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Highlights

• The first Artificial Intelligence system for credit scoring in e-commerce;

• A new Genetic Programming system for credit scoring;

• Improving the state of the art for credit scoring in e-commerce;

• Transparent predictive models for credit scoring.
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Abstract

The growing number of e-commerce orders is leading to increased risk management to prevent default
in payment. Default in payment is the failure of a customer to settle a bill within 90 days upon receipt.
Frequently, credit scoring (CS) is employed to identify customers’ default probability. CS has been widely
studied, and many computational methods have been proposed. The primary aim of this work is to
develop a CS model to replace the pre-risk check of the e-commerce risk management system Risk Solution
Services (RSS), which is currently one of the most used systems to estimate customers’ default probability.
The pre-risk check uses data from the order process and includes exclusion rules and a generic CS model. The
new model is supposed to replace the whole pre-risk check and has to work both in isolation and in integration
with the RSS main risk check. An application of genetic programming (GP) to CS is presented in this paper.
The model was developed on a real-world dataset provided by a well-known German financial solutions
company. The dataset contains order requests processed by RSS. The results show that GP outperforms the
generic CS model of the pre-risk check in both classification accuracy and profit. GP achieved competitive
classificatory accuracy with several state-of-the-art machine learning methods, such as logistic regression,
support vector machines and boosted trees. Furthermore, the GP model can be used in combination with
the RSS main risk check to create a model with even higher discriminatory power.

Keywords: Risk Management; Credit Scoring; Genetic Programming; Machine Learning; Optimization.

1. Introduction

E-commerce vendors in Germany have to deal with a peculiarity: commonly used payment types like
credit cards and PayPal represent relatively low market shares, and the majority of orders are processed using
open invoice instead. Using open invoice, a vendor bills customers for goods and services only after delivery
of the product. Thus, the vendor grants customers a credit to the extent of the invoice. Usually, the vendor
sends customers an invoice statement as soon as the products are delivered or provided. The invoice contains
a detailed statement of the transaction. Because the customer receives a purchase before payment, it is called
open, and the invoice is closed once the payment is received. Around 28% of customers in Germany choose
open invoice as their payment type (Frigge, 2016), and around 68% of customers name open invoice as one of
their favorite payment types (Fittkau & Maaß Consulting, 2014; Wach, 2011). However, open invoice is prone
to payment disruptions. Among the most common reasons, vendors find that customers simply forget to
settle the bill or delay the payment on purpose. However, around 53% of vendors state that insolvency is one
of the most common reasons for payment disruption (Weinfurner et al., 2011). The majority of the cases that
conclude in default on payment in Germany are nowadays orders with open invoices, with more than 8% of
all orders defaulting (Seidenschwarz et al., 2014). E-commerce vendors find themselves in a conflict: offering
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open invoice incentivizes many clients to confirm their purchases but, at the same time, increases the risk of
default on payment rate. The former aspect has a positive effect on revenue, while the latter drives it down.
Additionally, default on payment has a negative impact on the profit margin, due to costs arising through
the provision of services and advance payments to third parties. In order to break through this vicious
circle, vendors can fall back on a plethora of methods. Many tackle this conflict by implementing exclusion
rules for customer groups they consider especially default-prone (for instance, customers who are unknown
to the vendor or whose order values are conspicuously high). Another approach, used by more than 30%
of e-commerce vendors in Germany, is to fall back on external risk-management services (Weinfurner et al.,
2011). Risk management applications are aimed at detecting customers with a high risk of defaulting. Those
applications are frequently built using credit scoring (CS) models. CS analyzes historical data to isolate
meaningful characteristics that are used to predict the probability of default (Mester, 1997). However,
the probability of default is not an attribute of potential customers but merely a vendor’s assessment of
whether the potential customer is a risk worth taking. Over the years, CS has evolved from a subjective
vendor’s “gut” decision to a method based on statistically sound models (Thomas et al., 2002). Among
the providers of risk management services in Germany is the risk management division of Arvato Financial
Solutions (AFS), which provides a number of services, including identification of individuals, evaluation of
credit-worthiness, and fraud recognition. The AFS databases consist of 21 million solvency observations
totaling information from 7 million individuals in Germany, addresses and change in address information,
and bank account information as well as phone numbers, email addresses, and device information. AFS’s
risk management service for e-commerce is called Risk Solution Services (RSS). RSS covers the entire order
process and provides a number of services for every stage of the order process. The main service for evaluating
customers’ default probability is called risk check and is split into a pre-risk check and a main risk check.
The main risk check is based on a credit agency score that uses country-specific solvency information on
individuals. Hence, the main risk check is inoperable in countries without accessible solvency information.
Contrarily, the pre-risk check was designed to always be operable and to ensure that the risk check returns an
evaluation of the customers’ default probability. For this purpose, the pre-risk check uses data transmitted
by the customer during the order process. However, the pre-risk check in several industrial realities is
nowadays based on a generic model, sometimes even without statistically sound backup (Lessmann et al.,
2015).

The objective of this work is to use genetic programming (GP) to build a CS model to replace the
existing RSS pre-risk check. This is done in continuity with a precise recent research track, aimed at using
technology to improve risk management (Lessmann et al., 2015). Inspired by Darwin’s theory of evolution,
GP (Koza, 1992a) is a computational intelligence (CI) method that employs evolutionary mechanisms such
as inheritance, selection, crossover, and mutation to gradually evolve new solutions to a problem. In a
CS environment, GP initializes a population of discriminant functions to classify customers into bad and
good ones (hereafter called bads and goods for simplicity). This population is subsequently evolved to
find the best possible discriminant function. The motivation for using a CI method to tackle the problem
comes from (Marques et al., 2013), who discuss five major characteristics of CI systems that are especially
appealing in CS: learning, adaption, flexibility, transparency, and discovery. Learning describes the ability
to learn decisions and tasks from historical data. Adaption represents the capability to adapt to a changing
environment, i.e., without being restricted to specific situations or economic conditions. The flexibility of
CI systems allows for utilization even with incomplete or unreliable datasets. Furthermore, Marques and
colleagues state that CI systems may be transparent, in the sense that resulting decisions may be visible and
thus at least partially explainable in some cases. Lastly, discovery represents the ability to find previously
unknown relationships. Inside the wide field of CI, our focus on GP follows the same motivations as in (Ong
et al., 2005), where it is argued that GP has a number of attractive characteristics for its application in CS.
First, it is a non-parametric tool and is not restricted to specific situations or datasets, but can be used in a
vast context. Second, it automatically determines the most fitting discriminant function. Last but not least,
GP can automatically select the most important variables during the learning phase. Indeed, research has
already shown the benefits of GP and its utility in CS (see Section 3 for a detailed discussion of the state
of the art). However, CS is usually employed with data from the financial sector, while other sectors have
rarely been considered so far. In this work - for the first time, to the best of our knowledge - we extend
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current research in CS by employing GP on a dataset that contains orders from e-commerce vendors.
This work is organized as follows. Section 2 contains a general introduction to the theoretical framework

of CS. In Section 3, previous and related work is analyzed and discussed. Section 4 presents the RSS and
the services it provides for every stage of the order process. In Section 5, we describe the dataset used in this
work and provided by AFS. Section 6 presents the organization of our experimental study and a discussion
of our experimental settings. In Section 7, we present and discuss the obtained experimental results.
Finally, Section 8 concludes the paper and proposes ideas for future research. The paper is terminated
by Appendix A, in which we briefly introduce GP for readers who are not familiar with this computational
method and also suggest bibliographic material to deepen the readers’ understanding of the subject.

2. Theoretical Framework

CS is widely used by financial institutions to determine applicants’ default probability and subsequently
classify them into good applicants (the “goods”, for simplicity) or bad applicants (the “bads”) (Thomas et al.,
2002). Consequentially, applicants may be rejected or accepted as customers based on that classification.
Thus, CS represents a binary classification problem (Henley, 1995). The binary response variable represents
a default in payment by the customer, or potential default in payment for order requests that have been
declined. Article 286 (3) of the German Civil Code defines delay of payment as the non-settling of bills
within a 30-day period (assuming no other payment target between the vendor and customer is contractually
scheduled). Also, Article 178 (1b) of European Union Regulation 575/2013 considers a default as having
occurred once an obligor is more than 90 days past due. Hence, a customer who did not settle his or her
account within a period of three months upon receipt is considered to have defaulted in payment (Thomas,
2000; Hand and Henley, 1997). To evaluate the credit risk of loan applications, CS is targeted at isolating
the effects of applicants’ characteristics on their default probability. The default probability is mapped to
a numerical expression usually called score that indicates the applicants’ creditworthiness and enables
the creditor to rank the applicants. The relationship between default probability and scores is depicted
in Figure 1. The mean scores for all of the applicants who perform well should be higher than the mean
scores for all of the applicants who perform badly. The better the mean scores separate good from bad
applicants, the higher the discriminatory power (Mester, 1997). Figure 2 shows the distributions of bads
and goods for four example models, with the scores on the x-axis and the number of observations on the
y-axis. The bads are represented by the red line, whereas the goods are represented by the green line. The
dashed line depicts the mean values for bads and goods. In model (a), bads and goods are non-overlapping;
hence, the model has maximum discriminatory power. Model (b) shows slightly overlapping goods and
bads. Thus, the discriminatory power is reduced compared to the previous case but still high. In model (c),
goods and bads are heavily overlapping, which implies low discriminatory power. Finally, the mean scores
of goods and bads in model (d) are identical; hence, the model incorporates no discriminatory power. The
classification and consequent decision of whether to reject or accept an applicant are taken by comparing the
applicant’s CS with a predefined threshold. Thus, creditworthiness is not an attribute of the applicant but
an assessment of whether the applicant represents a risk willing to be taken by the lender (Thomas et al.,
2002). Scoring models are built upon historical data from applications, including application details and
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Figure 1: Relationship between default probability and scores.
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(a) (b) (c) (d)

