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Abstract
Real-world problems are complex as they are multidimensional and multimodal in nature that encourages computer scientists
to develop better and efficient problem-solving methods. Nature-inspired metaheuristics have shown better performances
than that of traditional approaches. Till date, researchers have presented and experimented with various nature-inspired
metaheuristic algorithms to handle various search problems. This paper introduces a new nature-inspired algorithm, namely
butterfly optimization algorithm (BOA) thatmimics food search andmating behavior of butterflies, to solve global optimization
problems. The framework is mainly based on the foraging strategy of butterflies, which utilize their sense of smell to determine
the location of nectar or mating partner. In this paper, the proposed algorithm is tested and validated on a set of 30 benchmark
test functions and its performance is compared with other metaheuristic algorithms. BOA is also employed to solve three
classical engineering problems (spring design, welded beam design, and gear train design). Results indicate that the proposed
BOA is more efficient than other metaheuristic algorithms.

Keywords Butterfly optimization algorithm · Global optimization · Nature inspired · Metaheuristic · Benchmark test
functions · Engineering design problems

1 Introduction

For million of years, nature has been developing many bio-
logical systems and helping them in their survival. With
the time, these natural systems have become so robust and
efficient that they can solve most of the real-world prob-
lems (Fister et al. 2013). Using key characteristics of these
biological systems, various metaheuristic algorithms have
been developed and employed to various optimization prob-
lems, whereas the conventional optimization algorithms fail
to produce satisfactory results for problems with nonlin-
earity and multimodality (Back 1996; Onwubolu and Babu
2004). In engineering,many design applications require opti-
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mal solution under highly complex constraints over a short
duration of time which is a very challenging task (Brown-
lee 2011) and these metaheuristic algorithms are known to
have intriguing efficiency for solving complex and multi-
dimensional problems in a shorter period of time (Yang
2010a). Till now, several metaheuristic algorithms have been
investigated to solve real-world combinatorial or global opti-
mization problems such as Artificial Bee Colony (ABC)
(Karaboga and Basturk 2007), Cuckoo Search (CS) (Yang
and Deb 2009), Differential Evolution (DE) (Storn and Price
1997), Firefly Algorithm (FA) (Yang 2010b), Genetic Algo-
rithm (GA) (Goldberg andHolland 1988),MonarchButterfly
Optimization (MBO) (Wang et al. 2015) and Particle Swarm
Optimization (PSO) (Eberhart and Shi 2001). These algo-
rithms demonstrate improved performances when compared
with conventional optimization techniques, especially when
applied to solve non-convex optimization problems (Talbi
2009). Up to now, researchers have only used very limited
characteristics inspired by nature and there is room for more
algorithm development (Yang 2010a; Onwubolu and Babu
2004; Wolpert and Macready 1997).

In this paper, a new nature-inspired metaheuristic algo-
rithm for global optimization named as Butterfly Opti-
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mization Algorithm (BOA in short) which is inspired by
the foraging behavior of the butterflies is proposed. The
behavior of butterflies can be described as their cooperative
movement toward the food source position. The butterflies
receive/sense and analyze the smell in the air to determine
the potential direction of a food source/mating partner. BOA
mimics this behavior to find the optima in the hyper search
space. The contribution of this paper is that a novel nature-
inspired metaheuristic algorithm is presented and investi-
gated. This population-based general-purpose metaheuristic
demonstrates outstanding performance on benchmark test
functions as well as on classical engineering design prob-
lems.

After this review, the rest of this paper is organized
as follows. First, some related work on nature-inspired
metaheuristic algorithms is presented in Sect. 2. Section 3
discusses the biological behavior of butterflies and illus-
trates BOA framework so as to use it as an optimization
search algorithm. This section also discusses the conceptual
comparison of proposed BOA with other optimization algo-
rithms. To test and validate this new algorithm, a testbed of
30 benchmark optimization functions (problems) is consid-
ered and presented in Sect. 4. Section 5 presents simulation
results and performance analysis of BOA as the algorithm
is subjected to benchmark test function under various con-
straints. To evaluate the performance of the proposed BOA
over engineering problems, vibration-based damage detec-
tion problems in three scenarios (spring design, welded beam
design, and gear train design) have been solved and results
are discussed in Sect. 6. Finally, this paper is concluded and
future research work is proposed in Sect. 7.

2 Related work

Metaheuristic algorithms mimic natural phenomenon in
order to search for an optimal solution. Among the various
metaheuristic algorithms, ABC, CS, DE, FA, GA,MBO, and
PSO are widely known algorithms.

ABC is based on the intelligent behavior of honey bee
swarm which categorizes the bees in a hive into three types
viz. scout bees, employed bees and onlooker bees. Scout bees
fly randomly without any guidance. Employed bees search
the neighborhood of their positions, and they share the infor-
mation of these food sources to the onlooker bees. Onlooker
bees use fitness of the population to select a guiding solution
for exploitation. These onlooker bees tend to select good
food sources from those found by the employed bees. The
food source that has higher quality (fitness) will have a large
chance to be selected by the onlooker bees than one of lower
quality (Karaboga and Basturk 2007). The scout bees are
translated from a few employed bees, which abandon their
food sources and search new ones. The algorithm is mainly

used for multimodal function optimization (Karaboga and
Basturk 2008).

CS is a metaheuristic algorithm based on the obligate
brood parasitic behavior of some cuckoo species in which
the cuckoo bird lay their eggs in the nests of birds of different
species (Gandomi et al. 2013a). Each solution is represented
by an egg and a new solution is represented by a cuckoo egg.
The algorithm’s basic methodology is based on replacing a
not-so-good solution by new or potentially better solutions.
Cuckoo search idealized such breeding behavior to perform
optimization (Arora and Singh 2013b).

DE is a simple yet powerful population-based stochastic
search technique which uses vector differences for perturb-
ing the vector population and it maintains a population of
candidate solutions subjected to iterations of recombina-
tion, evaluation, and selection (Storn and Price 1997). The
recombination approach facilitates the creation of new solu-
tions depending upon the weighted difference between two
randomly selected population members added to a third pop-
ulation member. This perturbs population members relative
to the spread of the broader population. Additionally, with
the selection, the perturbation effect self-organizes the sam-
pling of the hyper search space, bounding it to known areas
of interest.

