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Abstract

In this study, the effects of denormalization on relational database system performance are discussed in the context of using

denormalization strategies as a database design methodology for data warehouses. Four prevalent denormalization strategies

have been identified and examined under various scenarios to illustrate the conditions where they are most effective. The

relational algebra, query trees, and join cost function are used to examine the effect on the performance of relational systems.

The guidelines and analysis provided are sufficiently general and they can be applicable to a variety of databases, in particular to

data warehouse implementations, for decision support systems.
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1. Introduction

With the increased availability of data collected

from the Internet and other sources and the implemen-

tation of enterprise-wise data warehouses, the amount

of data that companies possess is growing at a

phenomenal rate. It has become increasingly important

for the companies to better manage their data ware-
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houses as issues related to database design for high

performance are receiving more attention. Database

design is still an art that relies heavily on human

intuition and experience. Consequently, its practice is

becoming more difficult as the applications that data-

bases support become more sophisticated [32].Cur-

rently, most popular database implementations for

business applications are based on the relational model.

It is well known that the relational model is simple but

somewhat limited in supporting real world constructs

and application requirements [2]. It is also readily

observable that there are indeed wide differences

between the academic and the practitioner focus on

database design. Denormalization is one example that
42 (2006) 267–282



S.K. Shin, G.L. Sanders / Decision Support Systems 42 (2006) 267–282268
has not received much attention in academia but has

been a viable database design strategy in real world

practice.

From a database design perspective, normalization

has been the rule that should be abided by during

database design processes. The normal forms and the

process of normalization have been studied by many

researchers, since Codd [10] initiated the subject. The

objective of normalization is to organize data into

normal forms and thereby minimize update anomalies

and maximize data accessibility. While normalization

provides many benefits and is indeed regarded as the

rule for relational database design, there is at least one

major drawback, namely bpoor system performanceQ
[15,31,33,50]. Such poor performance can be a major

deterrent to the effective managerial use of corporate

data.

In practice, denormalization techniques are fre-

quently utilized for a variety of reasons. However,

denormalization still lacks a solid set of principles and

guidelines and, thus, remains a human intensive

process [40]. There has been little research illustrating

the effects of denormalization on database performance

and query response time, and effective denormalization

strategies. The goal of this paper is to provide

comprehensive guidelines regarding when and how

to effectively exercise denormalization. We further

propose common denormalization strategies, analyze

the costs and benefits, and illustrate relevant examples

of when and how each strategy can be applied.

It should be noted that the intention of this study is

not to promote the concept of denormalization.

Normalization is, arguably, the mantra upon which

the infrastructure of all database systems should be

built and one of the foundational principals of the field

[20,25]. It is fundamental to translating requirement

specifications into semantically stable and robust

physical schema. There are, however, instances where

this principal of database design can be violated or at

least compromised to increase systems performance

and present the user with a more simplified view of the

data structure [39]. Denormalization is not necessarily

an incorrect decision, when it is implemented wisely,

and it is the objective of this paper to provide a set of

guidelines for applying denormalization to improve

database performance.

This paper is organized as follows: Section 2

discusses the relevant research on denormalization
and argues the effects of incorporating denormaliza-

tion techniques into decision support system data-

bases. Section 3 presents an overview of how

denormalization fits in the database design cycle and

develops the criteria to be considered in assessing

database performance. Section 4 summarizes the

commonly accepted denormalization strategies. In

Section 5, relational algebra, query trees, and join

cost function approach are applied in an effort to

estimate the effect of denormalization on the database

performance. We conclude in Section 6 with a brief

discussion of future research.
2. Denormalization and data warehouses

2.1. Normalization vs. denormalization

Although conceptual and logical data models

encourage us to generalize and consolidate entities to

better understand the relationships between them, such

generalization does not guarantee the best performance

but may lead to more complicated database access

paths [4]. Furthermore, normalized schema may create

retrieval inefficiencies when a comparatively small

amount of data is being retrieved from complex

relationships [50]. A normalized data schema performs

well with a relatively small amount of data and

transactions. However, as the workload on the database

engine increases, the relational engine may not be able

to handle transaction processing with normalized

schema in a reasonable time frame because relatively

costly join operations are required to combine normal-

ized data. As a consequence, database designers

occasionally trade off the aesthetics of data normal-

ization with the reality of system performance.

There are many cases when a normalized schema

does not satisfy the system requirements. For exam-

ple, existing normalization concepts are not applicable

to temporal relational data models [9] because these

models employ relational structures that are different

from conventional relations [29]. In addition, rela-

tional models do not handle incomplete or unstruc-

tured data in a comprehensive manner, while for many

real-world business applications such as data ware-

houses where multiple heterogeneous data sources are

consolidated into a large data repository, the data are

frequently incomplete and uncertain [19].



2 A star schema is a database design in which dimensional data

are separated from fact data. A star schema consists of a fact table

with a single table for each dimension.
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In an OLAP environment, the highly normalized

form may not be appropriate because retrieval often

entails a large number of joins, which greatly

increases response times and this is particularly true

when the data warehouse is large [48]. Database

performance can be substantially improved by mini-

mizing the number of accesses to secondary storage

during transaction processing. Denormalizing rela-

tions reduces the number of physical tables that need

to be accessed to retrieve the desired data by reducing

the number of joins needed to derive a query [25].