Figure 2: Example distributions of goods and bads.

information about the true outcome of an accepted application, called performance. The benefits of a CS
model for financial institutions are threefold (Mester, 1997). First, the application of a CS model reduces the
time needed for the approval process. The possible time savings vary depending on how strictly the proposed
cut-off threshold is followed. If the threshold is strictly followed, then credit applicants above or below the
threshold will be automatically accepted or rejected, respectively. Otherwise, if the threshold is not followed
strictly, the applications within a certain range around the threshold can be reevaluated. In either case, the
efficiency of CS can improve greatly because applicants far from the threshold are automatically detected
and categorized. Second, because applying and handling the application take less time, both parties save
money. Lastly, both the creditor and applicant benefit from increased objectivity in the loan-approval
process. Using a CS model ensures that the same criteria are applied to all applicants regardless of the
creditor’s personal feelings toward the applicant.

The objectives in CS for mail-order and e-commerce vendors differ from those of finance and banking.
Rejected individuals are not denied from purchasing but usually just restricted to secure payment methods
at a point of sale. Secure payment methods require the customer to pay the ordered goods before shipment or
on delivery, e.g. advanced payment, credit card, pay on delivery, or PayPal. Denying open invoice and other
insecure payment methods increases the abortion rate during the payment process. Individuals retained in
the payment process are usually measured by the conversion rate, i.e., the ratio of individuals terminating
the order process to individuals entering the payment process. Hence, CS in e-commerce is aimed at lowering
default on payment by rejecting individuals with a high probability of default from purchasing goods using
insecure payment methods while retaining a maximum conversion rate.

In (Sackmann et al., 2011), the risk of default in payment is divided into two dimensions. The first
dimension is represented by individuals who are unable to settle their bills because of insolvency or illiquidity,
and the second dimension is represented by individuals who are unwilling to settle their bills because they
are engaging in fraud. Using those dimensions, four risk categories were defined:

1. Ability and willingness to settle bill

2. Inability to settle bill

3. Unwillingness to settle bill

4. Inability and unwillingness to settle bill

The effect of both dimensions for the vendor is the same: disruption or default in payment. The causes,
however, differ and demand adjusted prevention approaches. Inability to pay due to insolvency or illiquidity
is usually identified using classical CS models, as described above. Unwillingness to pay can be detected
by identifying fraud patterns such as irregular order values and volumes. Fraud is also regularly committed
using the account data of public institutions or charity organizations and by impersonating others, for which
adequate prevention measures exist. Fraud prevention can also be integrated into CS models, which covers
the fourth risk category (Sackmann et al., 2011). Additionally, those approaches may have a positive effect
for individuals who enter their information wrongly by accident but are both able and willing to settle their
bills. Denying them a purchase based on insecure payment methods may prompt them to review their input
data and thus decrease wrong deliveries and running costs. The ability to combine the identification of those
who are unable with those who are unwilling to settle their bills usually elevates CS to a very capable risk
management tool in e-commerce.
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3. Literature Review

CS is currently a widely studied research field, and several important contributions have appeared. For
a detailed survey of classification algorithms for CS, the reader is referred to (Lessmann et al., 2015). While
an attempt to exhaustively cover all existing contributions here is purely utopic, given the limited available
space, we organize this section in the following way: in the first part, we present the history and evolution
of the field, while in the last part, we focus on the most recent publications and those we consider more
relevant for our work. Throughout this section, more attention is dedicated to discussing contributions that
are in some ways related to our work, such as those describing the developments of computational methods
for predictive modeling in CS, particularly evolutionary computation.

The history of CS goes back to mail-order companies (the predecessors of e-commerce vendors)
in the 1930s. Credit decisions were made on the basis of subjective judgment by credit analysts.
Thus, applicants may be rejected by one credit analyst but accepted by another. In an effort to
diminish the respective inconsistencies, mail-order companies introduced a numeric scoring system. Only
approximately 30 years later, such as in (Myers and Forgy, 1963), the first scoring systems to replace
numerical systems were developed based on the pooled judgments of credit analysts. The decisive milestone
in the history of CS was the Equal Credit Opportunity Act (ECOA) in the United States in 1974. Under
the ECOA, race, color, national origin, religion, marital status, age, sex, and level of involvement in public
assistance were prohibited from being used in CS. Furthermore, the ECOA classifies scoring systems into
those that are “empirically derived” and those that are “statistically valid”. As a result, judgmental
scoring systems were weakened, and scoring systems based on statistically valid models were generally
accepted (United States Code, 1974; Thomas et al., 2002; Mays, 2001).

Over the years, a vast number of approaches to obtain a satisfactory CS model have been proposed.
The classical approaches involve methods such as linear discriminant models (Reichert et al., 1983), logistic
regression (Wiginton, 1980; Henley, 1995), k-nearest neighbors (Henley and Hand, 1996), and decision
trees (Davis et al., 1992), but more sophisticated approaches such as artificial neural networks (Desai et al.,
1996; Malhotra and Malhotra, 2002; West, 2000) and GP (Ong et al., 2005; Abdou, 2009) have also been
employed. One of the first published works using GP for CS (Ong et al., 2005) compared GP to several other
machine learning methods (namely artificial neural networks, classification and regression trees, C4.5, rough
sets, and logistic regression) using two credit datasets from Australia and Germany. Comparing the error
rates, the authors showed that GP outperformed the other models in both datasets. The authors concluded
that GP is a non-parametric tool that is not based on any assumptions concerning the dataset, which makes
it suitable for potentially situation. Additionally, the authors stated that GP is more flexible and accurate
than the compared techniques. These conclusions encouraged us to pursue the work, extending current
research in CS by employing GP in the e-commerce domain for the first time. Later, (Huang et al., 2007)
investigated the CS accuracy of three hybrid support vector machines (SVMs). The SVM models were
combined with the grid search approach to improve model parameters, the F-score for feature selection,
and genetic algorithms (GAs) (Goldberg, 1989) (an evolutionary algorithm older than GP) to obtain both
the optimal features and the parameters automatically, at the same time. The results of the hybrid SVM
models were compared to other data-mining approaches based on artificial neural networks, GP and C4.5.
The authors found that the best results were achieved by GP, followed by their hybrid SVM approach. They
also pointed out that GP used fewer features than input variables, due to its automatic feature selection.
Also, the results reported in (Huang et al., 2007) were greatly encouraging for us to pursue our work.
Also, (Zhang et al., 2007) compared GP, artificial neural networks, and SVMs in CS problems. Additionally,
a model was constructed by combining the classification results of the other models, using majority voting.
The classification accuracy was used as the evaluation criterion. The authors showed that the different
models obtained good classification results, but their accuracies differed little. Furthermore, the combined
model showed better overall accuracy. As we will show later, our work has led to similar conclusions, albeit
using a problem domain and data that are very different from those in (Zhang et al., 2007). In (Abdou,
2009), two GP models were compared with probit analysis and weight of evidence in the Egyptian public
banking sector. The dataset was provided by Egyptian commercial public sector banks. Abdou used both
the average correct classification rate and the estimated misclassification cost as the evaluation criteria.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In his conclusion, Abdou stated that the preferred model depends on which evaluation criterion is used
but that the results obtained by the different studied methods were, generally speaking, comparable to
each other. A two-stage GP model was implemented in (Huang et al., 2006) to harvest the advantages of
function-based and induction-based methods, and used for CS prediction. In the first stage, GP was used
to derive if-then-else rules; in the second stage, GP was used to construct a discriminative function from
the reduced data. The two-stage split was implemented to reduce the model’s complexity and therefore
ensured the comprehension of the decision rules. The results were compared to a number of data-mining
techniques but showed no significant improvement of two-stage GP over plain GP. However, the authors
pointed out that in addition to general GP advantages (like the abovementioned automatic feature selection
and function derivation), two-stage GP also provided “intelligent” rules that can be independently used by
a decision maker.

