100.00% 99.33%
(i) 27 100.00% 100.00% 100.00% 96.30% 100.00% 99.26%
(e) 26 100.00% 100.00% 96.15% 100.00% 100.00% 99.23%
(g) 26 100.00% 100.00% 100.00% 100.00% 96.15% 99.23%
(d) 30 100.00% 100.00% 96.67% 96.67% 100.00% 98.67%
(h) 30 100.00% 100.00% 96.67% 96.67% 100.00% 98.67%
(q) 35 100.00% 97.14% 97.14% 97.14% 100.00% 98.29%
(m) 27 92.59% 100.00% 92.59% 100.00% 100.00% 97.04%
(o) 28 100.00% 92.86% 92.86% 100.00% 96.43% 96.43%
(f) 28 92.86% 96.43% 92.86% 100.00% 96.43% 95.71%
(l) 27 81.48% 100.00% 92.59% 100.00% 100.00% 94.81%
(k) 27 66.67% 100.00% 100.00% 100.00% 100.00% 93.33%
(n) 27 70.37% 77.78% 48.15% 55.56% 74.07% 65.19%

Average 94.15% 97.89% 94.45% 96.61% 97.83%
Std. Dev. ±10.81% ±5.54% ±12.30% ±10.68% ±6.29%

(b) Per technique

Unknown
Obfuscation
Technique
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Ratio of Correctly Detected Samples
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(a, b, c) 80 98.75% 100.00% 100.00% 100.00% 100.00% 99.75%
(i, j) 54 100.00% 100.00% 100.00% 94.44% 100.00% 98.89%

(d) 30 100.00% 100.00% 96.67% 96.67% 100.00% 98.67%
(h) 30 100.00% 100.00% 96.67% 96.67% 100.00% 98.67%

(o, p, q) 96 100.00% 96.88% 96.88% 96.88% 98.96% 97.92%
(e, f, g) 80 97.50% 98.75% 95.00% 100.00% 97.50% 97.75%

(k, l, m, n) 108 75.93% 92.59% 83.33% 61.11% 93.52% 81.30%

Average 96.03% 98.32% 95.51% 92.25% 98.57%
Std. Dev. ±8.91% ±2.78% ±5.68% ±13.87% ±2.41%
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which are influenced by fragmentation-based obfuscations. This phenomenon is more sig-
nificant in the cases of non-parametric classifiers due to their property of overfitting the
training data. In general, parametric classifiers were more successful in detecting unknown
obfuscated attacks and their correct predictions were more stable than in non-parametric
classifiers. However, in the case of one parametric classifier – Gaussian Näıve Bayes – we
also have to take into account its worse FPR in comparison to Logistic Regression (shown
in Table 3).

Successful Evasions per Service. This experiment compares and analyzes success
rate of evasion per vulnerable service. The results presented here originate from a binary
classification experiment in which the classifier was trained without obfuscated attacks
and validated on the whole dataset (Table 4) using FFS DL features. The obfuscations are
considered successful if they are predicted as legitimate traffic; the situation represents
evasion case. Ordered ratios of successfully obfuscated attacks per service are present in
Table 7. The minimum achieved ratios of attacks that evaded detection are shown in bold
and belong to parametric classifiers, which was already mentioned above. Most successful
obfuscated attacks are those exploiting Apache service. From a detailed analysis of this
service, we found out that instances of direct attacks had very flat value distribution of
many features in comparison to other direct attacks. Examples of such features are the
standard deviation of inbound and outbound packet sizes of the connection, and other
features dependent on the packets’ length variability. Therefore, obfuscated attacks caused
more variability of the features that were in many cases similar to legitimate traffic. On
the other hand, in the cases of Server, many features of the direct attacks were more
divergent across their instances, and thus obfuscations contributed to the divergence only
in a low scale. Therefore, most of the obfuscated attacks had similar characteristics like
direct ones, which enabled their detection.

Table 7: Successfully obfuscated attacks (evasions) per service

Vulnerable
Service

The
Number
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Samples

Ratio of Successfully Evaded Samples
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Apache 163 55.21% 4.91% 55.83% 88.34% 93.87% 59.63%
PostgreSQL 45 66.67% 0.00% 88.89% 100.00% 0.00% 51.11%

MSSQL 103 18.45% 23.30% 71.84% 100.00% 12.62% 45.24%
Samba 44 70.45% 0.00% 50.00% 100.00% 2.27% 44.55%

DistCC 23 39.13% 17.39% 95.65% 47.83% 17.39% 43.48%
Server 100 49.00% 0.00% 54.00% 44.00% 5.00% 30.40%

