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Electric vehicles (EVs) are becoming an attractive alternative to gasoline vehicles owing to the increase of
greenhouse gas emissions and gasoline prices. EVs are also expected to function as battery storages for
stabilizing large fluctuations in the power grid through the vehicle-to-grid power system, which requires
smart charge and discharge scheduling algorithms. In this paper, we develop a linear programming based
heuristic algorithm on a time–space network model for charge and discharge scheduling of EVs. We also
develop an improved two-stage heuristic algorithm to cope with uncertain demands and departure
times of EVs, and evaluate the effect of the smart charge and discharge scheduling of EVs on a peak load
reduction in a building energy management system.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With rising greenhouse gas emission and gasoline prices,
electric vehicles (EVs) are becoming an attractive alternative to
gasoline vehicles. However, the rapid growth in electricity demand
may cause large and undesirable peak loads in the power grid.
Fortunately, EVs can flexibly coordinate charge schedules, and
most owners will not be inconvenienced, providing that the EV
batteries are full before departure. A wide variety of models and
algorithms has been proposed for charge scheduling of EVs.
Clement et al. [2] proposed a quadratic programming model to
minimize power losses and voltage deviations. Deilami et al. [4]
reported a fast heuristic algorithm, called the maximum sensitiv-
ities selection algorithm, to minimize the total cost involved with
the additional electricity demands of EVs and power losses. Sor-
tomme et al. [22] described and compared three optimization
models; minimizing power losses, minimizing load variance, and
maximizing load factor. Soares et al. [21] proposed a linear pro-
gramming (LP) model that minimizes deviations between expec-
ted and actual demands, which was suitable for quasi-real time
applications because of its low computational cost. Hernánedz-
Arauzo et al. [11] formulated the scheduling problem as a
r Sterna.
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sequence of constraint satisfaction problems (CSPs) over time
called the dynamic CSP, and decomposed each CSP into three
instances of a one-machine scheduling problem. Kim et al. [17]
analyzed performance measures of two typical charge scheduling
methods: the first-in-first-out and the processor sharing under a
realistic stochastic model for EV battery charging stations.

EVs can offer further benefits to the power grid by discharging
electricity from their batteries, which is called vehicle-to-grid
power [15,16]. The rapid growth of intermittent renewable
energy sources, such as photovoltaic and wind power generation,
requires huge number of battery storages for stabilizing the large
fluctuations in the power grid. EV batteries are expected to pro-
vide an alternative to expensive stationary battery storages and to
play an important role in the emerging power grid that has a large
number of renewable energy sources.

Several optimization models and algorithms have been pro-
posed for charge and discharge scheduling of EVs. Han et al. [8]
reported a dynamic programming algorithm to optimize frequency
regulation, in which charge and discharge scheduling of individual
EVs was considered rather than that of multiple EVs. Clement et al.
[3] proposed an LP model and He et al. [10] proposed a quadratic
programming model to minimize the total charge cost. Zakar-
iazadeh et al. [26] formulated a multi-objective model to minimize
operational costs and emissions as a mixed integer nonlinear
programming (MINLP) model and it solved with Bender's
decomposition technique. Kawashima et al. [14] reported a mixed
integer linear programming (MILP) model to minimize a total
ased heuristic algorithm for charge and discharge scheduling of
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charge cost, and García-Villalobos et al. [7] presented a compre-
hensive review of models and algorithms for charge and discharge
scheduling of EVs.

We have considered an optimal electric power management in
a home energy management system (HEMS) using photovoltaics
(PVs) and stationary battery storages, and developed an MILP
formulation to minimize electricity costs on a time–space network
model [5]. In this paper, we investigate peak load reduction in a
building energy management system (BEMS), and develop an LP
based heuristic algorithm on a time–space network model for
charge and discharge scheduling of EVs. Japanese electric utilities
use the net feed-in tariff system; they are obliged to purchase
surplus electricity generated by renewable energy sources imme-
diately, and are not allowed to purchase electricity from battery
storages. Therefore, the electricity in EV batteries is available for
only onsite demand. Conventional studies of BEMS have mainly
focused on managing appliance demand, such as air conditioning,
lighting, and elevators [23,12,6]. Therefore, peak load reduction in
a BEMS may encourage individual enterprises to introduce EVs
under the current Japanese electricity tariff system.