In FA, the social flashing behavior of fireflies is modeled
in algorithmic form to search optimal solution to arbitrary
problems (Arora and Singh 2013a). The underlying mecha-
nism is that one firefly gets attracted to other fireflies’ specific
flashing pattern which is produced by a process of biolumi-
nescence. The intensity of the flash is directly proportional to
the fitness of the individual (Gupta and Arora 2015). FA uses
the concept of attraction where the less bright one attracts to
more brighter one which allows individuals to change their
location from one place to another. This movement enables
the swarm to explore the optimum solution over the search
space (Yang 2009; Arora et al. 2014).

InGA, a problem solution is considered as the individual’s
chromosome and a population of such individuals strives to
survive under harsh conditions (Holland 1992; Goldberg and
Holland 1988). GA is based on the Darwinian theory of sur-
vival of the fittest. GA is based on three operators: selection,
crossover and mutation (Goldberg and Holland 1988). In
selection, highly fitted individuals are selected to generated
descendants, which are used by the crossover operator. In
mutation, a location inside the chromosome is selected and
its value is changed depending on the chromosome encoding
used.

MBO is based on the southward migration of the east-
ern North American monarch population to Mexico. In this
algorithm, the population of butterfly individuals is divided
into two different lands viz. southern Canada and the north-
ern USA (Land 1) and Mexico (Land 2). The location of
butterfly individuals is updated by using two operators, viz.
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migration operator and butterfly adjusting operator. The role
of migration operator is to create new offsprings while but-
terfly adjusting operator is used for tuning the positions for
other butterfly individuals. Migration ratio is the deciding
factor for the migration operator which generates new off-
springs of monarch butterflies (Wang et al. 2015).

PSO algorithm mimics the interaction in a group of
species, e.g., fish and birds, etc., for finding the optimal
solution in complex search spaces (Eberhart and Shi 2001).
The group is represented by a swarm of particles (solutions)
and the algorithm described how particles keep moving,
as their neighbors find better solutions in the search solu-
tion space. Over time, individuals are drawn toward one
another’s successes, that results in clustering of individu-
als in optimal regions of the space. PSO uses two kinds
of information, (1) cognitive learning, where the particle
learns from its own past experiences and (2) social learning,
where particle learns from other’s experience. The algorithm
combines both the learning phenomenon leading the solu-
tion to evolve in a better way as the algorithm proceeds
(Kennedy 2010).

3 Butterfly optimization algorithm

In this paper, a novel optimization technique is proposed
that mimics the food foraging behavior of butterflies. To
understand this new algorithm some biological facts and
how to model them in BOA are discussed in following
subsections.

3.1 Butterfly

In the Linnaean system of Animal Kingdom, butterflies lie in
the class of Lepidoptera. There are more than 18,000 species
of butterflies across the world. The reason of their survival
for so many million years lies in their senses (Saccheri et al.
1998). Butterflies use their sense of smell, sight, taste, touch
and hearing to find food andmating partner. These senses are

also helpful in migrating from one place to another, escaping
from predator and laying eggs in appropriate places. Among
all these senses, smell is the most important sense which
helps butterfly to find food, usually nectar, even from long
distances (Blair and Launer 1997). In order to find the source
of nectar, butterflies use sense receptors which are used to
smell and these receptors are scattered over butterfly’s body
parts like antennae, legs, palps, etc. These receptors are actu-
ally nerve cells on butterfly’s body surface and are called
chemoreceptors (Pollard and Yates 1994). These chemore-
ceptors guide the butterfly to find the best mating partner
in order to continue a strong genetic line. A male butter-
fly is able to identify the female through her pheromone
which are scent secretions emitted by the female butterfly
to cause specific reactions. Fig. 1 provides some pictures of
butterflies.

Based on scientific observations, it is found that butterflies
have a very accurate sense of locating the source of fragrance
(Raguso 2008). Furthermore, they can separate different fra-
grances and sense their intensities (Wyatt 2003). Butterflies
are search agents of BOA to perform optimization. A but-
terfly will generate fragrance with some intensity which is
correlated with its fitness, i.e., as a butterfly moves from one
location to another, its fitness will vary accordingly. The fra-
grance will propagate over distance and other butterflies can
sense it and this is how the butterflies can share its personal
informationwith other butterflies and form a collective social
knowledge network. When a butterfly is able to sense fra-
grance from any other butterfly, it will move toward it and
this phase is termed as global search in the proposed algo-
rithm. In another scenario, when a butterfly is not able to
sense fragrance from the surrounding, then it will move ran-
domly and this phase is termed as local search in the proposed
algorithm. In this paper, terms smell and fragrance are used
interchangeably.

3.2 Fragrance

InBOA, each fragrance has its ownunique scent and personal
touch. It is one of the main characteristics that distinguishes

Fig. 1 Social organization and behavior. a Butterfly. b Food foraging. c Butterfly mating among flowers
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BOA from other metaheuristics. In order to understand how
fragrance is calculated in BOA, first we need to understand,
how a modality like smell, sound, light, temperature, etc. is
processed by a stimulus. The whole concept of sensing and
processing the modality is based on three important terms
viz. sensory modality (c), stimulus intensity (I ) and power
exponent (a). In sensorymodality, sensorymeans tomeasure
the form of energy and process it in similar ways and modal-
ity refers to the raw input used by the sensors. Now different
modalities can be smell, sound, light, temperature and in
BOA, modality is fragrance. I is the magnitude of the phys-
ical/actual stimulus. In BOA, I is correlated with the fitness
of the butterfly/solution. This means that when a butterfly is
emitting a greater amount of fragrance, the other butterflies
in that surrounding can sense it and gets attracted toward
it. Power is the exponent to which intensity is raised. The
parameter a allows for regular expression, linear response
and response compression. Response expansion is when I
increases, the fragrance ( f ) increases more quickly than
I . Response compression is when I increases, f increases
more slowly than I . Linear response is when I increases, f
increases proportionally (Baird and Noma 1978; MacKay
1963). Scientists have conducted several experiments on
insects, animals and humans for magnitude estimation and
they have concluded that sometimes as the stimulus gets
stronger, insects become increasingly less sensitive to the
stimulus changes (Zwislocki 2009; Stevens 1975). So in
BOA, to estimate the magnitude of I , response compression
is used.

