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A B S T R A C T

Concentrator photovoltaics (CPV) is considered to be one of the most promising renewable energy components
that could lead to a reduction on the dependence on fossil fuels. The aim of CPV technology is to lower the cost
of the system by reducing the semiconductor material, and replacing it by cheap optical devices that concentrate
the light received from the sun on a small-size solar cell. The electrical characterization of devices based on this
technology however, is inherently different and more complex than that of the traditional PV devices. Due to the
advantages offered by the Artificial Neuron Networks (ANNs) to solve complex and non-linear problems, and
the great level of complexity of electrical modelling of CPV devices, in recent years, several authors have applied
a variety of ANNs to solve issues related to CPV technology. In this paper, a review of the ANNs developed to
address various topics related with both, low and high concentrator photovoltaics, is presented. Moreover, a
review of the ANN-based models to predict the main environmental parameters that affect the performance of
CPV systems operating outdoors is also provided. Published papers presented show the potential of the ANNs as
a powerful tool for modelling the CPV technology.

1. Introduction

Nowadays, photovoltaics (PV) are the most wide-spread solar
energy system worldwide. Among the different PV technologies,
concentrator photovoltaics (CPV) is considered as one of the most
promising renewable energy system that could lead to a reduction on
the dependence on fossil fuel [1,2]. The CPV systems are based on the
use of cheap optical devices (lenses and mirrors) that concentrate the
sunlight on a small-size solar cell. The aim of this technology is to lower
the cost of the system by reducing the semiconductor material, which is
the most expensive part in a PV system, so the costs of the electrical
power generation can be reduced [3].

It is usual to classify the CPV systems according to the concentra-
tion ratio of the solar radiation incident onto the cell. This parameter
gives the ratio between the lens area and the solar cell area. This ratio,
as well as the optical efficiency of the system, indicates the number of
times that the solar light is concentrated and is usually known as the
number of ‘Suns’, which is equivalent to the number of times the sun
power is multiplied. According to this ratio it is possible to classify the
CPV systems into [4]:

• Low concentrator photovoltaics (LCPV) for systems with concentra-
tion ratio between 1 and 40 suns.

• Medium concentrator photovoltaics (MCPV) for systems with con-
centration ratio between 40 and 300 suns.

• High concentrator photovoltaics (HCPV) for systems with concen-
tration ratio between 300 and 2000 suns.

Among these, the low concentration photovoltaic systems for
building integration [5,6], and the high concentration photovoltaic
systems for large scale implementation in big power plants [7,8], have
shown the greatest potential for growth and development. Thus CPV
and in particular LCPV and HCPV systems, could play an important
role in the power generation markets in the coming years [9,10].

As in other type of PV technology, the prediction of the electrical
characteristics of CPV systems is required for the design, monitoring,
life cycle assessment, and therefore, for the accurate evaluation of the
economic parameters to promote the market expansion of this emer-
ging technology worldwide [11–14]. Moreover, the modelling of
concentrator devices is inherently different and more complex than
traditional PV technology [15,16]. The main concerns involved in the
modelling of CPV technology are:
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• CPV systems are largely based on the use of multi-junction (MJ)
solar cells. The electrical output and temperature dependency of
these devices are strongly affected by the amount and spectral
distribution of the concentrated sunlight [17,18].

• CPV devices use optics to concentrate the light on a small solar cell
surface. These devices modify the input spectral distribution and
introduce a strong angular dependence on the systems [19,20].

• The cell temperature of CPV systems is difficult to measure and
predict. This is due to the fact that the cells mounted on CPV
systems are surrounded by several peripheral elements [21,22].

• The direct component of irradiance is the main driver of the
electrical output of CPV systems. The direct broadband and spectral
distribution of irradiance is more variable and difficult to forecast
than the global irradiance, since it is affected more by the presence

Fig. 1. (a) Direct normal solar irradiance and (b) the maximum power of a typical HCPV module made up of MJ solar cells a Fresnel lenses measure during a summer day at the Centro
de Estudios Avanzados en Energía y Medioambiente (University of Jaén).

Nomenclature

Abbreviations

AE Absolute Error
AI Artificial Intelligence
AM Air Mass
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
AOD Aerosol optical depth
APE Average Photon Energy
ARMSE Absolute Root Mean Square Error
CPV Concentrator Photovoltaics
DJ Dual junction
E-ANN Ensemble Artificial Neural Network
EQE External Quantum Efficiency
FFNN Feed-Forward back-propagation Neural Network
HCPV High Concentrator Photovoltaic
LCPV Low Concentrator Photovoltaics
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCPV Medium Concentrator Photovoltaics
MBE Mean Bias Error
MJ Multi Junction
MLR Multiple Linear Regression
MLP Multilayer Perceptron
MSE Mean Square Error
MRE Mean Relative Error
NRMSE Normalised Root Mean Square Error
PV Photovoltaics
RBF Radial Basis Function Network
RCI Reference Clearness Index
RMSE Root Mean Square Error