The proposed algorithm is aimed at working as a sub-routine of
various types of BEMS, in which demands and departure times of
EVs are given by some prediction algorithms [13] and updated
frequently. This approach has been often referred as the rolling
horizon in logistics and production planning [24,20]. Exact opti-
mization algorithms, which are time-consuming, are not suitable
for charge and discharge scheduling of EVs, because the schedules
must be updated whenever demands and departure times of EVs
are updated. Thus, we develop a fast LP based heuristic algorithm
for computational efficiency and a two-stage heuristic algorithm
to cope with uncertain demands and departure times of EVs.

The rest of the paper is organized as follows. In Section 2, we
illustrate the considerations for a BEMS with EVs and a time–space
network model to describe the charge and discharge schedules of
EVs. In Section 3, we formulate an optimization problem for charge
and discharge scheduling of EVs in the time–space network model.
We present an LP based heuristic algorithm in Section 4 and a two-
stage heuristic algorithm to cope with uncertain demands and
departure times of EVs in Section 5. We report the computational
results in Section 6 and make concluding remarks in Section 7.
2. Building energy management system with electric vehicles

We focus on a local electric power network of a BEMS that
includes a number of EVs, in which every EV is used not only as a
means of transportation but also as a battery storage. EVs
repeatedly charge and discharge their batteries with supplemen-
tary electricity to satisfy the demand for appliances in the build-
ing. Fig. 1 illustrates the local electric power network of the BEMS.
The local electric power network has an alternating current (AC)
and a direct current (DC) electric transmission system. Several
Fig. 1. Local electric power network of the BEMS.
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electric devices are connected with each other through converters
and inverters resulting in electric decay.

The main functions of EVs are travel and charging and dis-
charging their batteries. We consider the charge and discharge
scheduling of EVs supposing that the travel schedules of all EVs are
given. EVs are usually disconnected from the local electric power
network while they are away from their parking lots. We accord-
ingly use a time–space network model to describe the dynamic
changes in the local electric power network over the time horizon.
The time–space network model is an expansion of the standard
network model, which illustrates a dynamic network varying over
time, and the model has a wide variety of applications, such as
airline scheduling [9], forest management [1], vehicle scheduling
[19], and evacuation routing [25]. A time–space network contains
a copy of the node set of the underlying network for every time
period, in which each pair of nodes in consecutive time periods is
connected by a forward directed arc.

Fig. 2 shows a time–space network model for the local electric
power network, in which copies of a node of the underlying net-
work are arranged in a row. The possible charge and discharge
operations of EVs are represented by forward directed arcs. We
introduce internal nodes, called AC and DC systems, to aggregate
the electricity supply through AC and DC converters, respectively.
The time–space network model makes it easy to describe the
structural changes in the local electric power network; we can
describe the absence of EVs from their parking lots by removing
the corresponding nodes from the time–space network.
3. Mixed integer linear programming formulation

We consider an optimization problem to achieve peak load
reduction in the BEMS. We formulate the problem as an MILP
model on the time–space network model. The switching opera-
tions between charging and discharging EV batteries are described
with binary variables, in order to control the frequency of
switching operations appropriately while satisfying AC and DC
loads that change significantly in a short time. The inflow and
outflow at each node represents the total electricity supply and
demand, respectively. We set the lower and upper bounds of the
amount of inflow and outflow at each node, which represents the
demands and limits of the electric equipment in the local electric
power network, e.g., the electricity demands of AC and DC loads
and EVs, the maximum electricity supply from the power grid, and
the maximum charge and discharge of EV batteries per unit time
period. We also set the departure and arrival times of EVs sup-
posing that all EVs depart their parking lots once or twice in the
scheduling period. The sets, parameters and variables in the MILP
formulation are defined as follows.

Sets

N set of EVs.
Ji set of trips of EV i.
T set of time periods.
Ti set of time periods when EV i stays in the parking lot.
Tpeak set of time periods on peak hours.

Parameters

ci battery capacity of EV i.
fi maximum electricity charge per unit time of EV i.
gi maximum electricity discharge per unit time of EV i.
ai;j departure time of the jth trip of EV i.
bi;j arrival time of the jth trip of EV i.
ased heuristic algorithm for charge and discharge scheduling of
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Fig. 2. Time–space network model for the local electric power network.
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L maximum electricity supply from the power grid per
unit time.

Et
A electricity demand of AC load at time t.

