
A Software Approach to Improving Cloud
Computing Datacenter Energy Efficiency and
Enhancing Security through Botnet Detection

Razvan-Ioan Dinita, MIEEE, Adrian Winckles, George Wilson

Computing and Technology Department
Anglia Ruskin University

Cambridge, United Kingdom
{razvan.dinita, adrian.winckles, george.wilson}@anglia.ac.uk

Abstract–This work presents positive experiment results on the
efficiency and security potential of an optimized and novel
approach to an Autonomous Management Distributed System
(AMDS) running in a Cloud Computing environment. The
results validate the AMDS software design and demonstrate its
potential as an industrial application to be used in modern
datacenters. On one hand, from an operational performance
point of view, they show the AMDS’ ability of reconfiguring
itself on the fly, thus resulting in 14 percent increased efficiency
over the lifetime of the first experiment. On the other hand, they
show an overall malicious (Botnet) data packet detection rate of
over 52 percent, a significant percentage for only 5000 network
data samples analyzed by the Botnet software module plugged
into the AMDS. Both experiments have been performed in a
VMWare run cloud environment, however due to the AMDS’
abstract architecture, it has the potential to interface with any
existing cloud management system that exposes an API.

I. INTRODUCTION

Computing is a term referring to goal-oriented activities
that revolve around algorithmic processes [1]. Ever since the
middle of last century, the scientific computing domain has
evolved more rapidly than any other technology. It began
with highly simplistic computing devices, quickly moving to
more complex devices, and, for the better part of last half of
the 20th century, evolving into very large clusters of
interconnected computing devices working towards the same
pre-set computational goals, almost identical to utility
computing [2].

“Cloud Computing” is a higher-level term used to describe
distributed computing, which involves data flows across real-
time, high-speed networks. This enables the possibility of
running intensely computational applications across multiple
physical devices in parallel. This term, when used by
laypeople, generally refers to generally available online
services. These services, although appearing to be supported
by physical hardware, are in fact running on virtualized
hardware simulated by software operating on real machines.
One of the main advantages of this approach is the ability to
scale, up or down, these virtual infrastructures on the fly
without any noticeable service disruptions, similar to a cloud
[3].

This work started with the authors critically developing a
novel method of optimizing cloud networks in terms of
energy consumption and system operation. The novelty
consists of the software’s ability to reconfigure itself on the
fly based on live network readings [4]. The authors also
critically developed a novel method to prevent, detect, and
stop network intrusions and malicious behavior in a cloud
environment [5].

Finally, the work presents flexible software solution (as
opposed to the general approach of using rigid hardware) to a
general communications/networking problem. The software
solution automatically acquires data about network traffic and
hardware loads of a cloud infrastructure, analyzes them and
redistributes loads for efficient energy management and
optimal data communication parameters (security, data
transfer speed, access wait times, power consumption) [5],
[6].

II. BACKGROUND

The research presented in [7] discusses a software-based
approach to enhancing network security within Cyber
Physical Systems (CPSs). They propose a software
abstraction implementation called Bundle that allows network
administrators to program a wide range of different
applications within 60 lines of code or less involving multiple
CPSs aimed at reducing complexity when working with CPSs
as well as maintain acceptable levels of energy consumption
across the network.

A different approach is presented by [8]. It proposes a full-
stack Cloud Management solution called Snooze. This would
be directly in charge of all hardware and virtual resources
available within the cloud infrastructure it manages.

Overall this is a very capable solution, building on work
done by many other similar solutions [9]-[11], utilising all of
their strengths and disregarding many of their drawbacks,
however it requires to be deployed by itself on a cloud
infrastructure, rather than act as a plugin to an already
established infrastructure, like in the case of the work
presented by the authors of this paper.

978-1-5090-2870-2/16/$31.00 ©2016 IEEE 816

III. AMDS CORE, PERFORMANCE EXPERIMENT – SETUP,
RESULTS, AND DISCUSSION

The scope of this experiment is focused on AMDS
performance measurements through self produced logs
detailing each action and connection undertaken by the
AMDS, together with the time in milliseconds each task has
taken to complete.

