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Abstract–This work presents positive experiment results on the 
efficiency and security potential of an optimized and novel 
approach to an Autonomous Management Distributed System 
(AMDS) running in a Cloud Computing environment. The 
results validate the AMDS software design and demonstrate its 
potential as an industrial application to be used in modern 
datacenters. On one hand, from an operational performance 
point of view, they show the AMDS’ ability of reconfiguring 
itself on the fly, thus resulting in 14 percent increased efficiency 
over the lifetime of the first experiment. On the other hand, they 
show an overall malicious (Botnet) data packet detection rate of 
over 52 percent, a significant percentage for only 5000 network 
data samples analyzed by the Botnet software module plugged 
into the AMDS. Both experiments have been performed in a 
VMWare run cloud environment, however due to the AMDS’ 
abstract architecture, it has the potential to interface with any 
existing cloud management system that exposes an API. 

 

I. INTRODUCTION 

Computing is a term referring to goal-oriented activities 
that revolve around algorithmic processes [1]. Ever since the 
middle of last century, the scientific computing domain has 
evolved more rapidly than any other technology. It began 
with highly simplistic computing devices, quickly moving to 
more complex devices, and, for the better part of last half of 
the 20th century, evolving into very large clusters of 
interconnected computing devices working towards the same 
pre-set computational goals, almost identical to utility 
computing [2]. 

“Cloud Computing” is a higher-level term used to describe 
distributed computing, which involves data flows across real-
time, high-speed networks. This enables the possibility of 
running intensely computational applications across multiple 
physical devices in parallel. This term, when used by 
laypeople, generally refers to generally available online 
services. These services, although appearing to be supported 
by physical hardware, are in fact running on virtualized 
hardware simulated by software operating on real machines. 
One of the main advantages of this approach is the ability to 
scale, up or down, these virtual infrastructures on the fly 
without any noticeable service disruptions, similar to a cloud 
[3]. 

 

This work started with the authors critically developing a 
novel method of optimizing cloud networks in terms of 
energy consumption and system operation. The novelty 
consists of the software’s ability to reconfigure itself on the 
fly based on live network readings [4]. The authors also 
critically developed a novel method to prevent, detect, and 
stop network intrusions and malicious behavior in a cloud 
environment [5]. 

Finally, the work presents flexible software solution (as 
opposed to the general approach of using rigid hardware) to a 
general communications/networking problem. The software 
solution automatically acquires data about network traffic and 
hardware loads of a cloud infrastructure, analyzes them and 
redistributes loads for efficient energy management and 
optimal data communication parameters (security, data 
transfer speed, access wait times, power consumption) [5], 
[6]. 

 

II. BACKGROUND  

The research presented in [7] discusses a software-based 
approach to enhancing network security within Cyber 
Physical Systems (CPSs). They propose a software 
abstraction implementation called Bundle that allows network 
administrators to program a wide range of different 
applications within 60 lines of code or less involving multiple 
CPSs aimed at reducing complexity when working with CPSs 
as well as maintain acceptable levels of energy consumption 
across the network. 

A different approach is presented by [8]. It proposes a full-
stack Cloud Management solution called Snooze. This would 
be directly in charge of all hardware and virtual resources 
available within the cloud infrastructure it manages.  

Overall this is a very capable solution, building on work 
done by many other similar solutions [9]-[11], utilising all of 
their strengths and disregarding many of their drawbacks, 
however it requires to be deployed by itself on a cloud 
infrastructure, rather than act as a plugin to an already 
established infrastructure, like in the case of the work 
presented by the authors of this paper. 

 

978-1-5090-2870-2/16/$31.00 ©2016 IEEE 816



III. AMDS CORE, PERFORMANCE EXPERIMENT – SETUP, 
RESULTS, AND DISCUSSION 

The scope of this experiment is focused on AMDS 
performance measurements through self produced logs 
detailing each action and connection undertaken by the 
AMDS, together with the time in milliseconds each task has 
taken to complete. 

 
As can be seen in Fig. 3, the setup also has the AMDS 

Botnet Module activated, which analyses NetFlow/IPFix 
network samples. This helps accurately determine the AMDS 
production performance on a live datacenter infrastructure. 

 

A. Experiment Setup 
By default, the AMDS records all actions undertaken 

during its lifetime, including their start and end time, 
employing (1) to calculate each action’s total running time. 
These contain information on what triggered each action, the 
evaluated data, the result of the evaluation and the command 
issued to the action initiator, such as vSphere, an ILO, a 
switch, or a router. 

 
       Ttotal = Tend - Tstart.          (1) 

 
After several log data sets have been analyzed, a 

performance report is generated that provides an overall view 
on the AMDS operational timings. 