Et
D electricity demand of DC load at time t.

di;j electricity demand for the jth trip of EV i.
ei;j electricity consumption for the jth trip of EV i.
λAD decay rate from AC to DC.
λDA decay rate from DC to AC.

Variables

xi;t electricity charge for EV i at time t.
yAi;t electricity discharge from EV i to AC load at time t.
yDi;t electricity discharge from EV i to DC load at time t.
ui;t electricity charged in EV i at time t.
zt
A electricity supply from the power grid to AC load at time

t.
zt
D electricity supply from the power grid to DC load at time

t.
z average electricity supply from the power grid during

peak hours Tpeak.

The electricity demand di;j for the jth trip of EV i is set to be
larger than the actual electricity consumption ei;j so that EV i is
never fully discharged. The average electricity supply from the
power grid during peak hours Tpeak is defined as follows:

z ¼ 1
jTpeak j

X
tATpeak

zAt þzDt
� �

: ð1Þ

The electric utilities should immediately generate the sufficient
quantity of the electric power to meet almost all demands at that
moment, because the total capacity of battery storages is much
smaller than the total amount of electricity demands in the global
electric power network. However, most power generators are not
capable to meet the rapid change of electricity demands. Leveling
the variation of electricity demands is also important as well as
minimizing the total amount of electricity demands during peak
hours. We accordingly introduce the optimization model to
minimize the average and total deviation of the electricity supply
from the power grid simultaneously. The MILP formulation for
charge and discharge scheduling of EVs is described as follows:

minimize zþ α
jTpeak j

X
tATpeak

zAt þzDt �zj
�� ð2Þ

subject to f i xi;tþui;trci; tATi; iAN; ð3Þ
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zAt þzDt rL; tAT ; ð4Þ

xi;tþyAi;tþyDi;tr1; tATi; iAN; ð5Þ

zAt þλDA
X
iAN

gi y
A
i;t ¼ EAt ; tAT ; ð6Þ

λADzDt þ
X
iAN

gi y
D
i;t ¼ EDt þ

X
iAN

f i xi;t ; tAT ; ð7Þ

f i xi;ai;j þui;ai;j Zdi;j; jA Ji; iAN; ð8Þ

ui;t�1þ f i xi;t�1 ¼ ui;tþgi ðyAi;tþyDi;tÞ; tATi; iAN; ð9Þ

ui;ai;j �ui;bi;j ¼ ei;j; jA Ji; iAN; ð10Þ

xi;tAf0;1g; yAi;tAf0;1g; yDi;tAf0;1g; tATi; iAN; ð11Þ

0rui;trci; tATi; iAN; ð12Þ

zAt ; z
D
t Z0; tAT : ð13Þ

The objective function (2) minimizes both the average and the
total deviation of the electricity supply from the power grid during
peak hours, where α is a parameter controlling their trade-off. Eq.
(3) shows the battery capacity constraints of EVs. Eq. (4) describes
the electricity supply constraints from the power grid. Eq. (5)
shows the exclusive constraints of charge and discharge opera-
tions of EVs. Eqs. (6)–(8) show the demand constraints of AC and
DC loads and EVs, where we assume xi;t ¼ yAi;t ¼ yDi;t ¼ 0 for all
tAT⧹Ti, iAN. Eq. (9) shows the flow conservation constraints of
EV batteries. Eq. (10) shows the actual electricity consumption for
EV trips. In addition, we also introduce a set of dummy nodes to
avoid any infeasible instances caused by short parking times for
EVs satisfying their electricity demands.
4. Linear programming based heuristic algorithm

The optimization problem often becomes hard to solve exactly
for a long scheduling period, because the size of the MILP for-
mulation is in proportion to the length of the scheduling period. In
addition, the EV charge and discharge schedules must be updated
immediately when the demands and departure times of EVs are
updated. We accordingly attains a feasible solution of the MILP
formulation by rounding an optimal solution of its LP relaxation
problem rather than applying time-consuming exact algorithms.
ased heuristic algorithm for charge and discharge scheduling of
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Fig. 3. Rounding procedures of the LP based heuristic algorithm: (a) rounding down yAi;t and yDi;t to zero and (b) rounding up xi;t to one.