2.2. Previous work on denormalization

Normalization may cause significant inefficiencies

when there are few updates and many query retrievals

involving a large number of join operations. On the

other hand, denormalizationmay boost query speed but

also degrade data integrity. The trade-offs inherent in

normalization/denormalization should be a natural area

for scholarly activity. The pioneering work by Schkol-

nick and Sorenson [44] introduced the notion of

denormalization. They argue that, to improve database

performance, the data model should be viewed by the

user because the user is capable of understanding the

underlying semantic constraints.

Several researchers have developed a lists of

normalization and denormalization types, and have

also suggested that denormalization should be carefully

deployed according to how the data will be used

[24,41]. The common denormalization types include

pre-joined tables, report tables, mirror tables, split

tables, combined tables, redundant data, repeating

groups, derivable data, and speed tables. The studies

[24,41] show that denormalization is useful when there

are two entities with a one-to-one relationship and a

many-to-many relationship with non-key attributes.

There are two approaches to denormalization [49].

In the first approach, the entity relationship diagram

(ERD) is used to collapse the number of logical

objects in the model. This will in effect shorten

application call paths that traverse the database objects

when the structure is transformed from logical to

physical objects. This approach should be exercised

when validating the logical model. In the second

approach, denormalization is accomplished by mov-

ing or consolidating entities and creating entities or

attributes to facilitate special requests, and by intro-
ducing redundancy or synthetic keys to encompass the

movement or change of structure within the physical

model. One deficiency of this approach is that future

development and maintenance are not considered.

Denormalization procedures can be adopted as pre-

physical database design processes and as intermedi-

ate steps between logical and physical modeling, and

provide an additional view of logical database refine-

ment before the physical design [7]. The refinement

process requires a high level of expertise on the part of

the database designer, as well as appropriate knowl-

edge of application requirements.

There are possible drawbacks of denormalization.

Denormalization decisions usually involve trade-offs

between flexibility and performance, and denormaliza-

tion requires an understanding of flexibility require-

ments, awareness of the update frequency of the data,

and knowledge of how the database management

system, the operating system and the hardware work

together to deliver optimal performance [12].

From the previous discussion, it is apparent that

there has been little research regarding a comprehen-

sive procedure for invoking and assessing a process

for denormalization.

2.3. Denormalizing with data warehouses and data

marts

Data warehousing and OLAP are long established

fields of study with well-established technologies. The

notion of OLAP refers to the technique for performing

complex analysis over the information stored in a data

warehouse. A data warehouse (or smaller-scale data

mart) is typically a specially created data repository

supporting decision making and, in general, involves

a bvery largeQ repository of historical data pertaining

to an organization [28]. The goal of the data

warehouse is to put enterprise data at the disposal of

organizational decision makers. The typical data

warehouse is a subject-oriented corporate database

that involves multiple data models implemented on

multiple platforms and architectures. While there are

data warehouses for decision support based on the star

schema2, which is a suitable alternative, there are also
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some cases where a star schema is not the best

database design [39]. It is important to recognize that

star schemas do not represent a panacea for data

warehouse database design.

It should be noted that denormalization can indeed

speed up data retrieval and that there is a downside of

denormalization in the form of potential update

anomalies [17]. But updates are not typical in data

warehouse applications, since date warehouses and

data marts involve relatively fewer data updates, and

most transactions in a data warehouse involve data

retrieval [30]. In essence, data warehouses and data

marts are considered good candidates for applying

denormalization strategies because individual attrib-

utes are rarely updated.

Denormalization is particularly useful in dealing

with the proliferation of star schemas that are found

in many data warehouse implementations [1]. In this

case, denormalization may provide better perform-

ance and a more intuitive data structure for data

warehouse users to navigate. One of the prime goals

of most analytical processes with the data warehouse

is to access aggregates such as sums, averages, and

trends, which frequently lead to resource-consuming

calculations at runtime. While typical production

systems usually contain only the basic data, data

warehousing users expect to find aggregated and

time-series data that is in a form ready for immediate

display. In this case, having pre-computed data

stored in the database reduces the cost of executing

aggregate queries.
3. Database design with denormalization

The database design process, in general, includes

the following phases: conceptual, logical, and phys-

ical design [25,43]. Denormalization can be separated

from those steps because it involves aspects that are

not purely related to either logical or purely physical

design. We propose that the denormalization process

should be implemented between the data model

mapping and the physical design and that it is

integrated with logical and physical design. In fact,

it has been asserted by Inmon [26] that data should be

normalized as the design is being conceptualized and

then denormalized in response to the performance

requirements. Fig. 1 presents a suggested database
design procedure incorporating the denormalization

process.

A primary goal of denormalization is to improve

the effectiveness and efficiency of the logical model

implementation in order to fulfill application require-

ments. However, as in any denormalization process,

it may not be possible to accomplish a full

denormalization that meets all the criteria specified.

In such cases, the database designer will have to

make trade-offs based on the importance of each

criteria and the application processing requirement,

taking into account the pros and cons of denormal-

ization implementation.

The process of information requirements determi-

nation or logical database design produces a descrip-

tion of the data content and processing activities that

must be supported by a database system. In addition,

in order to access the efficiency of denormalization,

the hardware environment such as page size, storage

and access cost must also be described. This

information is needed to develop the criteria for

denormalization.