 

B. Experiment Results 
The data presented in the below Table 1 is an extract from 

the AMDS operational log produced throughout the AMDS 
lifetime. In order to remain within this experiment’s 
boundaries, several irrelevant columns have been stripped 
out. The data represent several steps undertaken by two 
AMDS modules, the Botnet and the Control modules 
respectively, when processing both external and internal 
information. 

TABLE 1 
AMDS OPERATIONAL LOG EXTRACT 

Action by Operation Started at 
Tstart 

Ended at 
Tend 

Total 
(ms) 
Ttotal 

AMDS_b
otnet 

networkFlow_r
etrieve 

05/08/2014 
13:06:11.433 

05/08/2014 
13:06:11.541 108 

AMDS_b
otnet 

networkFlow_st
oreRaw 

05/08/2014 
13:06:11.541 

05/08/2014 
13:06:11.585 44 

AMDS_b
otnet 

networkFlow_b
reakdown 

05/08/2014 
13:06:11.585 

05/08/2014 
13:06:12.011 26 

AMDS_b
otnet 

networkFlow_a
nalyse 

05/08/2014 
13:06:12.011 

05/08/2014 
13:06:16.270 4259 

AMDS_b
otnet 

networkFlow_st
oreAnalysis 

05/08/2014 
13:06:16.270 

05/08/2014 
13:06:16.319 49 

……… ……… ………… ………… …… 
AMDS_c

ontrol 
efficiency_anal

yse 
05/08/2014 

13:07:12.262 
05/08/2014 

13:07:14.183 1921 

AMDS_c
ontrol 

efficiency_store
Analysis 

05/08/2014 
13:07:14.183 

05/08/2014 
13:07:14.245 62 

AMDS_c
ontrol 

vsphere_sendC
ommand 

05/08/2014 
13:07:14.245 

05/08/2014 
13:07:14.258 13 

………… ……… ………… ………… …… 
 

The results presented in Table 2 are average execution 
times of each of the more important AMDS modules: Botnet, 
Control, Auth, and Conn modules, respectively. These 
latency timings have been observed over approximately 3 
hours of uninterrupted AMDS operational lifetime. 

 
TABLE 2 

AMDS AVERAGE MODULE OPERATION TIMES (MS) 

 Botnet Module (ms) Control Module (ms) 

Initial readings 4486 2145 
End of 
Experiment 
Average Time 

3855 2117 

Change vs. Initial 
readings (%) -14% -1.3% 

Period of time 
Observed 
(approx.) 

05/08/2014 13:00 – 05/08/2014 16:00 

  
The “Initial Readings” table row represents the very first time 
each of the observed modules has completed one task. The 
“End of Experiment Average Times” table row have been 
calculated as averages of the time it has taken each module to 
start and complete subsequent tasks, until the end of the 
experiment. 
 

 

Fig. 3 - AMDS Experiment Logical Layout - AMDS Performance 
Measurements 

Fig. 4 - Performance Experiment Results Latency Comparison 
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As can be seen in Fig. 4, the Botnet module average 
latency has declined by approximately 14% during the 
lifetime of this experiment, caused by the fact that with each 
new network flow the user activity model improves, and as 
such it is able to determine the flow threat level slightly faster 
each time. This is a significant latency reduction, which can 
only improve over time as the user activity model becomes 
better refined. 

Also in Fig. 4, the Control module average latency has also 
declined by approximately 1.3%. The most likely cause of 
this is the different latency expressed by the network devices 
it interfaces with, which are influenced mostly by external 
traffic fluctuations. 

 

C. Discussion 
The findings of this experiment were positive, with the two 

main components that were tested, the Control and Botnet 
modules, operating well within expected parameters. The 
Control module achieved an initial operation latency average 
of 2,145 milliseconds, dropping to approximately 2,117 
milliseconds by the end of the experiment, while the Botnet 
module achieved an initial operation latency average of 4,486 
milliseconds, dropping to approximately 3,855 milliseconds. 
The results reflect the design and implementation approach 
taken by the authors in developing the AMDS, which have 
allowed it to reduce its operational latency times by up to 
14% during its lifetime through self-reconfiguration. Due to 
its asynchronous nature, this has virtually no impact on day-
to-day datacenter operations, while at the same time having a 
positive impact on the energy management and security 
aspects of the infrastructure. 

 

IV. AMDS BOTNET MODULE, DETECTION EXPERIMENT 
– SETUP, RESULTS, AND DISCUSSION 

The scope of this experiment is focused on testing the 
AMDS Botnet Module’s detection capabilities through a 
bigger, more standardized set of infected network packets. 