As can be seen in Fig. 3, the setup also has the AMDS

Botnet Module activated, which analyses NetFlow/IPFix
network samples. This helps accurately determine the AMDS
production performance on a live datacenter infrastructure.

A. Experiment Setup
By default, the AMDS records all actions undertaken

during its lifetime, including their start and end time,
employing (1) to calculate each action’s total running time.
These contain information on what triggered each action, the
evaluated data, the result of the evaluation and the command
issued to the action initiator, such as vSphere, an ILO, a
switch, or a router.

 Ttotal = Tend - Tstart. (1)

After several log data sets have been analyzed, a

performance report is generated that provides an overall view
on the AMDS operational timings.

B. Experiment Results
The data presented in the below Table 1 is an extract from

the AMDS operational log produced throughout the AMDS
lifetime. In order to remain within this experiment’s
boundaries, several irrelevant columns have been stripped
out. The data represent several steps undertaken by two
AMDS modules, the Botnet and the Control modules
respectively, when processing both external and internal
information.

TABLE 1
AMDS OPERATIONAL LOG EXTRACT

Action by Operation Started at
Tstart

Ended at
Tend

Total
(ms)
Ttotal

AMDS_b
otnet

networkFlow_r
etrieve

05/08/2014
13:06:11.433

05/08/2014
13:06:11.541 108

AMDS_b
otnet

networkFlow_st
oreRaw

05/08/2014
13:06:11.541

05/08/2014
13:06:11.585 44

AMDS_b
otnet

networkFlow_b
reakdown

05/08/2014
13:06:11.585

05/08/2014
13:06:12.011 26

AMDS_b
otnet

networkFlow_a
nalyse

05/08/2014
13:06:12.011

05/08/2014
13:06:16.270 4259

AMDS_b
otnet

networkFlow_st
oreAnalysis

05/08/2014
13:06:16.270

05/08/2014
13:06:16.319 49

……… ……… ………… ………… ……
AMDS_c

ontrol
efficiency_anal

yse
05/08/2014

13:07:12.262
05/08/2014

13:07:14.183 1921

AMDS_c
ontrol

efficiency_store
Analysis

05/08/2014
13:07:14.183

05/08/2014
13:07:14.245 62

AMDS_c
ontrol

vsphere_sendC
ommand

05/08/2014
13:07:14.245

05/08/2014
13:07:14.258 13

………… ……… ………… ………… ……

The results presented in Table 2 are average execution
times of each of the more important AMDS modules: Botnet,
Control, Auth, and Conn modules, respectively. These
latency timings have been observed over approximately 3
hours of uninterrupted AMDS operational lifetime.

TABLE 2

AMDS AVERAGE MODULE OPERATION TIMES (MS)

 Botnet Module (ms) Control Module (ms)

Initial readings 4486 2145
End of
Experiment
Average Time

3855 2117

Change vs. Initial
readings (%) -14% -1.3%

Period of time
Observed
(approx.)

05/08/2014 13:00 – 05/08/2014 16:00

The “Initial Readings” table row represents the very first time
each of the observed modules has completed one task. The
“End of Experiment Average Times” table row have been
calculated as averages of the time it has taken each module to
start and complete subsequent tasks, until the end of the
experiment.

Fig. 3 - AMDS Experiment Logical Layout - AMDS Performance
Measurements

Fig. 4 - Performance Experiment Results Latency Comparison

817

As can be seen in Fig. 4, the Botnet module average
latency has declined by approximately 14% during the
lifetime of this experiment, caused by the fact that with each
new network flow the user activity model improves, and as
such it is able to determine the flow threat level slightly faster
each time. This is a significant latency reduction, which can
only improve over time as the user activity model becomes
better refined.