SMR Spectral Matching Ratio
TJ Triple junction

Symbols units

λ Wavelength nm
B Irradiance W/m2

d Index of agreement
DI Direct Normal Irradiance W/m2

DNI Direct Normal Irradiance W/m2

DNIc Portion of the DNI transformed into heat W/m2

DNIheat Portion of the DNI transformed into heat W/m2

DHI Diffuse Irradiance W/m2

Eb(λ) Spectral distribution of the DNI
f Short circuit current A
GHI Short circuit current A
Isc Short circuit current A
Kt Clearness index
R2 Correlation coefficient
S Spectrum
SR(λ) Spectral Response
Pmax Precipitable Water cm2

PW Precipitable Water cm2

T Temperature °C
Tair Ambient Temperature °C
Tc Heat-sink temperatura °C
Th-s Heat-sink temperatura °C
Tm Module Temperature °C
Voc Open circuit voltage V
Ws Wind Speed m/s
X Concentration Level
η Proton energy eV
η(λ) Optical efficiency
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of clouds and aerosols in the atmosphere [23,24].

In addition to the above, other crucial parameters such as soling,
lens temperature and pointing errors can be reported for playing a
relevant role on the performance of CPV systems under real operating
conditions [25]. The modelling of CPV systems is consequently
complex and challenging from a fundamental point of view.

Artificial Intelligence (AI) techniques, and mainly Artificial Neural
Networks (ANNs), have proved to be very helpful in solving complex
problems and studying non-linear systems. ANNs have been applied
over a wide range of fields for modelling and prediction in energy
systems, i.e., for heating, ventilating and air conditioning systems, for
modelling and control in power generation systems, for refrigeration
[26], and particularly in renewable energy systems, i.e., for modelling
of solar steam generators, solar water heating systems or photovoltaic
systems [27], among others. In the field of photovoltaics, ANNs have
been used to estimate and predict solar radiation data [28–32], the
maximum power and normal operating power of a flat photovoltaic
module [33,34], to size, model and simulate both standalone and grid-
connected PV systems [35,36], to develop photovoltaic systems with a
maximum power point tracking controller [37,38], to predict the
equivalent circuits parameters of a flat PV module [39], to select a
suitable model for characterising PV devices [40], to obtain the I-V
curves of different flat plate panels [41,42], or to estimate the energy
production of grid connected PV systems [43,44], among others. A
complete review of the use of ANNs in photovoltaics can be found in
[45].

Due to the advantages offered by the ANNs to solve complex and
non-linear problems, and the great level of electrical modelling
complexity of CPV devices discussed above, in recent years, several
authors have applied various ANNs to solve issues related to LCPV
systems and mainly to the HCPV systems. The use of ANNs present the
advantage of offering alternative solutions to problems that are still
challenging from a fundamental physical point of view, due to the
complexity of the different physical phenomena involved in the
performance of these systems. Moreover, they also have the advantage
that they do not require detailed information about the materials used
in the manufacture of the studied system, which are not always
available. Additionally, advanced knowledge of semiconductor, optics
and/or atmospheric physics and specific software is not required when
compared with the most advanced modelling techniques found in the
current CPV scientific literature [46,47]. It is also important to note
that ANNs also show different disadvantages if compared with tradi-

tional simple analytical and physical solutions. For instance, they
require advance knowledge of complex mathematical modelling tech-
niques that are not always easy to manage. In addition, although a high
accuracy between the desired input and output variables can be found,
the fundamental relationships implicated in the electrical conversion
could be sometimes unknown. This may lead to a poor understanding
of the CPV device under study.

In this paper, for the first time, a detailed review of the ANNs
developed to address various issues related with LCPV and HCPV
technologies, is presented. Moreover, a review of the ANN-based
models to predict the main atmospheric parameters that affect the
performance of CPV system operating in an outdoor environment is
also provided. The main features of each specific method are discussed,
as well as the different key indicator parameters provided by the
different authors.

2. Applications of ANNs to estimate atmospherics
parameters

As in any type of PV system the main parameters that influence the
output of the CPV devices are solar irradiance, temperature and solar
spectrum. In this section a review of ANN-based models for predicting
solar irradiance and temperature is conducted since, the use of ANNs
to characterise the solar spectrum for CPV applications has not been
covered yet.

2.1. Applications of ANNs to estimate the direct and diffuse
components of solar radiation

In this section a review of models that are focused on the estimation
of the components of solar irradiance, direct or diffuse, is presented. As
indicated above, CPV technology is based on the use of optical devices
and due to the use of these optical elements, CPV devices react in a
different way to the components of solar irradiance.