The natural phenomenon of butterflies is based on two
important issues: the variation of I and formulation of f .
For simplicity, I of a butterfly is associated with the encoded
objective function. However, f is relative, i.e., it should be
sensed by other butterflies. According to Steven’s power law
(Stevens 1975) in order to differentiate smell from other
modalities, c is used. Now, as the butterfly with less I moves
toward butterfly with more I , f increases more quickly than
I . So we should allow f to vary with a degree of absorp-
tion which is achieved by the power exponent parameter
a. Using these concepts, in BOA, the fragrance is formu-
lated as a function of the physical intensity of stimulus as
follows:

f = cI a (1)

where f is the perceived magnitude of the fragrance, i.e.,
how stronger the fragrance is perceived by other butterflies,
c is the sensory modality, I is the stimulus intensity and a is
the power exponent dependent on modality, which accounts
the varying degree of absorption. For most of the cases in our
implementation, we can take a and c in the range [0, 1]. The
parameter a is the power exponent dependent on modality
(fragrance in our case) which means it characterizes the vari-

ation of absorption. In one extreme, a = 1, this means there
is no absorption of fragrance, i.e., the amount of fragrance
emitted by a particular butterfly is sensed in the same capac-
ity by the other butterflies. This equivalent to saying that
fragrance is propagated in an idealized environment. Thus,
a butterfly emitting fragrance can be sensed from anywhere
in the domain. Thus, a single (usually global) optimum can
be reached easily. On the other hand, if a = 0, it means that
the fragrance emitted by any butterfly cannot be sensed by
the other butterflies at all. So, the parameter a controls the
behavior of the algorithm. Another important parameter is
c which is also crucial parameter in determining the speed
of convergence and how the BOA algorithm behaves. The-
oretically c ∈ [0,∞] but practically it is determined by the
characteristic of the system to be optimized. The values of
a and c crucially affect the convergence speed of the algo-
rithm. In the case of maximization problem, the intensity
can be proportional to the objective function. Other forms
of intensity can be defined in a similar way to the fitness
function in firefly algorithm (Yang 2010b), genetic algo-
rithms or the bacterial foraging algorithm (Gazi and Passino
2004).

3.3 Movement of butterflies

To demonstrate above discussions in terms of a search algo-
rithm, the above characteristics of butterflies are idealized as
follows:

1. All butterflies are supposed to emit some fragrancewhich
enables the butterflies to attract each other.

2. Every butterfly will move randomly or toward the best
butterfly emitting more fragrance.

3. The stimulus intensity of a butterfly is affected or deter-
mined by the landscape of the objective function.

There are three phases in BOA:(1) Initialization phase,
(2) Iteration phase and (3) Final phase. In each run of BOA,
first the initialization phase is executed, then searching is
performed in an iterative manner and in the last phase, the
algorithm is terminated finally when the best solution is
found. In the initialization phase, the algorithm defines the
objective function and its solution space. The values for the
parameters used in BOA are also assigned. After setting the
values, the algorithm proceeds to create an initial population
of butterflies for optimization. As the total number of but-
terflies remains unchanged during the simulation of BOA, a
fixed size memory is allocated to store their information. The
positions of butterflies are randomly generated in the search
space, with their fragrance and fitness values calculated and
stored. This finishes the initialization phase and the algorithm
starts the iteration phase, which performs the search with the
artificial butterflies created.
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The second phase of the algorithm, i.e., iteration phase,
a number of iterations are performed by the algorithm. In
each iteration, all butterflies in solution space move to new
positions and then their fitness values are evaluated. The algo-
rithm first calculates the fitness values of all the butterflies on
different positions in the solution space. Then these butter-
flies will generate fragrance at their positions using Eq. (1).
There are two key steps in the algorithm, i.e., global search
phase and local search phase. In global search phase, the
butterfly takes a step toward the fittest butterfly/solution g∗
which can be represented using Eq. (2)

xi
t+1 = xi

t +
(
r2 × g∗ − xi

t
)

× fi (2)

where xi t is the solution vector xi for i th butterfly in iteration
number t . Here, g∗ represents the current best solution found
among all the solutions in current iteration. Fragrance of i th
butterfly is represented by fi and r is a random number in
[0, 1].

Local search phase can be represented as

xi
t+1 = xi

t +
(
r2 × x j

t − xk
t
)

× fi (3)

where x j t and xk t are j th and kth butterflies from the solution
space. If x j t and xk t belongs to the same swarm and r is a
randomnumber in [0, 1] thenEq. (3) becomes a local random
walk.

Search for food andmating partner by butterflies can occur
at both local and global scale. Considering physical proxim-
ity and various other factors like rain, wind, etc., search for
food can have a significant fraction p in an overall mating
partner or food searching activities of butterflies. So a switch
probability p is used in BOA to switch between common
global search to intensive local search.

Till the stopping criteria is not matched, the iteration
phase is continued. The stopping criteria can be defined in
different ways like maximum CPU time used, maximum
iteration number reached, the maximum number of itera-
tions with no improvement, a particular value of error rate
is reached or any other appropriate criteria. When the iter-
ation phase is concluded, the algorithm outputs the best
solution found with its best fitness. The above-mentioned
three steps make up the complete algorithm of butterfly
optimization algorithm and its pseudo code is explained in
“Algorithm 1”.

3.4 Conceptual comparison of BOAwith other
metaheuristics

In the past few decades, various metaheuristic algorithms
have been introduced. Among them, ABC, CS, DE, FA,
GA, MBO and PSO are most widely studied and employed
algorithms. Even though BOA belongs to category of meta-
heuristic algorithms but it is quite different from previous
algorithms.