In the last few years, the number of contributions presenting computational methods for specialized
predictive modeling in CS has grown significantly, testifying to a growing interest among researchers and
practitioners in this area. For instance, (Li et al., 2017) studied the reject inference problem. Reject inference
is a technique used to infer the outcomes for rejected applicants and incorporate them into the scoring
system, with the expectation that doing so will improve predictive accuracy. A new method involving
machine learning to solve the reject inference problem was proposed, and a semi-supervised SVM model
was found to improve the performance of scoring models compared to the industrial benchmark of logistic
regression. In the same vein, in (Yao et al., 2015), SVM regression was successfully applied to predict loss
given default of corporate bonds. In (Neto et al., 2017), the preprocessing stage in CS was studied, i.e., the
phase in which data are transformed for an effective later application of a data mining technique. The authors
proposed a framework consisting of constructing new input variables that embed temporal knowledge. They
demonstrated that the proposed preprocessing method was able to improve the discriminant power of some
data-mining techniques. Also, they showed that the time of data transformation could be reduced using
automatic code generation. Finally, they demonstrated that artificial intelligence and statistics modelers
could effectively perform the data transformation without the help of database experts. In (Luo et al.,
2016), a regression spline-based discrete time survival model was applied with noteworthy results to CS risk
management, stress testing, and credit asset evaluation. Ensembles of classifiers were applied to bankruptcy
prediction and CS in (Abelln and Mantas, 2014). More specifically, a bagging scheme was applied to several
decision tree models, with interesting results. In (Kruppa et al., 2013), a general framework for estimating
individual consumer credit risks by means of machine learning methods was presented. Among others,
random forests (RF), k-nearest neighbors (kNN), and bagged k-nearest neighbors (bNN) were successfully
applied, as well as an optimized logistic regression.

The performance of a number of modelling approaches for the particular CS case of future mortgage
default status was investigated in (Fitzpatrick and Mues, 2016). More specifically, boosted regression trees,
random forests, and penalized linear and semi-parametric logistic regression were applied to four portfolios
of over 300,000 Irish owner-occupier mortgages. The main findings were that the selected approaches have
varying degrees of predictive power and that boosted regression trees were able to significantly outperform
logistic regression. The conclusion was that boosted regression trees could be a useful addition to the current
toolkit for mortgage credit risk assessment by banks and regulators.

Mixture cure models were introduced to CS in (Tong et al., 2012). A mixture cure model was used to
predict the (time to) default on a UK personal loan portfolio and was compared to the Cox proportional
hazards method and to standard logistic regression. The discrimination performance for all three approaches
was found to be high and competitive. The calibration performance for the survival approaches was found
to be superior to that of logistic regression in several case studies. Furthermore, the mixture cure model’s
ability to distinguish between two subpopulations was shown to offer additional insights by estimating the
parameters that determine susceptibility to default, in addition to parameters that influence a borrower’s
time to default. In the same vein, (Alves and Dias, 2015) introduced a general framework of survival mixture
models that addresses the heterogeneity of the credit risk among a financial institution’s clients. This
framework was able to identify clusters or groups of clients with different risk patterns. Among the studied
methods, the time between the first delayed payment and default was best modeled by a three-segment
log-normal mixture distribution and a multinomial logit link function. The model was able to predict
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the most likely risk segment for each new client. In (Verbraken et al., 2014), a profit-based classification
performance measure to credit risk modeling was presented. This performance measure is based on the
expected maximum profit (EMP) and is used to find a trade-off between the expected losses driven by
the exposure of the loan and the loss given default and the operational income given by the loan. The
authors state that one of the major advantages of using the proposed measure is that it permits the optimal
cutoff value to be calculated, which is necessary for model implementation. The presented results show
that the proposed profit-based classification measure allowed some classifiers to outperform the alternative
approaches in terms of both accuracy and monetary value in the test set. A different framework for CS
modelling was presented in (Han Ju and Young Sohn, 2014). This framework consisted of ways to construct
new technology CS model by comparing alternative scenarios for various relationships between existing and
new attributes, based on explanatory factor analysis, analysis of variance, and logistic regression.

In this paper, we follow the suggestions in (Lahsasna et al., 2010), which recommended more cooperation
between academic researchers and financial institutions, as well as the study of new informative data, for
CS. Indeed, our work resulted from active collaboration between industry and academia, and a real-world
dataset was used for the first time. The dataset contains order requests from e-commerce vendors and was
provided by AFS.

4. Risk Solution Service

Risk Solution Service (RSS) is a risk management service that aims to cover the whole order process of
e-commerce retailers’ customers. Its objectives are threefold. First, increase conversion rate and customer
retention in the e-shop by improving differentiation and managing of payment methods. Second, enhance
cost control by providing innovative pricing models and configurable standard solutions in different service
levels. Third, improve discriminatory power by combining current and historical customer information.

The functioning of the RSS system is shown in Figure 3. Customer actions are registered by the client
system and passed on to the RSS backend. Depending on the customer action, service calls are triggered
as depicted in Figure 4. The data content of the service calls is passed on to the ASP platform, which
carries out the scoring of the customer. The ASP platform saves the request data in a logging database from
where it is passed on to an archive and a reporting database. From the latter, the data is passed on to the
data warehouse and merged with additional information from an extra RSS database. The reporting system
in the portal obtains the data from the data warehouse. Additionally, the client-specific configuration is
retained on the portal for easy access by the client. On every data transfer, the data is reduced and partly
transformed. Thus, the data in the data warehouse does not entirely match the data used in the service
calls.

RSS consists of a number of different risk management services, whose usage depends on the current
customers’ order process stage, as mapped in Figure 4. Before the order process starts, upon registration
of the clients’ customer, RSS offers an address check. The account check verifies the validity of the entered
address data by validation of correct postal syntax, verification and, if necessary, correction of mail address,
and verification of deliverability by checking against a list of known addresses. Once a customer places an
order with the client, a risk check is performed. The risk check returns a risk assessment to the client. Based
on the risk assessment, the client offers his customer selected payment methods from which the customer
may choose whichever he prefers. In case the customer chooses direct debit, an account check is performed
in order to control the customer’s submitted account data. The account check verifies the validity of the
entered account data by validating correct syntax, comparing with whitelists of existing bank identification
numbers and comparing with blacklists of publicly visible bank accounts, e.g., public institutions or charity
organizations. In case the customer is accepted, an order confirmation is transmitted and the order gets
registered in the RSS system.

RSS is designed to work not only with the scoring system provided by AFS but also with the scoring
systems of other providers. Therefore, in order to also ensure operationality in the absence of the AFS
credit agency score, the risk check was split into two modules that can work in combination or on their
own. The risk check consists of the pre-risk check and the main risk check, as depicted in Figure 5. The
former is a combination of a pre-check and a pre-score, and the latter calls different credit agency scoring
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Figure 3: A graphical representation of the RSS system.

systems. Added together, they form the RSS score. The RSS pre-risk check was developed in 2011, and
a vast number of ad hoc updates were deployed over the years. However, neither the original design nor
any update was based on a statistically sound model. Instead, a generic scorecard was developed, which is
generally done whenever data is unavailable.

The pre-risk check consists of a pre-check and a pre-score. The former is a combination of exclusion
rules that lead to the rejection of a request if triggered or otherwise to a pass on to the pre-score, which
assigns a score according to the request data. The latter is a value centered at 0, which works as an “on
top” addition or deduction to the credit agency score. The pre-check matches requests with a blacklist,
compares the request basket value to a predetermined limit and employs a spelling and syntax review of
the request input data. Around 30% of the requests are usually rejected by the pre-check and thus are not
assigned a pre-score. The pre-score is based on a score card that distributes score points for a number of
distinct features. Within a certain score range, the assigned score triggers one of three possible actions as
depicted in Figure 6. The customer is rejected below a certain threshold, and the customer is accepted
above a certain threshold. Between those thresholds, the customer is passed on to the main risk check for
further evaluation.

Taking into account that the pre-risk check was designed to be operated both with and without the main
risk check, the design of the pre-risk score seems to incorporate a critical flaw. The requests that are passed
on for further evaluation require the main risk check; otherwise, those requests have to either be accepted
or rejected using other criteria. So far, around 96% of the requests evaluated by the pre-score were passed
on to the credit agency score, around 0.5% of the requests were accepted and around 3.5% of the requests
were rejected. Therefore, the overwhelming majority of requests requires additional evaluation.
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Figure 5: Risk check.

Figure 7 shows the deficit in discriminatory power of the pre-score. The score values are not spread
apart over the score ranges, but heavily clumped together in few score groups that contain a majority of
observations. Additionally, both good and bad requests are centered around a similar score range, with the
number of good requests being continuously higher than the number of bad requests. However, the default
rate shows a difference over the score ranges: the default rate is higher in the rejected range than in the
range up for further evaluation, and the default rate in the latter is higher than in the accepted range. Both
the rejection and the acceptance area have a negative trend, but the area up for further evaluation has a
positive trend. Accordingly, the default rate increases as score values increase between the threshold score
for rejection and acceptance, whereas increasing score values are supposed to map the decreasing probability
of default. As a result, the pre-score lowers the discriminatory power of the credit agency score it is merged
with, assuming the latter works properly.

The RSS pre-risk check provides an important part of the RSS system. It is designed to work both in
combination with a credit agency score within the main risk check and on its own. However, the current
implementation reduces the discriminatory power of the main risk check and offers little benefit on its own.
The objective of this work is to revise the pre-risk check and to incorporate both pre-check and pre-score
into a single score with a higher discriminative power than the existing pre-score. Additionally, the score
needs to be operational on its own for usage in an international setting and in combination with a credit
agency score.