Fig. 4. Uncertainty of departure times and demands of EVs.
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The LP based heuristic algorithm consists of the following two
steps: (i) solving the LP relaxation problem of the MILP formula-
tion and (ii) rounding an optimal (fractional) solution of the LP
relaxation problem to attain a feasible (integer) solution of the
MILP formulation. Here, the LP relaxation problem is defined by
replacing the binary constraints (11) with 0rxi;tr1, 0ryAi;tr1,
0ryDi;tr1 for all tATi, iAN. If the values of yAi;t and yDi;t are frac-
tional, then it rounds down them to zero and increases the values
of zAi;t , z

D
i;t , and ui;t to satisfy Eqs. (6), (7), and (9), respectively. If Eq.

(3) (the battery capacity constraint) is violated by increasing the
value of ui;t , then it rounds down the value of the last electricity
charge xi;s40 (sot) and increases the value of zsD to satisfy Eq. (7)
(the demand constraint) at time s. If the values of xi;t are fractional,
then it rounds up them to one and increases the values of zDi;t to
satisfy Eq. (7). Fig. 3 illustrates the rounding procedures.
5. Two-stage heuristic algorithm

We need to handle the uncertainties and fluctuations of the
input data for real applications; the demands and departure times
of EVs often change because of heavy traffic and changes to routes.
Otherwise, EVs will not hold a sufficient charge for their trips or
supply AC and DC loads during peak hours. Next, we consider two
uncertainties for the input data illustrated in Fig. 4: (a) departure
times are made earlier than the original schedule, and
(b) electricity demands become larger than the original demands.
In Fig. 4, schedule B can meet the electricity demand more than
schedule A in both cases (a) and (b). Thus, we can make room to
change the travel schedules of EVs by charging EV batteries with a
Please cite this article as: Umetani S, et al. A linear programming b
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certain amount of supplementary electricity as soon as possible.
However, the standard algorithm for the LP relaxation problem,
called the simplex algorithm, can hardly afford supplementary
electricity to cope with the uncertainties because it basically
converges to an extreme point of the feasible region that often has
no margins for most of the constraints.

We develop a two-stage heuristic algorithm to maximize the
amount of supplementary charged electricity while minimizing
the average and total deviation of the electricity from the power
grid during peak hours: (i) the algorithm first obtains an objective
value ζ� of a feasible solution by applying the LP based heuristic
algorithm to the MILP formulation in Section 3, and then (ii) it
obtains another feasible solution of the same objective value ζ�

obtained in stage (i) by solving the following MILP formulation.
Parameters

ζ� objective value of a feasible solution obtained in stage (i).

Variables

βi;j amount of supplementary electricity charged for the jth
trip of EV i.

Problem

maximize
X
iAN

X
jA Ji

βi;j ð14Þ

subject to f i xi;ai;j þui;ai;j ¼ di;jþβi;j; jA Ji; iAN; ð15Þ
ased heuristic algorithm for charge and discharge scheduling of
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Fig. 5. Total AC and DC load measured every 10 min during a day (kWh). Fig. 6. Electricity supply from the power grid for every 10 min (kWh).

Table 1
Statistics for electricity supply from the power grid during peak hours (kWh).

Statistics No EVs Only charge Charge and discharge

Avg. 457.22 459.68 447.68
Max. 565.55 560.68 557.62
Std. dev. 69.60 60.57 57.69
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zþ α
jTpeak j

X
tATpeak

zAt þzDt �z rζ�;
���� ð16Þ

βi;jZ0; jA Ji; iAN; ð17Þ

ð3Þ; ð4Þ; ð5Þ; ð6Þ; ð7Þ; ð9Þ; ð10Þ; ð11Þ; ð12Þ; ð13Þ:
We replace Eqs. (2) and (8) with Eqs. (14) and (15), respectively, to
maximize the amount of supplementary charged electricity. We
also add Eq. (16) to achieve the same objective value ζ� obtained
in stage (i). If it is hard to charge any supplementary electricity in
the MILP formulation, then it is an alternative to replace the right-
hand side of Eq. (16) with ζ�þε, where ε(40) is a parameter.
6. Computational results

We conduct computational experiments to evaluate the effect
of the smart charge and discharge schedules of EVs obtained by
the two-stage heuristic algorithm in Section 5 and the computa-
tional efficiency of the LP based heuristic algorithm in Section 4.