Also in Fig. 4, the Control module average latency has also
declined by approximately 1.3%. The most likely cause of
this is the different latency expressed by the network devices
it interfaces with, which are influenced mostly by external
traffic fluctuations.

C. Discussion
The findings of this experiment were positive, with the two

main components that were tested, the Control and Botnet
modules, operating well within expected parameters. The
Control module achieved an initial operation latency average
of 2,145 milliseconds, dropping to approximately 2,117
milliseconds by the end of the experiment, while the Botnet
module achieved an initial operation latency average of 4,486
milliseconds, dropping to approximately 3,855 milliseconds.
The results reflect the design and implementation approach
taken by the authors in developing the AMDS, which have
allowed it to reduce its operational latency times by up to
14% during its lifetime through self-reconfiguration. Due to
its asynchronous nature, this has virtually no impact on day-
to-day datacenter operations, while at the same time having a
positive impact on the energy management and security
aspects of the infrastructure.

IV. AMDS BOTNET MODULE, DETECTION EXPERIMENT
– SETUP, RESULTS, AND DISCUSSION

The scope of this experiment is focused on testing the
AMDS Botnet Module’s detection capabilities through a
bigger, more standardized set of infected network packets.

A. Experiment Setup
In addition to the existing setup seen in Fig. 3, the authors

have also added an external Botnet-like attacker using the
botnet code written by Charles Leifer1. This is a simple
program that allows a master machine to control other,
infected machines through IRC commands. This experiment
assumes said machines are already infected.

As can be seen in Fig. 5, a new logical node has been
created and made available to the existing infrastructure by
interfacing with the ASA (Adaptive Security Appliance) and
becoming part or regular network traffic. This new logical
node is a very simple Botnet application, consisting of a
master and several workers. This allows for infected data

1 https://github.com/coleifer/irc/tree/master/botnet

packets to be randomly introduced into the system alongside
regular, healthy data packets.

The packets used in this experiment vary in size, but are
typically between 100 and 500 bytes. Regular user traffic is
typically around the 500 byte mark, which should give the
existing model ample leeway to adapt.

B. Experiment Results
The experiment has run over an extensive period of time

and it has produced a large dataset. An overview of this data,
along with some of the experiment parameters, can be seen in
Table 3.

TABLE 3
DATA PACKET ANALYSIS RESULTS

 Sample
#500

Sample
#1500

Sample
#3000

Sample
#5000

Packets
(1000s) 181 189 207 247

~ Packet
Size (Bytes) 552 529 483 405

Infected
(1000s) 0 0 85 128

Detected
(1000s) 0 0 29 67

Detection
Rate (%) 0 0 34.1 52.3

For the first half of the experiment, as can be seen in Table

3, regular packets with an average size of 529-552 bytes have
been filtered through the AMDS Botnet Detection Module.
This has been used as a training mechanism for the heuristic
algorithm discussed in [5], so it would later on have a healthy
packet model to compare infected packets against.

Fig. 5 - AMDS Experiment Logical Layout - AMDS Botnet Module
Detection Capabilities

818

As can be seen in Fig. 6, using the 1 Gbps network link has

evaluated into approximately 1.81 million data packets, of
which 181 thousand of the 500 initial readings for analysis
have been sampled.

For the second half of the experiment, a random percentage
of Botnet generated data packets have been introduced
through the use of actual botnet code alongside the regular
data packets used in the first half of the experiment. This had
a direct impact on the data packet size as this has decreased
the average packet size of the samples by as much as 24%,
from 529 to 405 bytes each.

Starting with packet #3000, the heuristic algorithm
attempts to detect malicious packets by comparing potentially
infected packets to the healthy network traffic model it has
built prior to the introduction of infected packets.

As can be seen in Fig. 8, the AMDS, through the use of its

Botnet Detection heuristic algorithm, has managed to detect
approximately 34.1% of all infected packets at the start of the
Botnet attack. This detection rate has steadily increased up
until the end of the experiment to approximately 52.3% of all
infected packets.