5. Dataset

The dataset used in this work consists of order requests processed by RSS between 10-01-2014 and
12-31-2015, and it is provided by the AFS company. It contains 56,669 order requests, among which
15,535 (≈ 27%) are labeled as “bad”, while the remaining 41,134 are labeled as “good”. These order
requests are subject to a stratified random split into a training set with 31,669 (≈ 56%) observations, a test
set with 10,000 (≈ 18%) observations and a validation set with 15,000 (≈ 26%) observations (the validation
set is needed because it is used in the calibration phase of our method, which will be described in Section 7.2).
Data include personal information about the individuals that are processed. To account for the sensitivity
of the data, i.e., to protect data confidentiality and to concur with data protection regulation, alterations
were conducted. Therefore, the variables were renamed to IN0 – IN18. What follows is a brief description
of those variables:

• IN0: binary variable with information about whether a customer is known to the client.

• IN1: binary variable with information about whether shipping address and billing address match.

min max

cut off cut off

Evaluation
96 %

Rejection
3.5 %

Acceptance
0.5 %

Figure 6: Pre-score behavior in score range.
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Figure 7: Pre-score distribution of goods and bads.

• IN2: elapsed time in days since the customer was registered by the system for the first time.

• IN3: validation of the billing address, i.e., whether the address exists and a customer is known to live
at the stated address.

• IN4; IN5; IN10; IN11; IN13; IN14; IN15; IN18: information about the customer’s order history.

• IN6; IN7; IN8: information about the dunning history of a customer.

• IN9: discretized order value in relation to the clients’ average order value.

• IN12: variable designed as means of fraud prevention. A fraudulent customer may employ a couple
of orders with little order value to be known by the system as a good customer and subsequently
employ expensive orders using insecure payment methods. Therefore, the order value is compared to
the average of past orders by the customer.

• IN16: clock hour of order time.

• IN17: age of the customer in years.

In order to efficiently obtain the discriminant function, the continuous variables need to be discretized (Ong
et al., 2005). The discretization is done using the weight of evidence (WoE) measure to assess the predictive
power of each attribute. The WoE measures the difference between the distribution of goods and bads and
therefore represents an attributes power in separating good and bad observations (Siddiqi, 2006). The WoE
is frequently used in CS to convert a continuous variable into a discrete variable, and it is currently in use
in the AFS company. The WoE is calculated as follows:

WoE =

[
ln

(
Distribution Good

Distribution Bad

)]
× 100 (1)

The idea is to partition the possible values of a continuous variable into bins. A bin with a WoE around
zero has the same probability of observing a default in payment as the sample average. Contrarily, if a bin
has a WoE above or below zero, the probability of observing a default in payment is above or below sample
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average, respectively. However, more important than the absolute WoE is the difference between bins. The
variables’ predictive power relates to the WoE difference between bins. With monotonically increasing WoE,
the probability of default is always higher in a bin that contains larger values, and the opposite holds with
monotonically decreasing bins (Siddiqi, 2006). The interval boundaries of the bins are selected in such a
way that the bins are monotonically increasing or decreasing; the differences in WoE over the bins are
roughly equal; the bins are as evenly sized as possible; and a minimal number of observations is maintained
in each bin. Missing values are not submitted to the bin selection phase, but treated as a separate bin
exhibiting a value of -1. Missing data is treated this way to account for its predictive value. Table 1 shows
the discretization of continuous variables, together with the value ranges for the respective bins. Figure 8

Table 1: Discretization of continuous variables.

Variable -1 1 2 3 4

IN2 ∅ [−∞, 90) [90, 380) [380, 600) [600,∞)
IN9 ∅ [−∞, 150) [150, 300) [300,∞)
IN17 ∅ [−∞, 25) [25, 30) [30, 40) [40,∞)
IN14 ∅ [−∞, 18) [18,∞)
IN15 ∅ (∞, 7) [7, 4) [4, 2) [2,−∞)
IN13 ∅ [−∞, 1) [1, 4) [4,∞)
IN4 ∅ [−∞, 1) [1, 4) [4, 10) [10,∞)
IN5 ∅ [−∞,∞)
IN10 ∅ [−∞, 5) [5, 20) [20,∞)
IN11 ∅ (∞, 6) [6,−∞)
IN12 ∅ (∞, 50) [50, 25) [25, 10) [10,−∞)
IN16 ∅ [−∞, 9) [9, 14) [14,∞)

shows the discretized variables with their WoE values for every bin. The variables are ordered decreasing
by their information value (IV). The IV is a measure of the discriminative power of the variable. The lower
the IV of a variable, the lower its predictive power. As a rule of thumb, variables with an IV of less than
0.05 do not add a meaningful predictive power to the model (Henley, 1995; Hand and Henley, 1997). The
IV is calculated as follows:

IV =
∑

i
(Distribution Goodsi −Distribution Badsi)× ln

(
Distribution Goodsi
Distribution Badsi

)
(2)

Over the 12 discretized variables, three have an IV smaller than 0.05. Those variables are ’IN9’, ’IN16’
and ’IN5’. Nonetheless, they are not removed from the dataset, because while they seem insignificant by
themselves, they might become important in interaction with others. The final dataset is described in
Table 2.

6. Experimental Organization and Settings

When GP is employed to solve complex problems, like the one tackled in this paper, the use of
an appropriate fitness function is often a crucial step. In this work, after considering several other
possible measures, we have decided to use the area under the receiver operating characteristic (ROC)
curve (ROC-AUC). ROC-AUC is the single-scalar representation of the ROC curve (Abdou and Pointon,
2011). The ROC curve is used when a classifier returns a numeric value that has to be interpreted as a
class label using thresholds. A typical example for binary classification into two classes C1 and C2 is to
interpret all positive outputs of the classifier system as categorizations of the observation into class C1 and
all other outputs as categorizations into class C2. In this case, the threshold is set to zero. The ROC
curve is a two-dimensional graph that quantifies the performance of a classifier in reference to all possible
thresholds (Yang et al., 2004). For this purpose, the relative frequency of every unique score value specified
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Figure 8: Discretization plot.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Input variables contained in the dataset used in this work. The
leftmost column reports the name of the variable, while the remaining three
columns report the overall mean of the variable, calculated on the whole
dataset; the mean of the variable calculated only on the instances labeled as
“good”; and the mean of the variable calculated only on the instances labeled
as “bad”, respectively.

Variable Overall Mean Mean in “goods” Mean in “bads”

IN0 0.47 0.39 0.69
IN1 0.05 0.05 0.06
IN2 1.13 1.45 0.26
IN3 -0.48 -0.56 -0.26
IN4 1.25 1.54 0.45
IN5 -0.83 -0.82 -0.88
IN6 0.26 0.23 0.35
IN7 -0.41 -0.44 -0.33
IN8 1.08 1.4 0.24
IN9 1.32 1.3 1.39
IN10 0.46 0.71 -0.2
IN11 -0.12 0 -0.45
IN12 0.84 1.18 -0.07
IN13 0.5 0.76 -0.21
IN14 0.09 0.27 -0.4
IN15 0.21 0.39 -0.28
IN16 2.43 2.46 2.34
IN17 1.57 1.51 1.72
IN18 -0.5 -0.43 -0.71

by the True Positive Rate (TPR) (i.e., the proportion of actual positives predicted as positive) and the
False Positive Rate (FPR) (i.e., the proportion of actual negatives predicted as negative) is plotted on a
bidimensional Cartesian plane (Baesens et al., 2003). Therefore, the ROC graph shows relative trade-offs
between benefits and costs. In order to compare different models, the ROC curve can be reduced to
its single-scalar representation by calculating the ROC-AUC using Equation (3) (where T is a threshold
parameter).

Area under the ROC curve (ROC-AUC) =

∫ ∞

−∞
TPR(T)FPR′(T) dT (3)

A classifier with a ROC-AUC below 0.5 performs worse than a random classifier. However, since the ROC
space is symmetrical around the diagonal line of the random classifier, negating a classifier below 0.5 produces
its counterpart above 0.5. Overall, the ROC-AUC value ranges between 0.5 for a random classifier and 1
for a perfect classifier.

Motivations for using the ROC-AUC as a fitness for our GP systems are several, but the main one is
that, in the application studied here, both TPR and FPR are important and have to be taken into account
when evaluating the quality of a solution. Furthermore, ROC-AUC is suitable to be used as fitness because,
as mentioned, it captures some of the characteristics of the ROC curve with just one scalar value. Also, the
size of the model is an important factor for computational complexity and interpretability, and the size of
the individuals evolved in the population may have an important impact on the efficiency of the system in
terms of execution time and computational resources used. For this reason, we also decided to implement a
simple mechanism of parsimony pressure, exactly as in (Poli et al., 2008a): when two individuals have the
same value of the ROC-AUC, preference is given to the smallest one (in terms of number of nodes in the
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tree) in the selection phase.
Beside fitness, GP also demands the setting of several other parameters. Table 3 reports the values used

in our experiments. These values have been obtained as the result of a parameter tuning phase.

Table 3: GP parameter settings.