Average 49.82% 7.60% 69.37% 80.03% 21.86%
Std. Dev. 19.17% 10.23% 19.35% 26.84% 35.88%

5 Discussion

Impact of Obfuscations on Feature Divergence. To assess the impact of proposed
obfuscations on the divergence of ASNM features, we compared values of each FFS-
selected feature of obfuscated attacks with feature values obtained from direct attacks
executed with the same exploit. In other words, we quantified the change that obfuscations
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bring by computing the ratio of divergent single-feature obfuscated attacks against the
closest single-feature direct attack using the same exploit on the same service. We found
out that this ratio (averaged per all FFS DL features) is higher than 55% in the case of
all classifiers, which can be viewed as the proposed obfuscations were able to influence
the majority of features in obfuscated attacks. The example of this ratio computed per
each input feature of Gaussian Näıve Bayes classifier is present in Table 8 of Appendix
(the last column). Note that in the case of FFS DOL features, the average of this ratio
per-feature is lower (66.33%) than in the case of FFS DL features (72.80%), as FFS DOL
was aware of obfuscations and thus selected more obfuscation-resistant features.

Retraining. Although we had demonstrated that our adversarial classification approach
to network intrusion detection can detect unknown obfuscated attacks with high perfor-
mance, it is still possible to design and apply unknown network connection morphing
techniques to bypass the detection. In order to keep this performance as high as possi-
ble, retraining of the classifier should be performed each time a new form of obfuscation
is known to occur. However, such retraining of generative classifiers (both Näıve Bayes
classifiers) relates to sub-model of the malicious class only, and therefore is faster than
retraining monolithic models of discriminative classifiers such as SVM, decision tree, and
logistic regression, where the whole model incorporating both classes has to be retrained.
This favors generative classifiers over discriminative when a frequent update of a model is
required. On the other hand, retraining of the legitimate sub-model of generative classi-
fiers should be also performed once in a while in order to ensure that all new manners of
using particular services are captured. Next aspect related to fast retraining of classifiers
is whether they can be retrained with preserving the feature set and still provide high
performance. From this point of view, we have found Näıve Bayes with Gaussian kernels
as the most convenient classifier (see results in Table 5a).

High Rate of Attacks. Our dataset has the ratio of malicious to legitimate connections
equal to 5.9%, while in practice this ratio is usually several orders of magnitude lesser.
Although an arbitrary value of this ratio does not distort the performance of the classifier
when correct performance measure is chosen (e.g., F1 -measure, average recall of classes),
it might impact the accuracy of modeling the legitimate class whose high volume occurred
in practice can result in high divergence of data, which might not be captured by models
built from our dataset in sufficient manner. Therefore in practice, classifiers would require
much more legitimate data than in our dataset.

Normalizers. If we would assume the existence of optimal network normalizer that
would be able to completely eliminate the impact of proposed non-payload-based obfus-
cation techniques, then these obfuscation techniques would be useless. Nevertheless, if
such optimal network normalizer would exist, then it would be still prone to state holding
and CPU overload attacks [12], [21], [26]. Contrary, if we would not assume network nor-
malizer as part of our system, then non-payload-based obfuscation techniques might be
employed as training data driven approximation of network normalizer that would not be
prone to previously mentioned attacks. The situation can be demonstrated by our binary
classification experiments (Section 4.1). Consider intrusion detection classifier validated
on direct attacks and legitimate traffic whose average recall is higher than 90% for each
classifier (Table 3). Here training and testing data of the classifier were built upon nor-
malized malicious network traffic represented by direct attacks. Then, the model trained
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on the direct attacks and legitimate traffic was applied to prediction of the obfuscated
attacks. In this case, obfuscated attacks may represent un-normalized malicious network
traffic, and thus the classifier achieved worse performance than in the previous case: TPR
was significantly decreased while FPR was preserved from the previous step (Table 4a).
In order to alleviate negative performance impact of un-normalized malicious network
traffic (represented by obfuscated attacks) on our system, we can include obfuscated at-
tacks in the training process of the classifier. This case is interpreted by performance
measured contained in Table 5b. There was achieved average recall over 97% for each
classifier, primarily thanks to significant improvement of TPR in most of the classifiers.
Thus, as an alternative outcome of our work, a network normalizer element may be omit-
ted from classification-based intrusion detection infrastructure and can be approximated
by appropriate training data.