Originally, PSOwas proposed for solving continuous opti-
mization problems. The major difference between BOA and
PSO is their different biologybackgrounds. PSOwas inspired
by coordinated group animal of schools of fishes or flock of
birds, whereas BOA is inspired by social butterfly forag-
ing strategy, which belongs to the category of the general
searching behavior of the social animal. Another important
difference betweenBOAandPSO is information propagation
methodwhich is neglected in PSOas each particle is assumed
to have awareness of all the information about other parti-
cles without any loss. In BOA, information is propagated to
all other agents using fragrance. This model of information
propagation forms a general knowledge system with some
information loss. Even there is no research done yet that how
information loss will affect the process of optimization in
BOA, but the results in Sect. 5 indicate that this informa-
tion propagation model contributes to superior performance
of BOA over PSO.
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Although both BOA and FA draw inspiration from for-
aging strategy of social animals, but still there are some
significant differences. Fireflies produce short and rhyth-
mic flashes of light to attract mating partners and to attract
potential preys whereas butterflies use their sense of smell to
locate their food. Another important difference is the search-
ing pattern. In FA, every firefly is made to move toward
every brighter firefly and some randomness is added in that
movement whereas, in BOA, each butterfly moves toward
the best butterfly. As far as randomness is concerned, in
BOA, a switch probability is used which decides whether
the butterfly will move toward the best butterfly or perform
a random walk which is not used in FA. So there are sig-
nificant differences in foraging strategy of butterflies and
fireflies.

Another widely used algorithm is GA. BOA and GA are
totally different algorithms in terms of inspiration and mod-
eling. GA is based on Darwinian’s theory of survival of the
fittest, whereas BOA is inspired from social animal forag-
ing strategy of butterflies. The second important difference
is that in GA only good solutions have a greater probabil-
ity of creating new solutions. This means bad solutions will
get replaced by new good solutions whereas, in BOA, no
solution is discarded. In BOA, every solution is given equal
opportunity to improve. The third variation between these
two algorithms is generation of new solutions. In GA, two
solutions are selected based on their fitness, i.e., greater the
fitness, higher the probability to get selected. Then, these
solutions contribute in the creation of a new solution and
after which the new solution is mutated randomly whereas
in BOA, either the butterfly will move toward that butter-
fly which is emitting more fragrance among all butterflies
or it will move randomly and a new solution is created.
Switch probability decides whether a butterfly will move
toward best butterfly or randomly. So considering the above-
mentioned factors, it is evident that GA and BOA follow
totally different approaches for solving optimization prob-
lems.

There is one another algorithm MBO which resembles
BOA as these algorithms operate on butterflies but these
algorithms do not share the same ideology. In MBO, the
location of butterfly individuals is updated by using two oper-
ators, i.e.,migration operator andbutterfly adjusting operator.
Migration operator is responsible for creating new offsprings
while butterfly adjusting operator plays the critical role of
tuning the positions for other butterfly individuals. Migra-
tion ratio plays a critical role in the performance of MBO
as it controls the migration operator which generates new
offsprings of monarch butterflies. In BOA, the butterflies
are analyzed from the aspect of food foraging whereas, in
MBO, their migratory behavior is considered. BOA con-
siders the ability to sense fragrance among the flowers to

locate their food. Moreover, BOA is critically dependent on
how the fragrance is emitted, propagated in the environment
and sensed by other butterflies in that search space. BOA
also considers the fact that fragrance will be absorbed during
propagation and this absorption factor cannot be neglected
in the actual environment. Another major difference is that
MBO uses lèvy flight in position updation of monarch but-
terflies while BOA uses random number in order to update
the location of butterflies. Considering these mentioned fac-
tors, it is clear that MBO and BOA do not follow the same
ideology and these two algorithms are conceptually very dif-
ferent.

There is another category of metaheuristic algorithms like
ABC where the population is structured into different cate-
gories. Individuals following in different category perform
different tasks and the whole population cooperates to search
for the best solution over the solution space. In ABC, the
probability of selecting a nectar source is calculated using
fitness value of each bee divided by fitness values of all
bees. The new position of an onlooker bee is calculated by
performing a random walk. However in BOA, all solutions
(butterflies) are equal and each solution performs the very
same task, what other solutions are performing which makes
BOA different from ABC conceptually as well as mathe-
matically. Moreover, in BOA, the movement of a butterfly is
based on fragrance emitted by other butterflies. The move-
ment is further divided into two phases, one is search for
food or mating partner and other is local search. The choice
of the phase depends upon a random number which is com-
pared to a fixed value of switch probability. Search for food
or mating partner is dominated by the fragrance of other but-
terflies in the search space which differentiates BOA from
ABC algorithm.

There are someother population-based algorithms likeDE
and CS which share some of the features of BOA inevitably,
but they are inspired by completely different disciplines
of biology. DE uses a different kind of recombination and
decomposition operator to manipulate the solutions. CS is
inspired by obligate blood parasitism of cuckoo bird by lay-
ing their eggs in the nest of other species bird. In CS, an
alien egg/solution is detected by probability and if detected,
then that solution is discarded. Another significant difference
is that in CS, lèvy flight is used instead of random walk to
generate new solutions.

The above comparison between BOA and other meta-
heuristic algorithms reveal that to the best of our knowledge,
there is no metaheuristic algorithm in the literature which
mimics the food foraging behavior of the butterflies. This
motivated our attempt to propose a newnature-inspiredmeta-
heuristic algorithm inspired by the biological behavior of the
butterflies with an aim to solve a broader range of optimiza-
tion problems.
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4 Optimization testbed and experimental
platforms

Every novel optimization algorithm must be subjected to
benchmark optimization functions and its performance must
be compared with other existing popular algorithms. There
are various benchmark optimization test functions available;
however, there is no standardized set of benchmark func-
tions which is agreed upon for validating new algorithms.
In order to validate proposed Butterfly Optimization Algo-
rithm (BOA), a diverse subset of such benchmark functions
is chosen in this paper as shown in Table 1. To validate
and benchmark the performance of BOA, simulations on 30
different benchmark functions are conducted. These testbed
benchmark functions are chosen from the benchmark set pro-
posed in (Yao et al. 1999; Liang et al. 2013) to determine
various features of the algorithm such as fast convergence,
attainment of a large number of localminimapoints, ability to
jump out of local optima and avoid premature convergence.