A generally accepted goal in both denormalization

and physical design is to minimize the operational

costs of using the database. Thus, a framework for

information requirements for physical design can be

applied to denormalization. Carlis et al. [6] developed

a framework for information requirements that can be

readily applied to denormalization. Based on this

framework and the literature review related to

denormalization, Table 1 presents a more detailed

overview of the numerous processing issues that need

to be considered when embarking on a path to

denormalization [3,13,21,25,32,37]. The main inputs

to the denormalization process are the logical struc-

ture, volume analysis (e.g. estimates of tuples,

attributes, and cardinality), transaction analysis (e.g.

statement of performance requirements and trans-

action assessment in terms of the frequency and

profile), and volatility analysis.

An estimate of the average/maximum possible

number of instances per entity is a useful criterion

to supply the model’s ability to fulfill access require-

ments. In developing a transaction analysis, the major

transactions required against the database need to be

identified. Transactions are logical units of work made

up of pure retrievals, insertions, updates, or deletions,

or a mixture of all four. Each transaction is analyzed
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Development of
Conceptual Data Model (ERD)

Refinement and Normalization

Identifying Candidates for
Denormalization

Identifying Denormalization Model

Determining
the Effects of Denormalization

Benefit > CostApply Denormalization

Physical Design

Implementation

Yes

No

Denormalization
Procedure

Cost-Benefit
Analysis

Fig. 1. Database design cycle incorporating denormalization.
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to determine the access paths used and the estimated

frequency of use. Volatility analysis is useful in that

the volatility of a file has a clear impact on its

expected update and retrieval performance [47].
4. Denormalization strategies for increasing

performance

In this section, we present denormalization patterns

that have been commonly adopted by experienced

database designers. We also develop a mathematical

model for assessing the benefits of each pattern using

cost–benefit analysis. After an extensive literature

review, we identified and classified four prevalent

models for denormalization in Table 2 [7,15,16,23,

24,38,49]. They are collapsing relations (CR), parti-

tioning a relation (PR), adding redundant attributes

(RA), and adding derived attributes (DA).

Our mathematical model for the benefits of

denormalization relies on performance of query

processing measured by the elapsed time difference

of each query with normalized and denormalized
schemas. Suppose that there are i (i 1,2,. . .,I) data

retrieval queries and j ( j 1,2,. . .,J) update queries

processing with a normalized schema. The schema

can be denormalized with n (n 1,2,. . .,N) denormal-

ization models, and iV (iV 1,2,..,IV) data retrieval

queries and jV (jV 1,2,. . .,JV) update queries are

modified to retrieve the same data from the denor-

malized schema as those with the normalized. Each

query is executed ti times per hour. Let xi denote the

elapsed time of query i so that enhanced query

performance by the denormalized model can be

measured by the time difference of two queries,

Xi=xi�xiV. The benefit, K, of denormalization model,

DN (DN={CR,PR,RA,DA}), can be stated as

KDN ¼
X
i

Xiti þ
X
j

Xjtj: ð1Þ

It is assumed that
P

i XitiN0, as it is the goal of

denormalization. On the contrary,
P

j XjtjV0 because

most denormalization models entail data duplication

that may increase the volume of data to be updated as

well as may require additional update transactions.



Table 2

Denormalization models and patterns

Denormalization strategies Denormalization patterns

Collapsing relations (CR) Two relations with a

one-to-one relationship

Two relations with a

one-to-many relationship

Two relations with a

many-to-many relationship

Partitioning a

relation (PR)

Horizontal partitioning

Vertical partitioning

Adding redundant

attributes (RA)

Reference data in lookup/

code relations

Derived attributes (DA) Summary data, total, and balance

Table 1

Information requirements for denormalization

Type of information Variables to be considered

during denormalization

Data description Cardinality of each relation

Optionality of each relation

Data volume of each relation

Volatility of data

Transaction activity Data retrieval and update patterns

of the user community

Number of entities involved

by each transaction

Transaction type

(update/query, OLTP/OLAP)

Transaction frequency

Number of rows accessed by

each transaction

Relations between transactions and

relations of entities involved

Access paths needed by

each transaction

Hardware environment Pages/blocks size

Access costs

Storage costs

Buffer size

Other consideration Future application development

and maintenance considerations
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Note that any given physical design is good for some

queries but bad for others [17]. While there are a

queries ( qa, a 1,2,. . .,A) that are to be enhanced by

the denormalized schema ((8qa
)(XaN0)), there may be

i�a queries ( qb, b 1,2,. . .,I�A) that are degraded

((8qb
)(XaV0)). This results in the model structure

below:

KDN ¼
X
a

Xata þ
X
b

Xbtb þ
X
j

Xjtj ð2Þ

where
P

a XataN0 and
P

b XbtbV0. The mathematical

model for selecting the optimal set of the relations

needs to deal with two requirements. First, the

objective of denormalization should be to enhance

data retrieving performance
P

i XiN0
� �

, trading with

the costs of update transaction caused by data

redundancy
P

j Xjb0
� �

. However, this cost would

be negligible at data warehouses and data marts

because the databases for those systems do not

involve a great deal of update transactions. Second,

as denormalization results in the costs of data

duplication, if the schema involves update trans-

actions, the cost of update transaction should not
exceed the sum of the benefits. We can state these

requirements in the model structure shown below.