6 Related Work

Using taxonomy of attacks against learning systems [5], we categorize our approach to the
class of exploratory indiscriminate attacks violating integrity via false negatives. The same
class of attacks was addressed for example in the field of spam filtering [6], [20], malware
detection [6], payload-based anomaly intrusion detection [13], [27], automatic speech recog-
nition [8], etc. However, to the best of our knowledge, this class of attacks had not been
studied in the non-payload-based intrusion detection yet, including anomaly-based and
classification-based approaches. Further, we aim at related work of evasive adversarial at-
tacks against IDS, and we divide it into payload-based and non-payload-based approaches,
plus their combination. Additionally, papers dealing with network traffic normalization
are also described.

Payload-based Evasions. The first work dealing with payload-based evasions is de-
scribed in [23] and presents a tool called Whisker. The author aims at anti-intrusion
detection tactics by performing mutations of the HTTP request in a way that a web
server is able to understand the request, but intrusion detection systems can be confused.
Vigna et al. [28] proposed a framework generating exploit mutations to change the ap-
pearance of a malicious payload bypassing detection of NIDS. The proposed framework
was evaluated on two well-known signature-based NIDSs – Snort and RealSecure. A simi-
lar approach was proposed by Fogla et al. [13] in their polymorphic blending attacks that
change the payload of a network worm in order to look normal, and thus effectively evade
a byte frequency-based anomaly NIDS. Other approaches use many different techniques
for evading detection by changing the payload, e.g., obfuscation techniques such as mal-
ware morphism [31] and other attack tactics against IDSs [10]. All of these adversarial
approaches are similar to our approach, but in contrast they deal only with evasions of
payload-based NIDSs.

Non-payload-based Evasions. Previous methods can evade payload-based NIDS sys-
tems primarily by morphing the payload, but do not need to be efficient against non-
payload-based network intrusion detectors, which are most sensitive on the attack mor-
phing at the network and transport layers of the TCP/IP stack. Fragroute [22] is a tool
that was written to test intrusion detection systems by using simple ruleset language
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enabling interception and modification of egress traffic with minimal support for random-
ized or probabilistic behavior. Fragroute implements three classes of attacks – insertion,
evasion, and denial of service. AGENT [24] uses several methods of altering network traf-
fic by packet splitting, duplicate insertions, etc. Watson et al. [29] proposed a method
called Protocol Scrubbing that represents active mechanisms for transparent removing of
network attacks from protocol layers in order to allow passive IDS systems to operate
correctly against evasion techniques. Wright et al. [30] proposed thwarting of network
traffic classifiers by optimally morphing one class of traffic to look like another class with
respect to a given set of features, while they employ padding or splitting the data into
smaller parts. This is similar to our approach, but in contrast the authors aim at network
traffic classification in general, rather than intrusion detection.

Combinations. Evasions based on modifications at each of the application, transport
and network layers of the TCP/IP stack are described in [9] and [18]. Cheng et al. [9] de-
scribed general evasion techniques and examined the detection performance of signature-
based NIDS when performing mutation of known attacks. Juan et al. described framework
called idsprobe [18] that is intended for evasion-resilience testing of NIDSs. Idsprobe can
perform offline as well as live evasion test cases, while it supports payload-based and non-
payload-based modifications of network attacks according to predefined transformation
profiles. The authors of idsprobe differ from our approach in two points: 1.) they aim at
payload-based intrusion detection, 2.) their test cases involve evasions at application layer
of ISO/OSI.

Normalizers. In order to answer non-payload-based evasions of NIDS, the concept of
network traffic normalizer was introduced by Handley et al. [14]. The authors proposed
the implementation of normalizer called norm. Norm performs normalizations of ambigu-
ities in the TCP traffic stream that can be seen by NIDS. However, introducing a network
normalization brought problems related to platform dependent semantic of network am-
biguities interpretation as well as throughput reduction. These problems lead Shankar et
al. [25] to introduce the concept and implementation of Active Mapping, which eliminates
them with minimal runtime cost by building profiles of the network topology including
the TCP/IP policies of hosts on the network. A NIDS may then use the host profiles
to disambiguate the interpretation of the network traffic on a per-host basis. However,
because of the shortcomings of network normalizers, their usage in a network can result
in side-effects and can even be prone to various attacks, e.g., state holding, and CPU
overload [12], [21], [26].