BOA is implemented inC++ and compiled usingNokiaQt
Creator 2.4.1 (MinGW) under Microsoft Windows 8 oper-
ating system. All simulations are carried out on a computer
with an Intel(R) Core(TM) i5 − 3210 @ 2.50 GHz CPU. In
each run, we use a maximum number of 10, 000 iterations as
the termination criterion of BOA. In order to reduce statis-
tical errors and generate statistically significant results, each
function is repeated for 30MonteCarlo runs. Themean, stan-
dard deviation, best, median, and worst results of BOA are
recorded.

In order to meet the requirement set by Liang et al. (2013),
we use one fixed combination of parameters for BOA in the
simulation of all benchmark functions. The population size
n is 50, modular modality c is 0.01 and power exponent a
is increased from 0.1 to 0.3 over the course of iterations. To
start with, we can use p = 0.5 as an initial value and then
do a parametric study to find the most appropriate parameter
range. From our simulations, we found that p = 0.8 works
better for most applications.

To evaluate the performance of our proposed butterfly
optimization algorithm, it is compared to those algorithms
which are the best performing and produce a satisfactory
performance when applied to global optimization problems.
So considering these factors, seven optimization algorithms
have been chosen namely, ABC (Karaboga and Basturk
2007), CS (Yang and Deb 2009), DE (Storn and Price 1997),
FA (Yang 2010b), GA (Goldberg and Holland 1988), MBO
(Wang et al. 2015) and PSO (Eberhart and Shi 2001). These
algorithms are widely employed to compare the performance
of optimization algorithms.

All the experiments are conducted under the same condi-
tions in order to obtain fair results as shown in Wang et al.
(2014). In this study, ABC employs only one control parame-
ter limit whose value is calculated by limit = SN×D where

D is the dimension of the problem and SN is the number of
food sources or employed bees. For CS, we used a probabil-
ity pa = 0.8. For DE, we used a weighting factor F = 0.5
and a crossover constant CR = 0.5. For FA, α = 0.2, β0 = 1
and γ = 1. For GA, we used roulette wheel selection, sin-
gle point crossover with a crossover probability of 1, and a
mutation probability of 0.01.

For MBO, we used max step Smax = 1.0, butterfly adjust-
ing rate BAR = 5/12, migration period peri = 1.2, and
the migration ratio p = 5/12. For PSO, we used only global
learning (no local neighborhoods), an inertial constant= 0.3,
a cognitive constant = 1, and a social constant for swarm
interaction= 1. These parameters are set as reported by
the authors in the past (Karaboga and Basturk 2007; Yang
and Deb 2009; Storn and Price 1997; Kalra and Arora 2016;
Huang et al. 2007; Goldberg and Holland 1988; Wang et al.
2015; Eberhart and Shi 2001). The rigorous nonparametric
statistical framework is used to compare the performance of
BOA with other selected optimization algorithms. For each
run of the algorithm, all initial solutions of the population are
randomly generated.

5 Simulation results

In this section, simulation results of BOA on benchmark
functions selected in Sect. 4 are presented. A comparison is
performed among BOA and other metaheuristic algorithms,
and statistical analysis on simulation results is given. The
detailed simulation results of BOA on benchmark functions
selected in Sect. 4 are presented in Table 2. The benchmark
functions are selected in such a way that they can assess
the algorithm’s ability to converge fast, jump out of local
optima, ability to achieve a large number of local optima
and avoid premature convergence. The mean and standard
deviation values obtained by BOA and other algorithms on
various testbed benchmark functions are listed in Table 3.
The mean values in bold indicate superiority. The simulation
results indicate that BOA generally gives very outstanding
performance compared with other algorithms. Further pair-
wise Wilcoxon rank test at 95% confidence interval is used
to figure out partial ordering of algorithms for these selected
benchmark functions (Maesono1987).Outcomes of pairwise
Wilcoxon rank test statistical comparison for all benchmark
functions are shown in Table 4 with the position of BOA
in bold. If algorithms Algo-1, Algo-2, and Algo-3 perform
better than Algo-4, we conclude Algo-1, Algo-2, and Algo-3
outperform Algo-4 on that particular benchmark function.

The results of partial orderings of the algorithms are con-
structed based on the pairwise findings are shown in Table 5,
where it is seen that BOA shows an outstanding performance
in unimodal benchmark functions when compared with other
algorithms in terms of both mean value of the results and
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the Wilcoxon rank test result. This indicates the outstanding
capability of BOA in fast converging to the global optimum
while avoiding premature convergence. BOA also shows its
dominating performance inmost of themultimodal functions
and satisfactory results in some functions like f7, f9 and
f10. Special attention should be paid to the noisy (Quartic)
problems as these challenges occur frequently in real-world
applications. BOA provided a significant performance boost
on these noisy problems.

Besides optimization accuracy, convergence speed is quite
essential to an optimizer. To validate the convergence speed
of the BOA, we conducted more thorough experiments. Fig-
ures 2, 3, 4, 5, 6 and 7 depict the convergence curves of BOA
and other algorithms on 100 iterations. From these results,
we can arrive at a conclusion that BOA can find excellent

solutions with only 100 iterations which reflect the fast con-
vergence speed of the proposed BOA.

In order to have a clearer view of the statistical assessment
of the simulation results,we further rank the algorithmsbased
on their performance in the Wilcoxon rank test as shown in
Table 4. For each function, the first algorithm is assigned a
rank value 1, the second with 2 and so on. For the ties, an
average rank is given to the algorithms involved in the tie.
Take f2 as an example, BOA, DE, GA and PSO shares the
same rank, and they are the first to the fourth order algo-
rithms in this function. So we assign an average rank value
of 2.5 to all these four algorithms. We then sum up the rank
values of each algorithm to have an overall assessment of the
performance of the algorithms. Similar evaluation methods
have been adopted in previous metaheuristic algorithm tests
(Shilane et al. 2008). The test results which are presented

Table 2 Simulation results of BOA

Function Butterfly optimization algorithm

Mean SD Best Median Worst

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 3.8917E−05 2.9003E−05 5.8800E−05 3.5850E−05 1.2000E−05