Parameter Value

Population Size 300
Initialization Ramped Half-and-Half
Fitness Function Area under the ROC Curve
Function Set {+,−,×,÷,≤,≥,=, 6=, if − then− else}
Terminal Set {Attributes, p

10 | p ∈ N ∧ p < 10 ∪ x ∈ Z ∧ −1 ≤ x ≤ 4}
Maximum Number of Generations 500
Selection Tournament
Crossover Rate 0.9
Mutation Rate 0.1

As mentioned above, ROC-AUC is the main measure of discriminatory power, and it is used as the GP
fitness function. However, the ROC curve is insensitive to class distributions and does not account for the
imbalance in datasets. On the other hand, being able to deal with imbalanced datasets is important for
a predictive model. Therefore, when the experimental results will be presented, later in this paper, the
ROC-AUC will not be the only reported measure of performance. In addition, we will report the results
relative to the area under the Precision-Recall (PR) diagram, called PR-AUC. The importance of PR-AUC
stands in the fact that, in CS, more customers pay their bills than those who do not pay them. Therefore,
datasets are naturally unbalanced because of the abundance of goods that can be observed, compared to
the bads. In these cases, moving the threshold to gain few more true positives may have a large impact on
the number of false positives. As a result, FPR increases slightly, but TPR increases a lot more. Such a
classifier receives its predictive power by rejecting a lot of goods in order to gain few bads. The larger the
imbalance toward goods, the larger the concession in terms of falsely rejected goods.

A good classifier is able to obtain both high values for precision and high values for recall. However,
precision and recall incorporate an intuitive tradeoff. Assuming that a higher score translates to a lower
probability of default and vice versa, the trade-off can be generalized as follows. Lowering the threshold
means to classify bads with a higher probability of default, which increases the precision. Additionally, the
number of classified bads decreases, which decreases the recall as well. Subsequently, high precision and
low recall translate to a high probability of default (low score). In such a model, those observations that
are classified as bads are, so to say, “largely bads”, but many bads are misclassified as goods. Contrarily,
low precision and high recall translate to a low probability of default (high score). In such a model, those
observations that are classified as goods are “largely goods”, but almost all bads are classified as goods.
Simplified, the more bads a model classifies as bads, the more goods are classified as bads as well. In a
PR diagram, one classifier A is considered better than another classifier B if, for every recall value, the
precision of A is higher than the precision of B.

Optimizing the ROC-AUC, in principle, does not optimize the PR-AUC too, despite the close relationship
between the ROC space and the PR space. Hence, a classifier with excellent ROC-AUC may have poor
PR-AUC. It is worth stressing again that only the ROC-AUC is used by our GP system to measure fitness.
The value of the PR-AUC of the obtained model is also reported, but it was not used by the algorithm. The
PR-AUC values are only reported in order to give a vision of the ability of the obtained model to deal with
unbalanced datasets.

In our experiments, we performed 50 independent GP runs. At each of these runs, a different partition of
the data into training, test, and validation was randomly generated and used. In the next section, when we
will refer to the results obtained on the test set, we will refer to the performance on the test set of the best
solution that GP (as well as the other methods used for comparison) was able to obtain on the training set.
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The outputs of the model learned by GP are scores, and so they do not represent probabilities of default.
On the other hand, in CS, customers are typically sorted against the probability of default and accepted or
rejected according to their relative position in respect to a threshold. For this reason, having probabilities
is very important in CS. Calibrated scores allow us to interpret the score values as probabilities. This is a
very important step because, with uncalibrated scores, it may happen, for instance, that a better score value
inhibits a higher default in payment. Also, with uncalibrated scores, it may happen that a little difference
between score values corresponds to a big difference in the probability of default in some cases but to little
difference in the probability of default in others. In this work, the results are calibrated using isotonic
regression. In order to validate the performance of isotonic regression, stratified k-fold cross-validation is
applied to the calibrated training set, which was previously used as the validation set. The folds are stratified
in order to retain the bad rate over all folds. Following (Kirschen et al., 2000), k is equal to 10 to keep bias
and variance low while maintaining a reasonable number of observations in every fold. In the process of
cross-validation, the dataset is divided into 10 non-overlapping subsets. In every iteration, nine subsets are
allocated to train the model, and the remaining subset is used to test the model. The process is repeated 10
times, and thus every observation is in the test set once and nine times in the training set. The estimates
over all iterations are averaged, thus generating the final output (Seni and Elder, 2010). The test set is
never subject to any learning, but only to model application.

In the next section, the calibrated results are used to analyze the discriminatory power of the GP
model on its own, and in combination with the already existing and currently used credit agency score
of the AFS company, named ABIC. Additionally, models generated by other machine learning methods,
like logistic regression, support vector machines and boosted trees are used for comparison against GP. All
models are developed using the Python programming language, version 2.7, with the modules DEAP for GP
and scikit-learn for Logistic Regression, Support Vector Machines and Boosted Trees (Fortin et al., 2012;
Pedregosa et al., 2011a). The overall work flow of our experimental study is represented in Figure 9.

7. Experimental Results

The presentation of the experimental results is organized as follows: in Section 7.1, we present the results
obtained by GP in the CS problem described so far, and we dedicate particular attention to a discussion
and an interpretation of the best model evolved by GP. In Section 7.2, we discuss the results we have
obtained in the calibration phase. In Section 7.3, we compare GP and other machine learning methods.
Finally, in Section 7.4, we discuss the results we obtained when GP was first compared to, and then used in
collaboration with, the credit agency score.

7.1. Applying Genetic Programming. An Analysis of the Evolved Predictive Model

Figure 10 shows the GP median best fitness against generations over 50 independent runs on the training
set. The figure shows the typical trend of the evolution of fitness in GP: a rapid improvement in the first phase
of the evolution, followed by a slower improvement in the later phase of the evolution (typically respectively
corresponding to the phases of exploration and exploitation of the evolutionary process (Poli et al., 2008a)).
More specifically, we can observe that the fitness increases heavily for the first ≈200 generations, while for
the later ≈300 generations, fitness increases more slowly. Figure 11 reports the best model evolved by GP
in all the performed simulations. The model has a bushy shape and a size equal to 220 tree nodes, with a
tree depth equal to the maximum allowed depth limit (i.e., the tree depth is equal to 17). Bushy models
are frequently observed in GP using ramped half-and-half as the initialization method (Poli et al., 2008a).
The two subtrees of the root are very different in size, with 193 and 27 nodes, respectively. Examining
the tree, we can observe that pruning can be employed at a number of nodes to reduce the size of the
model. Pruning the model yields a size of 154 nodes and a maximal tree depth equal to 16. Most noticeable,
the if-then-else nodes yield no utility, but additional size, because every if-then-else node is connected to
a boolean True/False decision terminal. Those nodes can be immediately replaced by their offspring node;
for instance, an expression like if − then − else (False, IN12, IN16) can be replaced by IN16. Additionally,
some subtrees consist of operations between constant terminals, which can be reduced to a single constant
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terminal node, e.g., × (0.7, 0.3) can be replaced by 0.21. The resulting constant terminal nodes 0.12, 0.21,
and 5 depict values that are not available in the terminal set, from which only the values 0.3, 0.5, 0.7, and
2.0 are used.

Because GP has the ability to automatically select features while learning the model, it is customary
to conclude (see, for instance, (Iba et al., 1994)) that the number of occurrences of a single variable in the
final model gives information about the predictive power of that variable. From the 19 variables in the
terminal set, six are not used in the model or are used in combination with the if-then-else nodes on the
unused portion of the model. Those variables are IN1, which contains information about whether shipping
address and billing address match, as well as variables IN5, IN11, IN14, IN15, and IN18, which contain
information about the order history of a customer. The remaining order history variables, IN10 and IN13,
are incorporated into the model but only occur one time in the model. Therefore, we can conclude that order
history provides poor discriminatory power. Among the most often used variables are, instead, IN7 and IN6,
with thirteen and nine occurrences, respectively. These variables, together with IN8, which occurs twice,
contain information about the dunning history of a customer. A logical conclusion is that customers with
prior payment difficulties are more likely to default than those without. With 10 occurrences in the final
model, another heavily used variable is IN2, which contains information about the number of elapsed days
since a known customer was registered by the system for the first time. This puts emphasis on continuous
business connections between client and customers. Long-time customers are less likely to default on payment
than first-time customers. Finally, the fraud-prevention variables IN12 and IN16, which contain the order
time, occur five times. The remaining variables are used between one and three times. Table 4 shows the
variables with their respective occurrences in decreasing order.

7.2. Calibration

The output of the model generated by GP is a score, and it can be used, for instance, to create a ranking
of customers. However, the model’s output does not represent the probability of default. Calibration is the
phase that allows us to transform the outputs so they can be interpreted as probabilities. Probabilities are
needed for two reasons. First, the GP outputs are supposed to be used as an on-top addition to or deduction
from the credit agency score, which represents a probability; second, the outputs are eventually not going
to be used in isolation but in combination with misclassification costs (Zadrozny and Elkan, 2001).
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Figure 11: Model with highest fitness value.
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Table 4: Occurrences of variables.