Max KDN ¼
X
a

Xata þ
X
b

Xbtb þ
X
j

Xjtj ð3Þ

Subject to
X
a

Xata þ
X
b

XbtbN0 ð4Þ

X
a

XataN0 ð5Þ

X
a

Xata þ
X
b

XbtbN
X
j

Xjtj ð6Þ

Based on this formula, the benefits of the four

denormalization models, CR, PR, RA, and DA, will be

discussed.

4.1. Collapsing relations (CR)

One of the most commonly used denormalization

models involves the collapsing of one-to-one relation-

ships [38]. Consider the normalized schema with two

relations in a one-to-one relationship, CUSTOMER

and CUSTOMER_ACCOUNT as shown in Fig. 2. If

there are a large number of queries requiring a join

operation between the two relations, collapsing both

relations into CUSTOMER_DN may enhance query

performance. There are several benefits of this model

in the form of reduced number of foreign keys on

relations, reduced number of indexes (since most

indexes are based on primary/foreign keys), reduced

storage space, and reduced join operations. Collapsing

a one-to-one relationship does not cause data dupli-



Normalized Schema 

CUSTOMER (Customer_ID, Customer_Name, Address) 
CUSTOMER_ACCOUNT (Customer_ID, Account_Bal, Market_Segment) 

Denormalized Schema 

CUSTOMER_DN (Customer_ID, Customer_Name, Address, Account_Bal, Market_Segment) 

Fig. 2. An example of collapsing one-to-one relationship.
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cation and, in general, update anomalies are not a

serious issue
P

j Xj ¼ 0
� �

.

Combining two relations in a one-to-one relation-

ship does not change the business view but does

decrease overhead access time because of fewer join

operations. In general, collapsing tables in a one-to-one

relationship has fewer drawbacks than other denorm-

alization approaches.

One-to-many relationships of low cardinality can

be a candidate for denormalization, although data

redundancy may interfere with updates [24]. Consider

the normalized relations CUSTOMER and CITY in

Fig. 3, where Customer_ID and Zip are, respectively,

the primary keys for each relation. These two relations

are in 3rd normal form and the relationship between

CITY and CUSTOMER is one-to-many. Suppose the

address of CUSTOMER does not frequently change,

this structure does not necessarily represent a better

design from an efficiency perspective, particularly

when most queries require a join operation. On the

contrary, the denormalized relation is superior because

it will substantially decrease the number of join

operations. In addition, the costs for data anomalies

caused by a transitive functional dependency (Cust-

NumberYZip, ZipY{City, State}) may be minimal

when the boneQ side relation (CITY) does not involve

update transactions.

If a reference table in a one-to-many relationship has

very few attributes, it is a candidate for collapsing
Normalized Schema 

CUSTOMER (Customer_ID, Customer_N
CITY (Zip, City, State) 

Denormalized Schema 

CUSTOMER_DN (Customer_ID, Custome

Fig. 3. An example of collapsing
relations [25]. Reference data typically exists on the

boneQ side of a one-to-many relationship. This entity

typically does not participate in a different type of

relationship because a code table typically participates

in a relationship as a code table. However, as the

number of attributes in the reference relation increases,

it may be reasonable to consider RA rather than CR

(this will be discussed in detail in Section 4.3). In

general, it is appropriate to combine the two relations

in a one-to-many relationship when the bmanyQ side
relation is associated with low cardinality. Collapsing

one-to-many relationships can be relatively less

efficient than collapsing one-to-one relationships

because of data maintenance processing for duplicated

data. In the case of a reference table, the update costs

are negligible
P

j Xjtjc0
� �

because update trans-

actions rarely occur in reference relations tjc0
� �

.

A many-to-many relationship can also be a candi-

date for CR when the cardinality and the volatility of

involved relations are low [25,41]. The typical many-

to-many relationship is represented in the physical

database structure by three relations: one for each of

two primary entities and another for cross-referencing

them. A cross-reference or intersection between the two

entities in many instances also represents a business

entity. These three relations can be merged into two if

one of them has little data apart from its primary key.

Such a relation could be merged into a cross-reference

relation by duplicating the attribute data.
ame, Address, ZIP) 

r_Name, Address, ZIP, City, State) 

one-to-many relationship.
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CR eliminates the join, but the net result is that

there is a loss at the abstract level because there is no

conceptual separation of the data. However, Bracchi et

al. [5] argues, bwe see that from the physical point of

view, an entity is a set of related attributes that are

frequently retrieved together. The entity should be,

therefore, an access concept, not a logical concept, and

it corresponds to the physical record.Q Even though the
distinction between entities and attributes is real, some

designers conclude it should not be preserved, at least

for conceptual modeling purposes [36]. These discus-

sions present us with the opportunity to explore

strategies for denormalization and free us from the

stringent design restrictions based on the normalization

rules.

4.2. Partitioning relation (PR)

Database performance can be enhanced by mini-

mizing the number of data accesses made in the

secondary storage upon processing transactions. Par-

titioning a relation (PR) in data warehouses and data

marts is a major step in database design for fewer disk

accesses [8,34,35]. When separate parts of a relation

are used by different applications, the relation may be

partitioned into multiple relations for each application

processing group. A relation can be partitioned either

vertically or horizontally. It is the process of dividing a

logical relation into several physical objects. The

resulting file fragments consist of the smaller number

of attributes (if vertically partitioned) or tuples (if

horizontally partitioned) and therefore fewer accesses

are made in secondary storage to process a transaction.