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f7 1.7183E+00 0.0000E+00 1.7183E+00 1.7183E+00 1.7183E+00

f8 1.8472E−19 2.6886E−20 1.6300E−19 1.6300E−19 2.1700E−19

f9 4.4108E−01 5.7467E−02 2.8900E−01 3.7800E−01 5.7400E−01

f10 − 5.3382E+00 − 5.6092E+00 − 5.7700E+00 − 3.6200E+00 − 2.2500E+00

f11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f14 2.8837E+01 3.1281E−02 2.8754E+01 2.8754E+01 2.8927E+01

f15 − 1.0000E+00 0.0000E+00 − 1.0000E+00 − 1.0000E+00 − 1.0000E+00

f16 − 1.8673E+02 2.06493E−11 − 1.8673E+02 1.8673E+02 − 1.8673E+02

f17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f18 6.9906E−153 1.4788E−152 3.7983E−155 2.3793E−153 9.7687E−152

f19 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 7.2407E−158

f20 − 2.2662E+03 4.5626E+02 − 2.8790E+03 − 2.3458E+03 − 1.8373E+03

f21 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f22 3.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f23 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f24 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f25 2.8400E−02 1.3179E−02 8.9600E−03 2.6800E−02 5.4300E−02

f26 − 1.0200E+01 0.0000E+00 − 1.0200E+01 − 1.0200E+01 − 1.0200E+01

f27 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f28 − 2.7500E+07 5.6500E+07 − 9.6100E+07 − 3.1800E+07 7.3000E+07

f29 − 3.7900E−03 0.0000E+00 − 3.7900E−03 − 3.7900E−03 − 3.7900E−03

f30 1.1527E−06 9.4711E−07 1.0700E−08 6.9200E−07 2.6800E−06
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Table 4 Pairwise Wilcoxon rank test results

No. Wilcoxon rank test order

f1 BOA < DE < CS < PSO < FA < GA < MBO < ABC

f2 BOA ≈ DE ≈ GA ≈ PSO < FA < ABC < CS < MBO

f3 BOA < DE < CS < PSO < FA < GA < MBO < ABC

f4 BOA ≈ FA < PSO < GA < DE < ABC < CS < MBO

f5 BOA < DE < GA < MBO < FA < ABC < PSO < CS

f6 BOA ≈ ABC ≈ DE ≈ FA ≈ GA ≈ MBO < CS < PSO

f7 FA < GA < BOA < DE < ABC < MBO < CS < PSO

f8 BOA < DE < FA < GA < ABC < CS < PSO < MBO

f9 GA < ABC < DE < BOA < FA < PSO < CS < MBO

f10 GA < DE < ABC < FA < MBO < CS < PSO < BOA

f11 BOA < DE < GA < ABC < FA < MBO < CS < PSO

f12 BOA < GA < DE < FA < PSO < MBO < ABC < CS

f13 BOA ≈ DE ≈ PSO ≈ GA < ABC < MBO < FA < CS

f14 MBO < FA < DE < BOA < GA < CS < ABC < PSO

f15 BOA ≈ CS ≈ DE ≈ GA ≈ MBO ≈ PSO < ABC < FA

f16 BOA ≈ ABC ≈ CS ≈ DE ≈ FA ≈ GA ≈ PSO < MBO

f17 BOA < DE < GA < ABC < CS < FA < PSO < MBO

f18 BOA < FA < CS < GA < ABC < PSO < DE < MBO

f19 BOA < DE < FA < MBO < GA < ABC < CS < PSO

f20 DE < MBO < GA < ABC < PSO < FA < BOA < CS

f21 BOA ≈ DE ≈ FA ≈ GA ≈ PSO < ABC < CS < MBO

f22 BOA ≈ ABC ≈ CS ≈ DE ≈ FA ≈ GA ≈ MBO ≈ PSO

f23 BOA ≈ DE ≈ FA ≈ MBO ≈ PSO < GA < CS < ABC

f24 BOA < FA < GA < CS < ABC < DE < PSO < MBO

f25 FA < GA < PSO < DE < CS < BOA < ABC < MBO

f26 BOA ≈ ABC ≈ DE ≈ FA ≈ PSO < GA < CS < MBO

f27 BOA < DE < FA< GA < ABC < CS < PSO < MBO

f28 BOA < FA < DE < GA < CS < MBO < ABC < PSO

f29 BOA ≈ ABC ≈ DE ≈ FA ≈ GA ≈ PSO ≈ CS < MBO

f30 PSO < BOA < GA < FA < CS < DE < ABC < MBO

in Tables 4 and 5 depict that BOA is the most effective at
finding function minima by performing best on 23 out of a
fairly large subset of 30 benchmark functions. DE is the sec-
ond most effective, followed by GA, FA, PSO, ABC, CS and
MBO respectively.

The rank summary of the statistical assessment result sup-
ports our previous observations. BOA is the best performing
algorithm. It possesses a dominating position in the over-
all comparison as well. From Table 5, it is observed that no
other algorithm can have as stable a performance as BOA.
The performance of DE, GA, and FA are satisfactory but
neither of them can catch up with BOA in unimodal and
multimodal functions ranks. So we conclude that in general,
BOA has both best optimization performance and highest
stability.