Variable Number of Occurrence

IN7 13
IN2 10
IN6 9
IN12; IN16 5
IN3; IN4; IN17 3
IN0; IN8 2
IN9; IN10; IN13 1
IN1; IN5; IN11; IN14; IN15; IN18 0

In order to calibrate the GP outputs, a non-parametric type of regression called isotonic regression (IR)
is used. Among the model’s benefits is the lack of assumptions about the target function’s form. The IR
problem is defined by finding a function that minimizes the mean-squared error (Zadrozny and Elkan, 2002;
Niculescu-Mizil and Caruana, 2005):

min
∑

i
(yi − f (xi))

2
(4)

IR uses pair-adjacent violators (PAVs) to find the best fitting stepwise-constant isotonic function, which
works as follows. For every observation xi, the value of the function to be learned f (xi) must be bigger or
equal to f (xi−1). Otherwise, the resulting function, f , is not isotonic, and the observations xi and xi−1 are
called pair-adjacent violators, hence the name of the algorithm. In order to restore the isotonic assumption,
f (xi) and f (xi−1) are replaced by their averages. This process is repeated with all observations until no
PAVs remain (Ayer et al., 1955). In the setting of CS, PAV works as follows. First, the observations are
ordered according to their score values. Then the f(xi) is set to 0 if xi belongs to the goods, and f(xi) is
set to 1 if xi belongs to the bads. If the score ranks the examples perfectly, all goods come before bads,
and the values of f are unchanged. As a result, the new probability estimate is 0 for all goods and 1 for
all bads. PAV provides a set of intervals with a corresponding set of estimates f(i) for every interval i. In
order to use the results on new data, one must map a probability estimate to an observation according to
its corresponding interval for which the score value is between the lower and upper boundaries (Zadrozny
and Elkan, 2001). In order to apply IR on the uncalibrated GP output, a validation set is used to train
the IR classifier using 10-fold cross-validation. The classifier is subsequently employed on the test set. The
calibration plots in Figure 12 illustrate the process of calibration on the training set in the IR plot. Also, a
reliability curve quantifies how well the resulting set of isotonic values is calibrated. Finally, the figure shows
the respective distribution of score values in a histogram. The IR diagram in Figure 12 shows the process of
calibration. Clearly visible are the intervals and their corresponding probability estimates to which the test
set is mapped. The jump in the probability of default from 0.3 to 0.6 is noteworthy. Hence, small differences
in score value lead to large differences in the probability of default. Furthermore, the interval with the
highest probability of default extends over a wide score range but for a comparatively low probability of
default. The implication is that the GP model ranks incorrectly for high score values. This is consistent
with (Zadrozny and Elkan, 2001), in which authors point out that, in the general case, PAV averages out
more observations in score ranges where the scoring model ranks properly. Hence, the GP model works
better in the score range for lower default probability.

The reliability diagram illustrates how well-calibrated the predicted probabilities from the normalized
uncalibrated GP output and from the IR-calibrated GP probabilities are. For this purpose, the mean
predicted values are plotted against the true fraction of positives. Due to the high number of observations,
the score values are discretized into 10 bins. A perfectly calibrated classifier has the same fraction of positives
as mean-predicted values for every class, which implies a score value corresponding to its assigned default
probability. Such a classifier is represented by a diagonal line in the reliability plot (Zadrozny and Elkan,
2002; DeGroot and Fienberg, 1983). In addition, the Brier Score is used as a verification measure to assess
the calibration accuracy of GP and IR-calibrated GP. The Brier Score is defined by the mean square error
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Figure 12: Calibration plots.

of the probability forecasts (see Equation (4)), which means that a lower score corresponds to a higher
accuracy (Brier, 1950). As we can see from Figure 12, the GP output values are not well calibrated, and
the use of IR remarkably improves the calibration’s quality. The normalized uncalibrated GP output values
follow a sigmoid-like shape below the perfectly calibrated diagonal line. Instead, after calibration with IR,
the output values follow the diagonal of perfectly calibrated probabilities with only very small and slightly
visible discrepancies. While the results of the IR calibration of the outputs of GP are in general remarkably
good, it should also be pointed out that for the highest GP output values, the uncalibrated normalized
output differs from the IR-calibrated output only marginally. Furthermore, the calibrated results are only
distributed up to a 0.7 default probability, which is a result of the constant value for fractions of positives at
around 0.7 for the four bins with the highest uncalibrated GP output values. Hence, the highest uncalibrated
GP output values have an identical probability of default. The Brier Scores confirm the visual examination
with an increase from 0.207 of the uncalibrated GP output to 0.163 of the IR-calibrated probabilities. The
histogram of the GP output values in Figure 12 shows that most of the observations are scored in the middle
and lower areas of the score range. Furthermore, the score range with the highest number of observations is
also better calibrated initially. After calibration, the GP output values are more consistently distributed in
the lower score range but still incorporate few observations in the higher score range. The histogram further
exhibits an inherent effect of IR: calibrated scores shift toward the tails of the score range. In conclusion, IR
is applied to learn a mapping from ranking scores to calibrated probability estimates. Transforming scores
using IR yields significant improvement, and the calibrated scores now translate to default probabilities.

Figure 13 reports the distribution of goods and bads as well as the average default rate in their
corresponding score ranges. As we can observe, goods and bads are clearly separated, with bads mainly in
the low score range and goods mainly in the high score range. Furthermore, the arithmetic means of goods
and bads are reasonably far from each other, as depicted by the black arrows. The lowest score groups have
more than 70% bads while the highest score ranges contain few bads overall. Most bads are distributed
among three score groups, which also incorporate a high number of goods. The default rate is steadily
decreasing with increasing score values, which mirrors the calibration results shown in Figure 12. Clearly
visible is a decrease in score groups compared to the original pre-score in Figure 7, which mirrors a decrease
in distribution spread over the score range.
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To sum up, GP visibly separates goods and bads but provides a decrease in score range. The model
seems to better discriminate among goods than bads, providing some score groups with mainly goods but
no score groups with only bads.

7.3. Discriminatory Power of GP and Comparison with Other Classifiers

In this section, the GP’s performance is compared to that of three state-of-the-art machine learning
methods, specifically logistic regression (LR), support vector machines (SVMs), and boosted trees (BTs).

To perform these experiments, we relied on the scikit-learn library (Pedregosa et al., 2011b), a machine
learning tool in Python. For the SVM, the implementation provided in the class SupportVectorClassification
(SVC) was used. The SVM is trained with the sequential minimal optimization (SMO) algorithm (Platt,
1998), and the parameters’ values were selected after a preliminary tuning phase. In particular, for the
kernel, we considered a polynomial, a linear, and a radial basis function kernel during the tuning phase,
and we relied on the latter during the experiments. The maximum number of iterations was 100,000,
probability estimates (Lin et al., 2007) were enabled, and the shrinking heuristics (Joachims, 1998) were
used to speed up the optimization. For the BT, the class AdaBoostClassifier was used. The class implements
an AdaBoost (Rätsch et al., 2001) classifier, which is a meta-estimator that begins by fitting a classifier
on the original dataset. Then, it fits additional copies of the classifier on the same dataset but where
the weights of incorrectly classified instances are adjusted, such that subsequent classifiers focus more on
difficult cases (Pedregosa et al., 2011b). After a preliminary tuning phase, we ended up with the following
parameter values: the base estimator (classifier) from which the boosted ensemble is built consists of a
decision tree classifier, the maximum number of estimators at which boosting is terminated was equal to
2,000, and the learning rate was 1. The SAMME.R real boosting algorithm (Hastie et al., 2009a) was used
for its faster convergence and better generalization ability (Hastie et al., 2009b) with respect to SAMME
discrete boosting algorithm. Similarly, GP, SVM ,and BT are subject to IR to ensure properly calibrated
outputs. LR outputs well-calibrated predictions already, and thus IR is not applied; in fact, employing IR
on well-calibrated methods does not improve the results but may hurt the performance (Niculescu-Mizil and
Caruana, 2005). The effect of IR on ROC-AUC and PR-AUC is shown in Table 5. As we can see, the effect
is only marginal and therefore negligible.

Figure 14 shows the ROC curve and the PR diagram for all the studied methods, including the numeric
values of the ROC-AUC and of the PR-AUC. As the figure shows, the GP model seems to perform reasonably
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Table 5: Effect of IR on GP, SVM, and BT.

Uncalibrated Calibrated Uncalibrated Calibrated
ROC-AUC ROC-AUC PR-AUC PR-AUC

GP 0.779 → 0.777 0.541 → 0.545
SVM 0.754 → 0.756 0.56 → 0.564
BT 0.78 → 0.779 0.54 → 0.54

well in the whole ROC space, with better performance in the ROC space’s more liberal area, i.e., the area
on the upper right-hand side. Liberal classifiers make positive classifications with weak evidence; hence,
they classify a majority of bads correctly (high TPR) but also classify a high number of goods as bads (high
FPR). In contrast, classifiers that are strong on the lower right-hand side are called conservative because
they classify only with strong evidence (Fawcett, 2003). Subsequently, they have a small TPR but a small
FPR, as well. A similar behavior occurs in the PR diagram. The precision for low recall values is rather low
but drops comparably lightly with increasing recall values. This mirrors the distribution of goods and bads,
as reported in Figure 13. The lowest score group shows a bad rate of around 70%, which can be mapped
to the precision in low recall values. Moving the threshold to include the three score groups with the most
bads lowers the precision due to the decrease in the bads rate. Moving the threshold even further mainly
rejects goods, leading to a rapid decrease of precision. Subsequently, GP shows a strong performance for
high recall values.