4.2.1. Vertical partitioning (VP)

Vertical Partitioning (VP) involves splitting a

relation by columns so that a group of columns be

placed into the new relation and the remaining columns

be placed in another [13,38]. PART in Fig. 4 consists of
Normalized Schema 

PART (Part_ID, Width, Length, Height, Weight, ·····

Denormalized Schema 

PART_SPEC_INFO (Part_ID, Width, Length, Heigh
PART_INVENTORY_INFO (Part_ID, Price, Stock, 

Part Specification

Fig. 4. An example of v
quite a few attributes associated with part specification

and inventory information. If query transactions can be

classified into two groups in terms of association with

the two attribute groups, and there are few transactions

involving the two groups at the same time, PART can

be partitioned into PART_SPEC_INFO and PART_

INVENTORY_INFO to decrease the number of pages

needed for each query. In general VP is particularly

effective when there are lengthy text fields with a large

number of columns and these lengthy fields are

assessed by a limited number of transactions. In

actuality, a view of the joined relations may make

these partitions transparent to the users. A vertically

partitioned relation should contain one row per primary

key as this facilitates data retrieval across relations.

VP does not cause much data duplication except

for the relating primary keys among the partitioned

relations. As those primary keys are rarely modified,

the cost caused by the data duplication can be ignoredP
j Xjc0

� �
.

4.2.2. Horizontal partitioning (HP)

Horizontal partitioning (HP) [13] involves a row

split and the resulting rows are classified into groups

by key ranges. This is similar to partitioning a relation

during physical database design, except that each

relation has a respective name. HP can be used when

a relation contains a large number of tuples as the

sales database of a super store. SALE_HISTORY of

super store database in Fig. 5 is a common case of the

relation including a number of historical sales trans-

actions to be considered for HP. It is likely that most

OLAP transactions with this relation include a time-

dependent variable. As such, HP based on the

analysis period considerably decreases unnecessary

data access to the secondary data storage.

HP is usually applied when the table partition

corresponds to a natural separation of the rows such as

in the case of different geographical sites or when there
·, Price, Stock, Supplier_ID, Warehouse,······) 

t, Weight, Strength,······) 
Supplier_ID, Warehouse,······) 

Part Inventory 

ertical partitioning.



Normalized Schema 

SALE_HISTORY (Sale_ID, Timestamp, Store_ID, Customer_ID, Amount, ······) 

Denormalized Schema 

SALE_HISTORY_Period_1 (Sale_ID, Timestamp, Store_ID, Customer_ID, Amount, ······) 
SALE_HISTORY_Period_2 (Sale_ID, Timestamp, Store_ID, Customer_ID, Amount, ······) 
SALE_HISTORY_Period_3 (Sale_ID, Timestamp, Store_ID, Customer_ID, Amount, ······) 

••••••

Fig. 5. An example of horizontal partitioning.

S.K. Shin, G.L. Sanders / Decision Support Systems 42 (2006) 267–282 275
is a natural distinction between historical and current

data.HP is particularly effective when historical data is

rarely used and current data must be accessed promptly.

A database designer must be careful to avoid duplicat-

ing rows in the new tables so that bUNION ALLQ may

not generate duplicated results when applied to the two

new tables. In general, HP may add a high degree of

complexity to applications because it usually requires

different table names in queries, according to the values

in the tables. This complexity alone usually outweighs

the advantages of table partitioning in most database

applications.

Partitioning a relation either vertically or horizon-

tally does not cause data duplication
� P

j Xj ¼ 0
�
.

Therefore, data anomalies are not an issue in this case.

4.3. Adding redundant attributes (RA)

Adding redundant attributes (RA) can be applied

when data from one relation is accessed in conjunc-

tion with only a few columns from another table [13].

If this type of table join occurs frequently, it may

make sense to add a column and carry them as

redundant [24,38]. Fig. 6 presents an example of RA.

Suppose that PART information is more useful with

Supplier_Name (not Supplier_ID) and that it does not

change frequently due to the company’s stable busi-

ness relationship with part suppliers, and that joins are

frequently executed on the PART and SUPPLIER in

order to retrieve part data from PART and only one
Normalized Schema 

PART (Part_ID, Width, Length, Height, Weight, Price
SUPPLIER (Supplier_ID, Supplier_Name, Address, S

Denormalized Schema 

PART_DN (Part_ID, Width, Length, Height, Weight, 
SUPPLIER (Supplier_ID, Supplier_Name, Address, S

Fig. 6. An example of addin
attribute, Supplier_Name, from SUPPLIER. In the

normalized schema, queries require costly join oper-

ations, while a join operation is not required in the

denormalized schema. The major concern of denorm-

alization, the occurrence of update anomalies, would

be minimal in this case because Supplier_Name

would not be frequently modified.

In general, adding a few redundant attributes

does not change either the business view or the

relationships with other relations. The concerns

related to future development and database design

flexibility, therefore, are not critical in this approach.

Normally,
P

b Xb for RA is negligible
P

b Xbc0
� �

.

However the costs for an update transaction may be

critical when the volatility of those attributes is

high.