Table 5 Rank summary of statistical assessment results

No. BOA ABC CS DE FA GA MBO PSO

f1 1 8 3 2 5 6 7 4

f2 2.5 6 7 2.5 5 2.5 8 2.5

f3 1 8 3 2 5 6 7 4

f4 1.5 6 7 5 1.5 4 8 3

f5 1 6 8 2 5 3 4 7

f6 3.5 3.5 7 3.5 3.5 3.5 3.5 8

f7 3.5 5 7 3.5 1 2 6 8

f8 1 5 6 2 3 4 8 7

f9 4 2 7 3 5 1 8 6

f10 8 3 6 2 4 1 5 7

f11 1 4 7 2 5 3 6 8

f12 1 7 8 3 4 2 6 5

f13 2 5 8 2 7 4 6 2

f14 4 7 6 3 2 5 1 8

f15 3.5 7 3.5 3.5 8 3.5 3.5 3.5

f16 4 4 4 4 4 4 8 4

f17 1 4 5 2 6 3 8 7

f18 1 5 3 7 2 4 8 6

f19 1 6 7 2 3 5 4 8

f20 7 4 8 1 6 3 2 5

f21 3 6 7 3 3 3 8 3

f22 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

f23 3 8 7 3 3 6 3 3

f24 1 5 4 6 2 3 8 7

f25 6 7 5 4 1 2 8 3

f26 3 3 7 3 3 6 8 3

f27 1 5 6 2 3 4 8 7

f28 1 7 5 3 2 4 6 8

f29 3.5 3.5 7 3.5 3.5 3.5 8 3.5

f30 2 7 5 6 4 3 8 1

Total 80.5 161.5 178 95 114 108.5 186.5 156

These simulation results discussed in this paper should
not be taken to mean that BOA is “better” than other meta-
heuristic algorithms. Such a general statement would be an
oversimplification, especially in view of the no free lunch
theorem (Wolpert andMacready 1997). However, the results
presented here show that BOA provides better performance
thanmost of the other popular optimization algorithms for the
particular benchmarks considered in this paper. The results
shownhere indicate that BOA is competitivewith othermeta-
heuristic algorithms, and could be used to solve various real
life problems.
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Fig. 2 Convergence curves of
f4
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Fig. 3 Convergence curves of
f8
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Fig. 4 Convergence curves of
f9
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Fig. 5 Convergence curves of
f11
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Fig. 6 Convergence curves of
f18
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Fig. 7 Convergence curves of
f27
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6 BOA for classical engineering problems

This section discusses three engineering design problems,
i.e., spring design, welded beam, and gear train design which
are employed to evaluate the capability of BOA. Constraint
handling is a challenging task for an algorithm when the fit-
ness function directly affects the position updation of the
search agents. These classical engineering problems have
several equality and inequality constraints which evaluate
the capability of BOA from the perspective of constraint han-
dling in order to optimize constrained problems as well.

6.1 Spring design

The objective of this problem is to minimize the weight of
a spring as illustrated in Fig. 8 (Arora 2004; Belegundu and
Arora 1985; Coello and Montes 2002). The minimization
process is subject to some constraints such as shear stress,
surge frequency, and minimum deflection. There are three
variables in this problem:wire diameter (d),mean coil diame-
ter (D), and the number of active coils (N ). Themathematical
formulation of this problem is as follows:

Consider −→x = [x1x2x3] = [dDN ],
Minimize f (−→x ) = (x3 + 2)x2x

2
1 ,

Subject to g1(
−→x ) = 1 − x32 x3

71785x41
≤ 0,

g2(
−→x ) = 4x22 − x1x2

12, 566(x2x31 − x41)
+ 1

5108x21
≤ 0,

g3(
−→x ) = 1 − 140.45x1

x22 x3
≤ 0,

g4(
−→x ) = x1 + x2

1.5
− 1 ≤ 0,

Variable range 0.05 ≤ x1 ≤ 2.00,

0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.00 (4)

This problem has been tackled by both mathematical and
heuristic approaches.The simulation results ofBOAare com-

Fig. 8 Schematic representation of spring

pared with Grey Wolf Optimization (GWO) (Mirjalili et al.
2014), Gravitational Search Algorithm (GSA) (Rashedi et al.
2009), PSO (He and Wang 2007), ES (Mezura-Montes and
Coello 2008), GA (Coello 2000a), HS (Mahdavi et al. 2007),
and DE (Huang et al. 2007). The mathematical approaches
that have been used to tackle this problem are numerical
optimization technique, i.e.,mathematical optimization tech-
nique (Belegundu andArora 1985) and constraints correction
at constant cost (Arora 2004). The bold values indicate the
best one among all methods. Table 6 suggests that BOA finds
a design with the minimum weight for this problem.

6.2 Welded beam design

The objective of this problem is to minimize the fabrication
cost of a welded beam as shown in Fig. 9 (Coello 2000a).
The constraints are as follows:

1. Shear stress (s)
2. Bending stress in the beam (h)
3. Buckling load on the bar (Pc)
4. End deflection of the beam (d)
5. Side constraints

This problem has four variables such as the thickness of
weld (h), the length of attached part of the bar (l), the height
of the bar (t), and thickness of the bar (b). The mathematical
formulation is as follows:

Consider −→x = [x1x2x3x4] = [hltb],
Minimize f (−→x ) = 1.10471x21 x2 + 0.04811x3x4(14.0 + x2),

Subject to g1(
−→x ) = τ(

−→x ) − τmax ≤ 0,

g2(
−→x ) = σ(

−→x ) − σmax ≤ 0,

g3(
−→x ) = δ(

−→x ) − δmax ≤ 0,

g4(
−→x ) = x1 − x4 ≤ 0,

g5(
−→x ) = P − Pc(

−→x ) ≤ 0,

g6(
−→x ) = 0.125 − x1 ≤ 0,

g7(
−→x ) = 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,

Variable range 0.1 ≤ x1 ≤ 2,

0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10,

0.1 ≤ x4 ≤ 2 (5)

where τ(
−→x ) =

√
(τ ′)2 + 2τ ′(τ ′′) x2

2R
+ τ ′′2

τ ′ = P√
2x1x2

τ ′′ = MR

J
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Table 6 Comparison of results
for spring design problem

Algorithm Optimum variables Optimum weight

d D N

BOA 0.051343 0.334871 12.922700 0.0119656

GWO 0.051690 0.356760 11.288110 0.0126615

GSA 0.050276 0.323680 13.525410 0.0127022

PSO 0.051728 0.357644 11.244543 0.0126747

ES 0.051989 0.363965 10.890522 0.0126810

GA 0.051480 0.351661 11.632201 0.0127048

HS 0.051154 0.349871 12.076432 0.0126706

DE 0.051609 0.354714 11.410831 0.0126702

Mathematical optimization 0.053396 0.399180 9.1854000 0.0127303

Constraint correction 0.050000 0.315900 14.250000 0.0128334

Fig. 9 Schematic representation of welded beam

M = P
(
L + x2

2

)

R =
√
x22
4

+
(
x1 + x3

2

)2

J = 2

{√
2x1x2

[
x22
4

(
x1 + x3

2

)2
]}

σ(
−→x ) = 6PL

x4x
2
3

δ(
−→x ) = 4PL3

Ex23 x + x4

Pc(
−→x ) =

4.013E

√
x23 x

6
4

36

L2

(
1 − x3

2L

√
E

4G

)

P = 6000 lb,L = 14 in., δmax = 0.25 in.,

E = 30 × 106 psi,

G = 12 × 106 psi, τmax = 13600 psi,

σmax = 30000 psi (6)

In the past, this problem is solved by GWO (Mirjalili et al.
2014), GSA (Rashedi et al. 2009), GA1 (Coello 2000b), GA2
(Deb 1991), GA3 (Deb 2000) and HS (Lee and Geem 2005).
Richardson’s random method, Simplex method, Griffith and
linear approximation (Approx) and David’s method are the
traditionalmethods that have been employed byRagsdell and
Philips to solve this problem (Ragsdell and Phillips 1976).
The comparison results are provided in Table 7 where bold
values indicate superiority. The results show that BOA finds
a design with the minimum cost compared to others.