 

A. Experiment Setup 
In addition to the existing setup seen in Fig. 3, the authors 

have also added an external Botnet-like attacker using the 
botnet code written by Charles Leifer1. This is a simple 
program that allows a master machine to control other, 
infected machines through IRC commands. This experiment 
assumes said machines are already infected. 

As can be seen in Fig. 5, a new logical node has been 
created and made available to the existing infrastructure by 
interfacing with the ASA (Adaptive Security Appliance) and 
becoming part or regular network traffic. This new logical 
node is a very simple Botnet application, consisting of a 
master and several workers. This allows for infected data  

 
                                                             

1 https://github.com/coleifer/irc/tree/master/botnet 

 
packets to be randomly introduced into the system alongside 
regular, healthy data packets. 

The packets used in this experiment vary in size, but are 
typically between 100 and 500 bytes. Regular user traffic is 
typically around the 500 byte mark, which should give the 
existing model ample leeway to adapt. 

 

B. Experiment Results 
The experiment has run over an extensive period of time 

and it has produced a large dataset. An overview of this data, 
along with some of the experiment parameters, can be seen in 
Table 3. 

TABLE 3 
DATA PACKET ANALYSIS RESULTS 

 Sample 
#500 

Sample 
#1500 

Sample 
#3000 

Sample 
#5000 

# Packets 
(1000s) 181 189 207 247 

~ Packet 
Size (Bytes) 552 529 483 405 

# Infected 
(1000s) 0 0 85 128 

# Detected 
(1000s) 0 0 29 67 

Detection 
Rate (%) 0 0 34.1 52.3 

 
For the first half of the experiment, as can be seen in Table 

3, regular packets with an average size of 529-552 bytes have 
been filtered through the AMDS Botnet Detection Module. 
This has been used as a training mechanism for the heuristic 
algorithm discussed in [5], so it would later on have a healthy 
packet model to compare infected packets against. 

Fig. 5 - AMDS Experiment Logical Layout - AMDS Botnet Module 
Detection Capabilities 
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As can be seen in Fig. 6, using the 1 Gbps network link has 

evaluated into approximately 1.81 million data packets, of 
which 181 thousand of the 500 initial readings for analysis 
have been sampled.  

For the second half of the experiment, a random percentage 
of Botnet generated data packets have been introduced 
through the use of actual botnet code alongside the regular 
data packets used in the first half of the experiment. This had 
a direct impact on the data packet size as this has decreased 
the average packet size of the samples by as much as 24%, 
from 529 to 405 bytes each.  

Starting with packet #3000, the heuristic algorithm 
attempts to detect malicious packets by comparing potentially 
infected packets to the healthy network traffic model it has 
built prior to the introduction of infected packets. 

 
As can be seen in Fig. 8, the AMDS, through the use of its 

Botnet Detection heuristic algorithm, has managed to detect 
approximately 34.1% of all infected packets at the start of the 
Botnet attack. This detection rate has steadily increased up 
until the end of the experiment to approximately 52.3% of all 
infected packets. 

 

C. Discussion 
The results presented above give a clear indication of the 

potential of the AMDS having its Botnet Detection Module 
activated. Applying the heuristic algorithm to more and more 
data packet samples allows the AMDS Botnet Detection 
module to better understand what real world Botnet data 
packets look like, and detect more similar packets or even 
unknown Botnet packet types in the future. 

 

V. CONCLUSIONS 

This paper has presented experimental results of an 
Autonomous Management Distributed System (AMDS) 
operating within a VMWare-run Datacenter.  

 

The experiments were intended to show the operational 
efficiency of the AMDS as well as the benefits it brings from 
a security point of view in terms of performing Botnet 
detection based on network flow analysis.  

As discussed in section IV of this paper, the malicious 
activity detection success rate has grown steadily over time 
up to 52.3% of all infected network communications. The 
main driver of this increase over time is the system’s ability 
to reconfigure itself on the fly based on changes happening 
within and around the virtual environment it resides in, novel 
design features presented in [4]. These results demonstrate 
what can be achieved using a purely software approach to an 
existing datacenter hardware infrastructure.  

These results reinforce the potential of this software design 
as a datacenter enhancement and security system, with 
virtually no impact on day-to-day operations due to the 
asynchronous nature of the implementation. 

 

VI. FUTURE WORK 

The authors intend to expand the Botnet module to include 
more detection algorithms to help with analyzing network 
traffic, as well as gain other monitoring capabilities, such as 
accessing individual active Virtual Machines and looking at 
running processes and processor loads and even comparing 
them to a set of VM profiles (e.g. for a VM only used for 
static web pages, high processor load may indicate unusual 
activities). 
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