Reference data, which relates to sets of code in one

relation and a description in another, is accomplished

via a join, and it presents a natural case where

redundancy can pay off [3]. While CR is good for

short reference data, adding redundant columns is

suitable for a lengthy reference field. A typical

strategy for a relation with long reference data is to

duplicate the short descriptive attribute in the entity,

which would otherwise contain only a code. The

result is a redundant attribute in the target entity that is

functionally independent of the primary key. The code

attribute is an arbitrary convention invented to

normalize the corresponding description and, of

course, reduce update anomalies.
, Stock, Supplier_ID, ···) 
tate, ZIP, Phone, Sales_Rep, ···) 

Price, Stock, Supplier_ID, Supplier_Name, ···) 
tate, ZIP, Phone, Sales_Rep, ···) 

g redundant columns.
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Denormalizing a reference data relation does not

necessarily reduce the total number of relations

because, in many cases, it is necessary to keep the

reference data table for use as a data input constraint.

However, it does remove the need to join target entities

with reference data tables as the description is du-

zplicated in each target entity. In this case, the goal

should be to reduce redundant data and keep only the

columns necessary to support the redundancy and

infrequently updated columns used in query processing

[24].

4.4. Derived attributes (DA)

With the growing number of large data warehouses

for decision support applications, efficiently executing

aggregate queries, involving aggregation such as MIN,

MAX, SUM, AVG, and COUNT is becoming increas-

ingly important. Aggregate queries are frequently

found in decision support applications where relations

with large history data often are joined with other

relations and aggregated. Because the relations are

large, the optimization of aggregation operations has

the potential to provide huge gains in performance.

To reduce the cost of executing aggregate queries,

frequently used aggregates are often precomputed and

materialized in an appropriate relation. In statistical

database applications, derived attributes and powerful

statistical query formation capabilities are necessary

to model the data and to respond to statistical queries

[18,45]. Business managers typically concentrate first

on aggregate values and then delve into more detail.

Summary data and derived data, therefore, are

important in decision support systems (DSS) based

on a data warehouse [22]. The nature of many DSS

applications dictates frequent use of data calculated

from naturally occurring large volume of information.

When a large volume of data is involved, even simple

calculations can consume processing time as well as
Normalized Schema 

CUSTOMER (Customer_ID, Customer_Name,
ORDER (Order_ID, Customer_ID, Order_Date

Denormalized Schema 

CUSTOMER_DN (Customer_ID, Customer_N
ORDER (Order_ID, Customer_ID, Order_Date

Fig. 7. An example of
increase batch-processing time to unacceptable levels.

Moreover, if such calculations are performed on the

fly, the user’s response time can be seriously affected.

An example of derived attributes is presented in

Fig. 7. Suppose that a manager frequently needs to

obtain information regarding the sum of purchases of

each customer. In the normalized schema, the queries

require join operations with the CUSTOMER and

ORDER relations and an aggregate operation for the

total balance of individual customers. In the denor-

malized schema containing the derived attribute

Sum_Of_Purchase in CUSTOMER_DN, those que-

ries do not require join or aggregate operations but

rather a select operation to obtain the data. However,

in order to keep the data concurrent in the denormal-

ized format, additional transactions are needed to keep

the derived attributes updated in an operation data-

base, which in turn increases the costs of additional

update transactions.

As DA does not complicate data accessibility, or

change the business view,
P

b Xb is negligibleP
b Xbc0

� �
. It is worth noting that the effects of DA

may decrease, particularly when the data volume of the

relation increases.

Storing such derived data in the database can

substantially improve performance by saving both

CPU cycles and data read time, although it violates

normalization principles [24,38]. Optimal database

design with derived attributes, therefore, is sensitive

to the capability of the aggregation functionality of

the database server [37]. This technique can also

be combined effectively with other forms of

denormalization.

DA reduces processing time at the expense of higher

update costs [33]. Updates costs
�P

j Xjtj
�
, therefore,

may become the main deterrent for adopting derived

attributes [42] and the access frequency, the response

time requirement, and increased maintenance costs

should be considered [22]. A compromise is to
 Address, ZIP) 
, Standard_Price, Quantity) 

ame, Address, ZIP, Sum_Of_Purchase)
, Standard_Price, Quantity) 

derived attribute.
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determine the dimension of derived data at lower level

so that the update cost can be reduced.Maintaining data

integrity can be complex if the data items used to

calculate a derived data item change unpredictably or

frequently and a new value for derived data must be

recalculated each time a component data item changes.

Data retention requirements for summary and

detail records may be quite different and must also

be considered as well as the level of granularity for the

summarized information [25]. If summary tables are

created at a certain level and detailed data is

destroyed, there will be a problem if users suddenly

need a slightly lower level of granularity.
4 The selection cardinality is the average number of records that

will satisfy an equality selection condition on that attribute.

3 In order to clearly illustrate and amplify the effects of

denormalization, it is assumed that all R.r1 are related to S.s1

(aS)(R.r1= S.s1) and all T.t1 are related to S.s2 (aS)(T.t1= S.s2),

respectively. Also, we use weak entity types that do not have key

attributes of their own, although many cases in reality involve with

strong entity type that do have key attributes of their own.
5. Justifying denormalization

Determining the criteria for denormalization is a

complex task. Successful denormalization of a data-

base requires a through examination of the effects of

denormalization in terms of 1) cardinality relation-

ships, 2) transaction relationships, and 3) access paths

required for each transaction/module.