7 Conclusion

The motivation behind our work is to strengthen non-payload-based intrusion detection
classifiers in an attack-independent way, assuming an adversary who can massively mu-
tate known exploits to attack huge amount of targets. With this in mind, we executed
remote attacks and legitimate communications on selected vulnerable network services
while utilizing various non-payload-based obfuscation techniques based on NetEm and
MTU modifications with the intention to make behavioral characteristics of the attacks
being similar to those of legitimate traffic, and thus cause evasion of our experimental
non-payload-based intrusion detection classifiers. The summary of the presented results
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revealed non-payload-based obfuscation techniques as partially successful in evading de-
tection by five classifiers (two parametric and three non-parametric), which were trained
without prior knowledge about them. On the other hand, if some of the obfuscated at-
tacks were included in the training process of the classifiers, then they were able to detect
other unknown obfuscated attacks with high performance. From the practical point of
view, we discussed requirements on fast retraining of classifiers, where we identified Näıve
Bayes classifier with Gaussian kernels as the most convenient one due to its capability to
update the model of a single class independently of another class, and also it does not
need to replace the feature set and still can provide a high performance. Note that we do
not envision to use our obfuscation-aware non-payload-based classifiers as an independent
security solution but as a complementary part of existing solutions, such as misuse-based
and anomaly-based intrusion detection systems that perform deep packet inspection.

In our future work, we plan to perform experiments with existing implementations of
network normalizers as well as verify the effect of non-payload-based obfuscation tech-
niques on more contemporary vulnerabilities. Another option is to explore impact of
proposed obfuscations on communication between bots and C&C server.
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Table 8: TCP connection-level features selected by FFS (Näıve Bayes with kernels)

Feature ID Description
FFS
DOL

FFS
DL

Ratio of Obfuscated
Attacks Having

Divergent Values
of a Feature

in Comparison to
Direct Attacks
Executed with

the Same Exploit

SigPktLenOut • Std. deviation of outbound (client to server) packet sizes. X X 99.44 %
MeanPktLenIn • Mean of packet sizes in inbound traffic of a connection. X X 95.01 %
CntOfOldFlows • The number of mutual connections between client and

server, which started up to 5 minutes before start of an ana-
lyzed connection.

X X 35.37 %

CntOfNewFlows • The number of mutual connections between client and
server, which started up to 5 minutes after the end of an an-
alyzed connection.

X X 62.04 %

ModTCPHdrLen • Modus of TCP header lengths in all traffic. X 0.00 %
UrgCntIn • The number of TCP URG flags occurred in inbound traffic. X 0.00 %
FinCntIn • The number of TCP FIN flags occurred in inbound traffic. X 53.76 %
PshCntIn • The number of TCP PUSH flags occurred in inbound traffic. X 54.00 %
FourGonModulIn[1] • Fast Fourier Transformation (FFT) of inbound packet sizes.

The feature represents the module of the 2nd coefficient of the
FFT in goniometric representation.

X X 95.15 %

FourGonModulOut[1] • The same as the previous one, but it represents the module
of the 2nd coefficient of the FFT for outbound traffic.

X 99.50 %

FourGonAngleOut[1] • The same as the previous one, but it represents the angle of
the 2nd coefficient of the FFT.

X 99.51 %

FourGonAngleN[9] • Fast Fourier Transformation (FFT) of all packet sizes, where
inbound and outbound packets are represented by negative
and positive values, respectively. The feature represents the
angle of the 10th coefficient of the FFT in goniometric repre-
sentation.

X X 99.69 %

FourGonAngleN[1] • The same as the previous one, but it represents the angle of
the 2nd coefficient of the FFT.

X 99.69%

FourGonModulN[0] • The same as the previous one, but it represents the module
of the 1st coefficient of the FFT.

X 98.80 %

PolyInd13ordOut[13] • Approximation of outbound communication by polynomial
of 13th order in the index domain of packet occurrences. The
feature represents the 14th coefficient of the approximation.

X 66.21 %

PolyInd3ordOut[3] • The same as the previous one, but it represents the 4th
coefficient of the approximation.

X 99.50 %

GaussProds8All[1] • Normalized products of all packet sizes with 8 Gaussian
curves. The feature represents a product of the 2nd slice of
packets with a Gaussian function that fits to the interval of
the packets’ slice.

X 95.54 %

GaussProds8Out[7] • The same as the previous one, but computed above out-
bound packets and represents a product of the 8th slice of
packets with a Gaussian function that fits to the interval of
the packets’ slice.

X 52.87 %

InPktLen1s10i[5] • Lengths of inbound packets occurred in the first second of
a connection, which are distributed into 10 intervals. The fea-
ture represents totaled outbound packet lengths of the 6th
interval.

X 14.69 %

OutPktLen32s10i[3] • The same as the previous one, but computed above the first
32 seconds of a connection. The feature represents totaled
outbound packet lengths of the 4th interval.

X 38.20 %

OutPktLen4s10i[2] • The same as the previous one, but computed above the
first 4 seconds of a connection. The feature represents totaled
outbound packet lengths of the 3rd interval.

X 35.83 %

Average of Divergent Obfuscated Attacks (FFS DL) 72.80 %
Average of Divergent Obfuscated Attacks (FFS DOL) 66.33 %