C. Discussion
The results presented above give a clear indication of the

potential of the AMDS having its Botnet Detection Module
activated. Applying the heuristic algorithm to more and more
data packet samples allows the AMDS Botnet Detection
module to better understand what real world Botnet data
packets look like, and detect more similar packets or even
unknown Botnet packet types in the future.

V. CONCLUSIONS

This paper has presented experimental results of an
Autonomous Management Distributed System (AMDS)
operating within a VMWare-run Datacenter.

The experiments were intended to show the operational
efficiency of the AMDS as well as the benefits it brings from
a security point of view in terms of performing Botnet
detection based on network flow analysis.

As discussed in section IV of this paper, the malicious
activity detection success rate has grown steadily over time
up to 52.3% of all infected network communications. The
main driver of this increase over time is the system’s ability
to reconfigure itself on the fly based on changes happening
within and around the virtual environment it resides in, novel
design features presented in [4]. These results demonstrate
what can be achieved using a purely software approach to an
existing datacenter hardware infrastructure.

These results reinforce the potential of this software design
as a datacenter enhancement and security system, with
virtually no impact on day-to-day operations due to the
asynchronous nature of the implementation.

VI. FUTURE WORK

The authors intend to expand the Botnet module to include
more detection algorithms to help with analyzing network
traffic, as well as gain other monitoring capabilities, such as
accessing individual active Virtual Machines and looking at
running processes and processor loads and even comparing
them to a set of VM profiles (e.g. for a VM only used for
static web pages, high processor load may indicate unusual
activities).

REFERENCES
[1] Joint Task Force for Computing Curricula (JTFCC), “Computing

Curricula 2005 – The Overview Report,” ACM, 2005, ISBN 1-59593-
359-X

[2] M. Carroll, P. Kotzé, A. Van Der Merwe, “Securing virtual and cloud
environments,” Cloud Computing and Services Science, pp. 73-90,
Springer New York, 2012

[3] CORDIS “Providing a platform for a coordinated response to cloud
cybercrime,” 2013, Available at: http://cordis.europa.eu/news/rcn/
36249_en.html

[4] R. I. Dinita, G. Wilson, A. Winckles, M. Cirstea, T. Rowsell, “A Novel
Autonomous Management Distributed System for Cloud Computing
Environments,” Industrial Electronics Conference (IECON), 2013 39th
Annual Conference of, November 2013

[5] R. I. Dinita, A. Winckles, G. Wilson, “Use of NetFlow/IPFIX Botnet
Detection Tools to Determine Placement for Autonomous VMs,”
Cybercrime Forensics Education and Training (CFET), 2014 7th
International Conference on, July 2014, ISBN 97801909067158

[6] R. I. Dinita, G. Wilson, A. Winckles, M. Cirstea, A. Jones, “Hardware
Loads and Power Consumption in Cloud Computing Environments,”,
International Conference on Industrial Technology (ICIT), pp. 1291-
1296, February 2013, ISBN 978-1-4673-4568-2

[7] P. A. Vicaire, E. Hoque, Z. Xie, J. A. Stankovic, “Bundle: A Group-
Based Programming Abstraction for Cyber-Physical Systems,”
Industrial Informatics, IEEE Transactions on, pp. 379-392, May 2012,
doi: 10.1109/TII.2011.2166772

[8] E. Feller, M. Simonin, Y. J´egou, A.-C. Orgerie, D. Margery, “Snooze:
A Scalable and Autonomic Cloud Management System,” [Research
Report] RR-8649, Inria Rennes, pp. 31, 2014

[9] “OpenStack,” Available at: https://www.openstack.org
[10] “OpenNebula,” Available at: http://opennebula.org
[11] “Nimbus,” Available at: http://www.nimbusproject.org

Fig. 8 - Botnet Packet Detection Rate

Fig. 6 - Data Packet Distribution per 10% Sample

819

Powered by TCPDF (www.tcpdf.org)