In this section, we develop a framework for

assessing denormalization effects using relational

algebra, query tree analysis and the join cost function.

The primary purpose of the relational algebra is to

represent a collection of operations on relations that is

performed on a relational database [11]. In relational

algebra, an arbitrary relational query can be systemati-

cally transformed to a semantically equivalent alge-

braic expression in which the operations and volume of

associated data can be evaluated [14]. The relational

algebra is appropriate for assessing denormalization

effects in the cost-based perspective.

A query tree is a tree data structure that corresponds

to a relational algebra expression. It represents the input

relations of the query as leaf nodes of the tree and the

relational algebra operation as internal nodes. Rela-

tional algebra and query tree analysis provide not only

an assessment of both approximate join costs but also

join selectivity and access path, and they can be used to

assist the database designer in obtaining a clear-cut

assessment of denormalization effects.

In this study, we assume that the database

processing capacity is a function of the CPU process-

ing capacity and that it is measured in terms of the

volume of data accessed per unit time. We also
assume that the operational intricacies can be

neglected for reasons of analytical tractability [46].

5.1. Algebraic approach to assess denormalization

effects

To illustrate the approach, we will use an example

CR of many-to-many relationship from Section 4.1.

Suppose there are three relations in the 3rd normal

form, R={r1, r2, r3}, S={s1, s2}, and T={t1, t2, t3} as

shown in Fig. 8(A), where S is the M:N relationship

between entity R and T 3, and s1 and s2 are the

foreign keys of R and T, respectively. When the cross-

reference relation S stores foreign keys for R and T (or

likely with a few attributes), collapsing relation entity

S into T (or R) can be a good strategy to increase

database performance such that after denormalization

we have two denormalized relations, R={r1, r2, r3}

and TV={t1, s1, t2, t3} as shown in Fig. 8 (B).

Now, we consider two queries running Cartesian

products with non-indexed tables with normalized and

denormalized schemas respectively. As illustrated in

Fig. 9, these are two sets of SQL statements and

relational algebra operations for the nested-loop join

queries that retrieve the identical data sets from each

data structure.We also present two query trees (see Fig.

10) that correspond to the relational algebra of each

schema.

Both queries retrieve the appropriate tuples from

each schema. Suppose that there are n tuples in both R

and T, and ṁn tuples in entity S assuming that the

cardinality between the primary and cross-reference

relations is 1:m. Let s denote selection cardinality4

satisfying the operation condition (r r1=dxT(R)). The

number of resulting join operations of entity R and S

(Res1 Tr1=s1 (S)) is ṁṅs. Likewise, as the selection

cardinality of the first join operation is ṁs, the final

project operation (Res2 Ts2=t1 (T)) produces ṁṅs

relations which results from the Cartesian product



A) Normalized B) Denormalized

M 

N 

r1 r3
r2 

R 

t1 
t2 

t3

T 

s1

s2
S M

1
s1 

t1
t2

t3 

r1
r2

T'

R 

r3 

Fig. 8. ER diagrams of exemplary data structure.

6 Blocking factors (bfr=records/block) are calculated based on

assumption that the size of all columns across entities is identical

and that the density of block across entities is equal so that the

analysis takes into account the change of data volume caused by

denormalization. In this case, we assume that bfrR=4 and bfrS=6

because entity R has 3 columns and entity S has 2 columns. Based

on the blocking factors, we also calculated the number of blocks

used for each entity (bR=4, bS=334, bRS=7, bT=250, and bTV=667).

bR is obtained after the first selection operation (jr1=d001T (R)). Since
the cost for this operation is common for CN and CD, it was not

considered in this estimation.
7
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operation with the three relations. Thus, the total

number of relations produced from the normalized

data structure is 2md nd s.

After collapsing the two relations S and T, we have

ṁn tuples in a denormalized T’ (as S and T have been

merged into new entity T’, the number of tuples of

relation T’ should be identical to the number of tuples

of relation S). In order to retrieve the same dataset

from the denormalized schema, the total number of

join operations produced is ṁṅs. Notice that join

operation with the denormalized schema is 50%

((md nd s)/(2md nd s)) of the join operation required

for the normalized schema.

5.2. Cost-based approach to assess denormalization

effects

The effects of denormalization can also be assessed

by the join operation cost function [20]. Consider the

following formula:

Cost ¼ bA þ bATbBð Þ þ jsTrATrBð Þ=bfrA�Bð Þ ð7Þ
where A and B denote the outer and inner loop files,

respectively; rA and rB indicate the number of tuples

stored in bA and bB disk blocks, respectively; js is the

join selectivity5; and bfrA-B denotes the blocking

factor for the resulting join file (records/block) [20].

Notice that the 3rd term of the right-hand side of the

formula is the cost of writing the resulting file to disk.