The performance of the EV batteries is estimated according to
[18], where the discharge electric current is 50 A and the voltage is
250 V, and the normal charge electric current is 15 A and the
voltage is 200 V. The capacity of the batteries is set to 21 kWh. We
obtain the total AC and DC load measured every 10 min during a
day from a real eight-story office building (the total floor area is
11,822 m2), as shown in Fig. 5. The scheduling period is set to a day
and half, where the peak hours are set to 8:30–18:00. We generate
five traveling schedules artificially and assign them to all EVs in
turn. Here, we assume that all EVs are used for only commercial
services (not for commuting employees) and all EVs stay in the
parking lots of the office building during outside of working hours.
The number of EVs is set to 10, and all EVs depart their parking lots
once or twice during the scheduling period. Their departure time
is from 7:00 to 19:00 and their travel duration is from two to seven
hours. The initial charge of all EVs is from 30% to 55% of the battery
capacity. The demand di;j of all EVs is from 60% to 90% of the
battery capacity, while the actual consumption ei;j of all EVs is from
20% to 80% of the battery capacity, where recall that di;jZei;j holds
for all iAN, jA Ji so that EV i is never fully discharged. The unit
time period of the time–space network is set to 10 min. All input
data can be obtained from the electronic supplementary material.
Under these conditions, we generate instances of the MILP for-
mulation, which have approximately 8000 constraints and 7700
variables. Here, the parameter α is set to 12.70 for leveling the
variation of electricity demands during peak hours; this value is
adjusted so as to minimize the top 5% of the electricity demands
Please cite this article as: Umetani S, et al. A linear programming b
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during peak hours on preliminary computational experiments. We
use a latest solver called CPLEX12.6 for solving the LP relaxation
problem. For each evaluation, we run the algorithms for five dif-
ferent data sets of traveling schedules of all EVs.

Initially, we evaluate the effect of the smart charge and dis-
charge scheduling of EVs on a peak load reduction. Fig. 6 shows
the electricity supply from the power grid for every 10 min, which
is illustrated by a simple moving average of 30 min. The light gray
line labeled “No EVs” shows the electricity supply without EVs,
which is equal to the total AC and DC load. The dark gray line
labeled “Only charge” shows the results for the smart charge
schedules of EVs obtained with the two-stage heuristic algorithm
with no EV discharge. The black line labeled “Charge and dis-
charge” shows the results for the smart charge and discharge
schedules of EVs obtained with the two-stage heuristic algorithm.
Table 1 shows the average, maximum, and standard deviation of
electricity supply from the power grid during peak hours, and we
observe that the smart charge and discharge scheduling of EVs
reduces the electricity supply required during peak hours. Fig. 7
shows the state of charge for each EV with their corresponding
schedules, where the gray zone illustrates the absence of EVs from
their parking lots. To the extent of our computational experiments,
we succeed to increase the amount of supplementary charge at
stage (ii) while keeping the same objective value ζ� obtained in
stage (i). We evaluate the robustness of the schedule by the mar-
gins for charge time up to departure and the amount of charge for
each EV trip. Stage (ii) increases the margins for charge time up to
departure by 72 min and the amount of charge for each EV trip by
0.90 kWh on average. That makes room to change the travel
schedules of EVs such as departing earlier time and traveling
longer distances.

Next, we evaluate the effect of the smart charge and discharge
scheduling with different numbers of EVs. Fig. 8 shows the elec-
tricity supply from the power grid for every 10 min with different
numbers of EVs. Table 2 shows the average, maximum, and stan-
dard deviation of electricity supply from the power grid during
peak hours. Although the total amount of electricity supply over
ased heuristic algorithm for charge and discharge scheduling of
016), http://dx.doi.org/10.1016/j.omega.2016.04.005i

http://dx.doi.org/10.1016/j.omega.2016.04.005
http://dx.doi.org/10.1016/j.omega.2016.04.005
http://dx.doi.org/10.1016/j.omega.2016.04.005


Fig. 7. State of charge for EV1–10 obtained with the smart charge and discharge schedules.
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the scheduling period increases in proportion to the number of
EVs, it is possible to reduce the average and standard deviation of
electricity supply during peak hours more effectively with a larger
number of EVs. We note that the maximum value of the electricity
Please cite this article as: Umetani S, et al. A linear programming b
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supply does not decrease monotonically because the optimization
model is not to minimize the maximum value during peak hours.