6.3 Gear train design

Gear train design problem is a discrete optimization problem.
It was introduced by Sandgren (1990), and it has four integer
variables between 12 and 60. This problem consists of cost
minimization of the gear ratio of a compound gear train (see
Fig. 10). The gear ratio can be defined as:

Gear ratio = Angular velocity of the output shaft

Angular velocity of the input shaft
(7)

where Ti denotes the number of teeth of the i th gear wheel
which should be integers. It is required to obtain the teeth
numbers on thewheels so that a gear ratio reaches to 1/6.931.
Therefore, the mathematical formulation of the objective
function is as follows:

f (Ta, Tb, Td , T f ) =
(

1

6.931
− TbTd

TaT f

)2

(8)

This problem has also been popular among researchers
and optimized in various studies. The heuristic methods that
have been adopted to optimize this problem are: Chaotic vari-
ant of Accelerated PSO (CAPSO) (Gandomi et al. 2013b),
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Table 7 Comparison results of
welded beam design problem

Algorithm Optimum variables Optimum cost

h l t b

BOA 0.1736 2.9690 8.7637 0.2188 1.6644

GWO 0.2056 3.4783 9.0368 0.2057 1.7262

GSA 0.1821 3.8569 10.0000 0.2023 1.8799

GA1 N/A N/A N/A N/A 1.8245

GA2 N/A N/A N/A N/A 2.3800

GA3 0.2489 6.1730 8.1789 0.2533 2.4331

HS 0.2442 6.2231 8.2915 0.2443 2.3807

Random 0.4575 4.7313 5.0853 0.6600 4.1185

Simplex 0.2792 5.6256 7.7512 0.2796 2.5307

David 0.2434 6.2552 8.2915 0.2444 2.3841

Approx 0.2444 6.2189 8.2915 0.2444 2.3815

Fig. 10 Schematic representation of gear

CS (Gandomi et al. 2013a), PSO (Parsopoulos and Vra-
hatis 2005), Genetic Adaptive Search (GeneAS) (Deb and
Goyal 1996) and Simulated annealing (Zhang and Wang
1993). Various other approaches used to solve to this problem
are nonlinear integer and discrete programming (Sandgren

1990), sequential linear approach (Loh and Papalambros
1991), mixed integer discrete continuous optimization (Kan-
nan and Kramer 1994), discrete continuous programming
approach (Fu et al. 1991) and evolutionary programming
(Cao and Wu 1997). Table 8 demonstrates the results for
the best objective value obtained by above-mentioned algo-
rithms in this study. As it can be seen from the Table 8, the
best result obtained by the proposed BOA in this study is
equivalent to the results in the literature.

7 Conclusion

In this paper, a novel Butterfly Optimization Algorithm is
proposed to solve global optimization problems. BOA is
based on food foraging behavior and information sharing
strategy of butterflies. BOA is conceptually very simple and

Table 8 Comparison of results for gear train design problem

Algorithm Optimum variables Gear ratio fmin

Ta Tb Td T f

BOA 43 16 19 49 0.1442 2.701 × 10−12

CAPSO 49 19 16 43 0.1442 2.701 × 10−12

CS 43 16 19 49 0.1442 2.701 × 10−12

PSO 43 16 19 49 0.1442 2.701 × 10−12

Sequential linearization approach 42 16 19 50 0.1447 0.23 × 10−6

GeneAS 33 14 17 50 0.1442 1.362 × 10−9

Mixed-variable evolutionary programming 52 15 30 60 0.1442 2.36 × 10−9

Simulated annealing 52 15 30 60 0.1442 2.36 × 10−9

Mixed integer discrete continuous programming 47 29 14 59 0.1464 4.5 × 10−6

GA N/A N/A N/A N/A N/A 2.33 × 10−7

Mixed integer discrete continuous optimization 33 15 13 41 0.1441 2.146 × 10−8

Nonlinear integer and discrete programming 45 22 18 60 0.1467 5.712 × 10−6
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easy to implement. The performance of the proposed BOA is
compared with well-known optimization algorithms such as
ABC, CS, DE, FA, GA, MBO, and PSO, by experimenting
with 30 benchmark problems with different characteristics
like multimodality, separability, regularity, and dimension-
ality. The usefulness of BOA is also evaluated by solving
three engineering design problems (spring design, welded
beam design, and gear train design) which have different
natures of objective functions, constraints and decision vari-
ables. Simulation results indicate that the performance of the
BOA is promising since it has produced competitive results
in comparison with the other studied algorithms and it has
an ability to become an effective tool for solving real word
optimization problems.

Future research on BOA can be divided into two parts:
research on algorithm and research on real-world applica-
tion. In terms of algorithm research, BOA has the potential
to solve combinatorial problems. Many metaheuristic algo-
rithms such as GA, PSO were originally designed to solve
continuous optimization problems and latermodified to solve
the combinatorial problem. So it would be an interesting area
to modify BOA and analyze results when applied to com-
binatorial problems. Binary and multi-objective versions of
this algorithm may be developed to solve discrete and multi-
objective problems. Even though BOA has few parameters,
i.e., sensor modality, power exponent and switch probabil-
ity, but still, it is very interesting to develop self-adaptive
schemes for BOA in order to reduce the effort in tuning
parameters.Another interesting dimension canbe identifying
real-world applications which can be efficiently solved using
BOA.
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