Comparing the GP results to the other models reveals that the classifiers’ overall performances are all
similar. Nonetheless, some interesting differences can be observed. The LR model has a similar performance
to the GP model in the liberal area. However, in the very conservative area, LR seems to be slightly
better than GP while from the conservative area to the liberal area, the performance of LR is visibly worse.
The ROC-AUC of the GP model (0.78) is higher than that of LR (0.76). In the PR diagram, LR shows
a better precision for very low recall values and similar precision for very high recall values, compared
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to GP. In between the two, GP’s precision is better than LR’s, which overall leads to a nearly identical
PR-AUC value, with 0.54 for GP and 0.53 for LR. The SVM model reveals a strong performance in the
ROC diagram’s conservative area, with a ROC curve visibly above the other models. However, when leaving
the conservative area, SVM’s curve falls below the other models’ curves, and it remains lower throughout
the diagram. Overall, the SVM’s ROC-AUC is 0.76, which is worse than GP’s ROC-AUC. Contrarily,
SVM’s performance in the PR diagram is the best, with a PR-AUC value of 0.56. The high performance in
PR-AUC comes from the lower recall values, for which SVM shows a very high precision. However, from the
central recall values forward, the precision drops drastically below the other classifiers’ performances. The
BT model shows a similar performance to GP’s with a ROC-AUC value of 0.78. Also, in the PR diagram,
BT shows a performance similar to GP’s, with a PR-AUC value of 0.54. BT’s precision is very high for low
recall levels but drops rapidly for high recall values. However, the precision increases again and stays above
the other models for the higher recall values.

In conclusion, the analysis shows that while the models share similar overall performances, their
performances in the different areas of the ROC space differ. GP shows a consistently good performance
over the whole ROC space. LR performs reasonably well in the very liberal and very conservative areas
but poorly in between. SVM has good performance in the conservative area and poor performance in the
liberal area of the ROC space. Finally, BT has a poor performance in the conservative area and a good
performance in the rest of the ROC space. A similar trend can be observed in the PR diagram. While
the PR-AUC values do not vary much, the methods reveal different performances in various areas of the
diagram. One can make an interesting observation from the SVM model: the performance in the ROC space
is visibly worse than that of its competitors while the performance in the PR space is visibly better. For
low recall values, the SVM model provides the most relevant results. On the other hand, the results become
less precise for high recall values.

7.4. Discriminatory Power of GP in Collaboration with the Credit Agency Score

While the pre-score needs to be operational on its own in countries that do not or cannot offer a credit
agency score based on country-specific solvency information, an additional requirement is the usability in
combination with the main score. Here, as in the main score, we consider the AFS company’s already-existing
credit agency score, also commonly named ABIC, or reference score. AFS currently uses this score. The
pre-score needs to have an enhancing effect on the main score’s discriminatory power. For this purpose,
both scores are combined by considering their arithmetic means. Then the effect of the scores’ combination
is analyzed. Figure 15 shows the score distribution of the combination of ABIC and GP. The discriminatory
capabilities are clearly visible. The bads (represented by red bars) are more numerous on the low score
value range than the goods (represented by green bars). However, the bads are spread out rather evenly,
with a visually regular, Gaussian-like shape. Contrarily, the goods are strongly centered around their mean
value, with a smaller spread toward the outer score groups. The bad rate, reported using a dashed red line,
shows high bad rates between 80% and 100% for the score range’s first quarter and very low bad rates,
i.e., below 5%, for the score range’s fourth quarter. Correspondingly, the bads rate drops drastically from
around 80% to around 5% within the score range’s second and third quarters. Compared to GP, ABIC +
GP incorporates a greater score range with better-distributed scores. The bads rate in the low score range
is higher and approaches score groups with mainly bads. Similar to GP, the bads rate in the high score
range is near zero. Consequently, the score groups in the high score range mainly consist of goods.

7.4.1. Comparison between GP, ABIC, ABIC+GP and pre-score with Varying Threshold

Figure 16 shows a comparison between the discriminatory powers of GP, ABIC, and ABIC+GP and
the original pre-score. The original pre-score, which is clearly outperformed by GP, is especially weak in
the ROC space’s more conservative areas but gains some discriminative power in the most liberal area.
While its ROC curve has a similar shape to GP’s curve for most of the ROC space, it also lies constantly
below GP’s curve and only approaches it in the very liberal area. A similar trend also appears in the PR
diagram. While the original pre-score’s PR curve approaches the GP curve for both very low and very high
recall values, its curve is steadily lower than the GP curve. Furthermore, the pre-score’s PR curve reveals
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Figure 16: ROC curve and PR diagram for pre-score, ABIC, GP, and GP integrated with ABIC (ABIC+GP).

a clear concave shape while every other classifier displays a more convex shape, a clear indication that the
pre-score is a weaker classifier than the others. ABIC shows a performance comparable to GP’s in the ROC
diagram’s conservative area but drops drastically in performance in the diagram’s liberal area, where it is
clearly outperformed by GP. The ROC-AUC for ABIC is low (0.71). However, combining GP and ABIC
boosts the performance of both considerably to a ROC-AUC of 0.81, which is a remarkably better value
than that of all the other studied models. Also, one can easily observe that the ROC curve of ABIC+GP is
high in both conservative and liberal areas, outperforming all the other methods and perfectly integrating
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the contradictory curve movements of ABIC and GP when considered in isolation. Additionally, while both
scores perform comparably in the conservative area, combining both scores still boosts their performances.
Thus, the scores do not identify the same bads but different ones. The PR diagram shows a similar picture.
ABIC shows high precision in the lower recall area but drops over the recall range. Consequently, ABIC
shows the lowest precision in the high recall ranges and then drops below GP. On the other hand, GP has
a high precision in the high recall area. The combination of ABIC and GP visibly outperforms the other
methods in the PR diagram.

In conclusion, the analysis of the ROC and PR diagrams visibly demonstrates the lack of discriminatory
power in the pre-score, thus incentivizing this work. Furthermore, GP demonstrated its capabilities in
separating bads from goods, and when used in combination with the credit agency score, it was clearly able
to outperform all other methods.

7.4.2. Experimental Results with Fixed Threshold

The ROC and PR diagrams allow comparison of the discriminative powers of binary classifiers, as their
discrimination thresholds are varied. However, the discrimination threshold is essential for a classifier’s
application. A number of various methods for quantifying prediction quality at a specific threshold exist.
The method used most frequently in research is possibly accuracy (ACC), i.e., the fraction of classifications
that are correct (Garćıa et al., 2014; Davis et al., 1992; Zhang et al., 2007). One possible way to find
the optimal threshold consists of calculating the accuracy for every possible threshold and then returning
the threshold with the highest accuracy. Table 6 shows the highest accuracy for GP, pre-score, ABIC and
ABIC+GP. The accuracy results are consistent with the previous results: GP and ABIC have comparable

Table 6: Classifier accuracies of GP, pre-score, ABIC, and ABIC+GP. Highest values of the accuracy obtained for all possible
values of the thresholds for each method are reported.

Classifier Accuracy

GP 75.0%
pre-score 72.8%
ABIC 75.9%
ABIC + GP 78.5%

accuracies; together, they form a more powerful classifier with the highest accuracy (78.5%). The pre-score
obtains a weaker accuracy that the other methods (72.8%).

While accuracy is one of the most used classification evaluation criteria, it is biased for the majority class
and therefore not recommended for unbalanced datasets (Garćıa et al., 2014). Additionally, accuracy and
many other evaluation techniques assume symmetrical misclassification costs for goods and bads. Often,
however, the costs of accepting bads are higher than the costs of rejecting goods. Consequently, instead of
using an evaluation technique based on the overall error, one should employ a cost function (Frydman et al.,
1985; West, 2000). If C1 denotes the cost of accepting bads, C2 denotes the cost of rejecting goods and
π1 and π2 are the ratios of goods and bads in the population, respectively, then, following (Lee and Chen,
2005), the cost function is defined as

Cost = C1 ∗ FNR ∗ π1 + C2 ∗ FPR ∗ π2
While this cost function takes into account the misclassification costs for goods and bads, it assumes
constant order values across classes. Because the order values used for the dataset are known, a profit-based
evaluation technique is employed in which order values are adjusted to include misclassification costs. The
misclassification costs are defined as abortion rate and marginal return and are provided by AFS. All requests
classified as goods are reduced to 25% of their original value, which corresponds to the profit margin.
Additionally, requests for goods classified as bads (FP) are reduced by another 30%, which corresponds
to the abortion rate of potential customers who are unwilling to pay via the offered payment types. Bads
that are classified as goods (FN) are reduced by the profit margin and deducted from the sum of the
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remainder, excluding bads that are classified as bads (TP) and subsequently rejected. In the latter case, it is
assumed that rejected bads do not continue the order process. The calculations are reported in equations (5)
through (9).

TP = 0 (5)

FN = Ordervalue ∗ (1− Profit Margin) (6)

FP = Ordervalue ∗ Profit Margin ∗ (1−Abortion Rate) (7)

TN = Ordervalue ∗ Profit Margin (8)

OV = TN + FP− FN (9)

The bads have a mean order value that is 2% higher than the mean order value of the goods.
However, taking into account the misclassification costs, the values change considerably. Using TN as
the determination base yields FN that is 206% higher than TN and FP that is 30% lower (=abortion rate)
than TN. This means that 1 euro of profit for goods classified as goods yields 0.7 euros of profit if they are
classified as bads, instead. Similarly, if they are classified as goods but turn out to be bads, they yield a
loss of 3.06 euros. Hence, falsely changing the classification from good to bad induces profit deduction of
1− 0.7 = 0.3. Falsely keeping the classification as good induces profit deduction of 3.06 euros. Accordingly,
for every falsely classified bad, 10 goods can be falsely classified as bads. Results of GP, pre-score, ABIC
and ABIC+GP are depicted in Table 7, where a pessimistic classifier that rejects nothing (PES) and an
optimal classifier that rejects only bads (OPT) are compared to one another. In order to allow for interclass

Table 7: Order value comparison among GP, pre-score, ABIC, and ABIC+GP.