Finally, we evaluate the computational efficiency of the LP
based heuristic algorithm for solving the MILP formulation in
ased heuristic algorithm for charge and discharge scheduling of
016), http://dx.doi.org/10.1016/j.omega.2016.04.005i
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Fig. 8. Electricity supply from the power grid for every 10 min with different
numbers of EVs (kWh).

Table 2
Statistics for electricity supply from the power grid during peak hours with dif-
ferent numbers of EVs (kWh).

Statistics No EVs 5 EVs 10 EVs 20 EVs 40 EVs 80 EVs

Avg. 457.22 450.07 447.68 442.98 441.93 427.49
Max. 565.55 553.38 557.62 540.41 560.27 557.55
Std. dev. 69.60 62.21 57.69 50.48 44.06 40.70

Table 3
Computational results of the LP based heuristic algorithm and the MILP solver for
solving the MILP formulation in Section 3.

#EV LP LP based heuristic MILP solver

Obj. Obj. Gap Time (s) Obj. Gap TTB (s) TTI (s)

5 154.51 164.65 6.14% 0.16 159.68 3.22% 1762.01 1.96
10 139.52 152.53 8.55% 0.35 142.37 2.00% 2900.95 2.20
20 110.05 134.76 18.33% 0.78 112.89 2.51% 3423.27 54.40
40 80.74 125.99 35.57% 2.74 84.09 4.01% 3558.24 134.57
80 70.57 121.37 41.41% 6.26 76.74 8.06% 3571.54 418.98

Fig. 9. Time courses of the objective values for the LP based heuristic algorithm and
the MILP solver with 80 EVs.
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Section 3, by comparing it with a latest MILP solver called
CPLEX12.6. Table 3 shows the computational results for the algo-
rithms on a MacBook Pro laptop computer with a 2.7 GHz Intel
Core i7 processor. The second column shows the optimal values
ζLP of the LP relaxation problems. The third and sixth columns
show the objective values (not the electricity supply from the
Please cite this article as: Umetani S, et al. A linear programming b
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power grid) of the LP based heuristic algorithm and the MILP
solver, respectively. The fourth and seventh columns show the
relative gap (%) 100� ðζ�ζLPÞ=ζ of the objective value ζ. The fifth,
eighth and ninth columns show the computation time (s) of the
algorithms. The computation time to solve the LP relaxation pro-
blems is almost same as that of the LP based heuristic algorithm,
because we need little computational effort for rounding an
optimal (fractional) solution of the LP relaxation problem. The
eighth column shows the computation time (s) of the MILP solver
to the best upper bounds (not the optimal values) with time limits
of 3600 s, abbreviated to TTB. The ninth column shows the com-
putation time (s) of the MILP solver to improve the upper bounds
obtained by the LP based heuristic algorithm, abbreviated to TTI.
We first observe that the MILP solver attains no optimal solutions
for any cases within the time limits. Although the MILP solver
achieves better upper bounds than the LP based heuristic algo-
rithm, it consumes much more computation time to achieve them.
Fig. 9 shows the time courses of the objective values for the LP
based heuristic algorithm and the MILP solver with 80 EVs. The
dotted horizontal line shows the optimal value ζLP of the LP
relaxation problem. The gray and black lines show the upper
bounds obtained by the LP based heuristic algorithm and the MILP
solver, respectively. We observe that the MILP solver takes 465.00
s to improve the upper bound obtained by the LP based heuristic
algorithm. The family of simplex algorithms performs efficiently
for solving a series of LP instances with small modifications,
known as the warm start technique, which uses the optimal
solution of the solved LP instance as a starting point and solves the
modified LP instance faster than it can be solved from scratch.
Based on these observations, the two-stage heuristic algorithm is
suitable for coordinating charge and discharge schedules of EVs
with uncertain demands and departure times.
7. Conclusion

We examined reducing the peak load in a BEMS by coordi-
nating the charge and discharge schedules of EVs. We presented
an LP based heuristic algorithm in a time–space network model to
create a smart charge and discharge schedule of EVs within a
limited computation time. We also developed an improved two-
stage heuristic algorithm to cope with uncertain demands and
departure times of EVs. According to computational experiments
for a BEMS, the two-stage heuristic algorithm achieves a peak load
reduction and handles the uncertain demands and departure
times of EVs within a limited computation time. Our computa-
tional results provide an incentive for individual enterprises to
introduce EVs despite the limitation of the net feed-in tariff
system.
Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.omega.2016.04.
005.
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