Assuming that the lengths of all columns are equal, the
5 Join selectivity (js) is an estimate for the size of the file that

results after the join operation, which is obtained by the ratio of the

size of the resulting join file to the size of the Cartesian product file

(js=|(ATcB)|/|(A�S)|) (Elmasri and Navathe, 2000).
blocking factors of relationsas bfrR=4, bfrS=6, bfrR-S=3,

bfrT=4, bfrRS-T=2, bfrTV=3 and bfrR-TV=2
6with the join

cardinalities as jsRS=1/1000, jsRST=1/2000, and

jsRTV=1/2000
7, we estimate the costs for the join

operation with normalized schema, CN, and with

denormalized schema, CD, as follows:

CN ¼ bR þ bRTbSð Þ þ jsRSTrRTrSð Þ=bfrR�Sð Þð Þ
þ bRSþ bRSTbTð Þ þ jsRSTTrRSTrTð Þ=bfrRS�Tð Þð Þ
¼ 4þ 4T334ð Þ þ 1=1000T1000T2000ð Þ=3ð Þð Þ
þ 7þ 7T250ð Þþ 1=2000T20T1000ð Þ=2ð Þð Þ
¼ 3768

CD ¼ bR þ bRTbTVð Þ þ jsRTVTrRTrTVð Þ=bfrRTVð Þ

¼ 4þ 4T667ð Þ þ 1=2000T1000T2000ð Þ=2ð Þ

¼ 3172
Join cardinality (js) is calculated based on the assumption that

the relationship between entity R and S, and T and S are 1:2, 1000

tuples per each relation R and T, 2000 tuples in cross-reference

relation, S, and the selection cardinality of entity R and T is equally

10. In this example, as the cardinality increases, the benefit from

denormalization generally increases.



A) SQL and Relational Algebra with Normalization 

Select R.r1, R.r2, R.r3, T.t1, T.t2, T.t3 
From R, S, T 
Where R.r1 = '001' and  
            R.r1 = S.s1 and  
            R.s2 = T.t1; 

Res1 ← σ r1 = '001' (R) 

Res3 ← (Res2     s2 = t1 (T))  

Res2 ← (Res1     r1 = s1 (S))  

Result ← π r1, r2, r3, t1, t2, t3 (Res3)  

 B) SQL and Relational Algebra with Denormalization 

Select R.r1, R.r2, R.r3, T.t1, T.t2, T.t3 
From R, T' 
Where R.r1 = '001' and  
            R.r1 = T'.s1; 

Res1 ← σ r1 = '001' (R) 

Result ← π r1, r2, r3, t1, t2, t3 (Res2)  

Res2 ← (Res1     r1 = s1 (T'))  

Fig. 9. SQL and relational algebra with normalization/denormalization.
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The result shows that the suggested denormalization

technique leads to a decrease of 15.8% in cost over the

normalized schema. While the example uses a

minimal number of attributes as well as a relatively

small number of tuples in each entity, most databases

have more attributes and more tuples, and the benefits

could be greater as far as it keeps low cardinalities. In

reality, the positive effect of CR of many-to-many

relationship is expected to increase in proportion to

the number of attributes and tuples involved. By using

the relational algebra and join cost function

approaches, it is concluded that the join process with

the denormalized data structure is less expensive than

the normalized data structure. However, the actual

benefit will depend on a variety of factors including
A) Normalized

R 

T

S r1 = 'X'

r1 = s1

s2 = t1

r1, r2, r3, t1, t2, 

r1, r2, r3, 

σ

Fig. 10. Query tre
the length or number of tuples, join and selection

cardinalities, and blocking factors.
6. Concluding remarks

The effects of denormalization on relational data-

base system performance have been discussed in the

context of using denormalization strategies as a

database design methodology. We present four prev-

alent denormalization strategies, evaluate the effects

of each strategy, and illustrate the conditions where

they are most effective. The relational algebra, query

trees, and join cost function are adopted to examine

the effects on the performance of relational systems to
R 

T'

r1 = s1

r1, r2, r3, t1, t2, 

B) Denormalized

σ r1 = 'X'

es analysis.
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the end. Two significant conclusions can be derived

from these analytical techniques: 1) the denormaliza-

tion strategies may offer positive effects on database

performance and 2) the analytical methods provide an

efficient way to assess the effects of the denormaliza-

tion strategies. The guidelines and analysis provided

are sufficiently general and they can be applicable to a

variety of databases, in particular to data warehouse

implementations.

One of the powerful features of relational algebra

is that it can be efficiently used in the assessment of

denormalization effects. The approach clarifies

denormalization effects in terms of mathematical

methods and maps it to a specific query request. The

methodological approach of the current study may,

however, be somewhat restricted in that it focuses on

the computation costs between normalized and

denormalized data structures. In order to explicate

the effects of denormalization, future studies are

needed to develop a more comprehensive way of

measuring the impact of denormalization on storage

costs, memory usage costs, and communications

cost.

It is important to note that although denormalization

may speed up data retrieval, it may lead to additional

update costs as well as slow the data modification

processes due to the presence of duplicate data. In

addition, since denormalization is frequently case-

sensitive and reduces the flexibility of design inherent

in normalized databases, it may hinder the future

development [27]. It is, thus, critical for a database

designer to understand the effects of denormalization

before implementing the strategies.

While the results of this study are generally

applicable to database design, the results are partic-

ularly applicable to data warehouse applications.

Future research on denormalization should focus on

a wide variety of operational databases as well as on

examining the effects of denormalization on a variety

of data models, including semantic, temporal and

object-oriented implementations. Denormalizing da-

tabases is a critical issue because of the important

trade-offs between system performance, ease of use,

and data integrity. Thus, a database designer should

not blindly denormalize data without good reason

but should carefully balance the level of normal-

ization with performance considerations in concert

with the application and system needs.
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