GP pre-score ABIC ABIC + GP
OV ACC OV ACC OV ACC OV ACC

PES
Bads 22.4% 2.9% 22.3% 2.1% 23.0% 5.5% 22.6% 9.0%
Goods -3.8% -0.2% -4.0% -0.2% -5.2% -0.2% -4.0% -0.4%
Total 18.6% 2.7% 18.3% 1.9% 17.9% 5.2% 18.6% 8.6%

OPT
Bads -0.7% -20.2% -0.8% -21.0% 0.0% -17.6% -0.5% -14.1%
Goods -3.8% -0.2% -4.0% -0.2% -5.2% -0.2% -4.0% -0.4%
Total -4.5% -20.3% -4.8% -21.2% -5.2% -17.8% -4.4% -14.5%

analysis, the results for bads and goods are shown as supplementary to the totals. Additionally, the accuracy
is included for comparison purposes. The pessimistic classifier accepts all bads and therefore has a high bads
deduction on the overall order value. At the same time, the order value for goods is at a maximum because
no goods are rejected. The results show a strong decrease in bads deduction (increase in OV) for all models,
with GP being better than the original pre-score. Furthermore, while ABIC has the highest order value
decrease for goods, GP has the lowest, which leads to a moderate order value decrease for ABIC+GP. Due
to the imbalanced dataset, the impact of goods is higher than the impact of bads. Subsequently, ABIC
has the worst performance as a result of the high order value deduction for goods. Nonetheless, ABIC+GP
performs similarly to GP, sharing the highest increase in order value compared to the pessimistic classifier.

These results contrast with the accuracy results, in which the pre-score performs worst, outperformed
by GP and ABIC, which in turn are outperformed by ABIC+GP. Also, unlike the order value, the accuracy
shows little deviation between the pessimistic classifier and the models, with a minimum value of 1.9% for
the pre-score and a maximal value of 8.6% for ABIC+GP. On the other hand, comparing the models with
the optimal value shows high deviations for accuracy but little for order value. The optimal classifier
discriminates perfectly between goods and bads and therefore rejects all bads and accepts all goods.
Consequently, there is no order value deduction for bads, and the order value for goods is maximal. The
results show the differences between accuracy and order value as an evaluation measure: accuracy shows the
models to be rather similar to a pessimistic classifier while the order value shows the models to be rather
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similar to the optimal classifier. Table 8 shows the difference in order value between GP and the other
considered methods, i.e., pre-score, ABIC and ABIC+GP.

Table 8: Deviation from GP of the other studied methods.

pre-score ABIC ABIC+GP

Bads -15.0% 100% 30.9%
Goods -1.6% -10.3% -1.4%
Total -2.4% -5.7% 0.1%

Consistent with the previous results, the pre-score’s order values are lower than GP’s values, with -15%
for the bads, -1.6% for the goods and a total of -2.4%. ABIC+GP again offers the best results: the order
value of bads is 30.9% higher for ABIC+GP than for GP, but the order value for goods is 1.4% smaller.
The impact of the smaller order value for goods is higher than the impact of the higher order value for bads
because the dataset is unbalanced. Hence, the total difference adds up to only a 0.1% increase from GP to
ABIC+GP. To interpret these results, one has to observe the ABIC results. In fact, for ABIC, the highest
order value threshold is found on a level that effectively rejects all bads and many goods. Consequently,
there is no discount from bads, but one can observe a high difference in the GP results for goods (-10.3%),
instead. Hence, ABIC has a total difference of -5.7%.

8. Conclusions and Future Work

The objective of this work was to develop a credit scoring (CS) model to replace the pre-risk check of
the e-commerce risk management system Risk Solution Services (RSS), which is currently one of the most
used systems to estimate customers’ default probabilities. The pre-risk check uses data from the order
process and includes exclusion rules and a generic CS model. The new model was supposed to work as a
replacement for the whole pre-score and had to be able to work in isolation and in integration with the RSS
main risk check. The focus of the paper was developing a model based on genetic programming (GP) to
predict the probability of default on payment. The presented results have shown a profit increase of around
18.6% by employing a CS model based on GP, compared to not employing CS at all. In order to evaluate
the discriminatory power of the GP model, this model was compared to models based on logistic regression,
support vector machines, and boosted trees, using ROC analysis. Even though the fitness function used by
our GP system was the area under the ROC curve (ROC-AUC), the PR diagram (and the area under this
diagram, PR-AUC) was also used to compare the various methods’ performances. The GP model shows a
higher discriminatory power than the pre-score when ROC and PR are used and when using error-based
evaluation techniques. GP was evaluated not only with error-based evaluation techniques but also with
profit. Analyzing the profit obtained by the GP model, we can see that this model shows an increase of
2.4% over the pre-score. Combining GP and the credit agency score (ABIC) into a single score increases
its predictive power. In ROC, PR, and accuracy analysis, ABIC and GP’s integration shows the highest
performance among all the studied methods. On the basis of these empirical results, one can conclude that
GP can generate models with higher discriminatory power than the pre-score and that it is competitive with
other state-of-the-art machine learning systems. Also, GP works particularly well when integrated with the
existing credit agency score. Therefore, the GP-generated models can replace and improve the pre-score.

This research can be extended in a number of ways. Most importantly, the lack of variables has to be
addressed. Although it is an obvious proposal to increase a model’s discriminatory power by adding variables
with new information value, it is not without clear reasoning. The fact that the proposed model is designed
with fewer variables than its predecessor and the fact that the AFS company’s analysts identified the missing
variables as powerful illustrate the importance. Furthermore, the model complexity and interpretability issue
in GP is worth considering for future research. In fact, on one hand, it is true that GP models are expressed
in the form of a tree, which adds some transparency, like the fact that the model can be reported for future
analysis, as in Figure 11. However, it is also undeniable that unless the tree is small, it is often unreadable
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and very hard, or even impossible, to understand. On the other hand, if the tree becomes too small, the
estimates obtained from it could have discontinuities, thus making them not appealing in practice. Another
possible improvement of the current work would be using more sophisticated GP systems than the standard
GP used here. For instance, it is appropriate to apply recently introduced GP systems that integrate
semantic awareness in the evolution toward improved search performance. The interested reader is referred
to (Castelli et al., 2015; Vanneschi, 2017; Ruberto et al., 2014) for an introduction to the most popular of
these GP systems.
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Appendix A. An Introduction to Genetic Programming

Genetic programming (GP) (Koza, 1992b) is a method that belongs to the computational intelligence
research field called evolutionary computation (Eiben and Smith, 2003). GP consists of the automated
learning of computer programs by means of a process inspired by Charles Darwin’s theory of biological
evolution. In the context of GP, one can interpret the word program in general terms, and therefore, GP
can be applied to the particular cases of learning expressions, functions and, as in this work, data-driven
predictive models. In GP, programs are typically encoded by defining a set, F ,of primitive functional
operators and a set, T ,of terminal symbols. Typical examples of primitive functional operators may include
arithmetic operations (+, −, ∗, etc.); other mathematical functions (such as sin, cos, log, exp) or, according
to the context and type of problem, Boolean operations (such as AND, OR, NOT) or more complex constructs
such as conditional operations (such as If-Then-Else); iterative operations (such as While-Do); and other
domain-specific functions that may be defined. Each terminal is typically either a variable or a constant,
defined in the problem domain. GP’s objective is to navigate the space of all possible programs that can
be constructed by composing symbols in F and T , looking for the most appropriate ones for solving the
problem at hand. Generation by generation, GP stochastically transforms populations of programs into
new, hopefully improved program populations. The appropriateness of a solution in solving the problem
(i.e., its quality) is expressed by using an objective function (the fitness function). In order to transform a
population into a new population of candidate solutions, GP selects the most promising programs that are
contained in the current population and applies to those programs some particular search operators called
genetic operators, typically crossover and mutation. The standard genetic operators (Koza, 1992b) act on
the structure of the programs that represent the candidate solutions. In other terms, standard genetic
operators act at a syntactic level. More specifically, standard crossover is traditionally used to combine
two parents’ genetic material by swapping a part of one parent with a part of the other. Considering
the standard tree-based representation of programs often used by GP (Koza, 1992b), after choosing two
individuals based on their fitness, standard crossover selects a random subtree in each parent and swaps
the selected subtrees between the two parents, thus generating new programs (the offspring). On the other
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hand, standard mutation introduces random changes in the structures of the population’s individuals. For
instance, the traditional and most-frequently used mutation operator, sub-tree mutation, works by randomly
selecting a point in a tree, removing whatever is currently at and below the selected point and inserting
a randomly generated tree at that point. The reader who is interested in more details is referred to (Poli
et al., 2008b; Koza, 1992b).
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