Thus, for instance, a typical HCPV module is made up of solar cells,
optical devices and the rest of the components required to generate
electricity and dissipate the heat produced on the solar cell surface. The
solar cells used in this technology are based on several p-n junctions,
usually three, of type III-V semiconductor alloys. The concentrator
optics are based on a primary optical element (usually a point focus
Fresnel lens) to collect the sunlight [48] and a secondary optical
element that improves the angular acceptance angle of the module and
homogenizes the light on the solar cell [49]. Due to the use of point

Fig. 2. (a) Direct and diffuse components of irradiance and (b) the maximum power of a LPCV module for this day measured during a winter day at Edinburg.
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focus lenses which concentrate light on the solar cell, the HCPV devices
operate only with direct normal irradiance (DNI). So this component of
the solar irradiance is essential for the characterization, management
and operation of HCPV modules, systems and power plants [50].

In the case of LCPV technology, there are a large number of systems
and variations based on very distinct technologies [5]. However, the
research trend shows that asymmetric designs of the concentrator are
most suitable for LCPV modules for building integration. It has been
observed that the performance of stationary low concentration systems
largely depends on the sun angle, module temperature and the ability
to collect direct (DI) and diffuse (DHI) irradiance. The wide range of
acceptance angles of low concentrating devices enables the system to
collect both direct and a large portion of diffuse irradiance. However,
the amount of collection of diffuse irradiance differs from the direct
irradiance, so it needs to be treated differently [51,52].

To illustrate this, Fig. 1 shows an example of how the maximum
power of a HCPV module varies with the DNI, while Fig. 2 shows an
example the variation of the maximum power of a LPCV module with
the DI and DHI components of the irradiance.

It is worth to mention that HCPV technology only uses the DNI due
to the use of point focus lenses, and therefore, its low acceptance angle,
as previously mentioned. On the other hand, the wider acceptance
angle of LCPV systems allows not only the DNI, but also the DI to be
collected. It is important to note that the DNI represents the irradiance
received on a surface facing directly toward to the sun, so that the solar

Table 1
Summary of ANN-based models for predicting the DNI (or DI) and DHI components of
the irradiance.

Authors Type of ANN Inputs Output Error

Lopez et al.[45] Bayesian neural
network with
automatic
relevance
determination
method

• Kt

• AM
• DNI –

Alam et al.[46] FFNN • Latitude

• Longitude

• Altitude

• Months of
year

• Mean
duration of
sunshine per
hour

• Rainfall ratio

• Relative
humidity
ratio

• RCI RMSE (%) =
2.79 to 1.65
MBE (%) =
−1.79 to
+0.075

Mishra et al.
[47]

FFNN • Latitude

• Longitude

• Altitude

• Months of
year

• Mean
Duration of
sunshine per
hour

• Rainfall ratio

• Relative
humidity
ratio

• Kt RMSE (%) =
0.8–5.4

RBF RMSE(%) =
7–29

Mellit et al.[48] FFNN • Hourly
Temperature

• Humidity

• Sunshine
duration

• Irradiation of
hour before

• DNI

• DHI
R2(%) =
98.34 (DNI)
and 98.21
(DHI)

Mubiru et al.
[49]

FFNN • Latitude

• Longitude

• Altitude

• Monthly
average daily
DNI

• Sunshine
hours

• Maximum
temperature

• DNI R2(%) = 99.8
MBE(MJ/
m2) = 0.005
RMSE(MJ/
m2) = 0.197

Marquez and
Coimbr-
a[50]

FFNN • Maximum
temperature

• Temperature

• Dew point
temperature

• Relative
humidity

• Sky cover

• Wind speed

• Wind
direction

• Probability of
precipitation

• Min
temperature

• Solar zenith
angle

• Normalised
hour angle

• DNI R2(%) =
78.8–82.1
MBE(%) =
−8.3 to - 9.5
RMSE(%) =
30.1–32.0

Rodrigo et al. FFNN – • DNI RMSE =
(continued on next page)

Table 1 (continued)

Authors Type of ANN Inputs Output Error

[51] 0.01–0.27
Rehman and

Mohande-
s[52]

RBF • Day number

• Global solar
radiation

• Ambient
temperature

• Relative
humidity

• DNI

• DHI
MAPE =
0.016 (DNI)
and 0.41
(DHI)

Eissa et al.[53] FFNN • Six SEVIRI
thermal
channels

• Solar zenith
angle

• Solar time

• Day number

• Eccentricity
correction

• DNI

• DHI
RMSE(%) =
26.1 (DNI)
and 25.6
(DHI)
MBE(%) =
−6.0 (DNI)
and +3.6
(DHI)

Chu et al.[54] FFNN with
Genetic
algorithm

• DNI time-
series
measured

• The cloud
coverage
time-series

• DNI –

Mohammad
et al.[55]

FFNN • Six SEVIRI
thermal
channels

• Solar zenith
angle

• Solar time

• Day number

• Eccentricity
correction

• DNI

• DHI
RMSE(%)
=19.5–34.6
(DNI) and
21.7–26.7
(DHI)
MBE(%)
=−0.2 to
+1.2 (DNI)
and −3.1 to
+2.6 (DHI)

Renno et al.
[56]

FFNN • Kt

• Declination
angle

• Hour angle

• Global
normal
irradiance

• DNI MAPE(%)
=5.72
RMSE(%)
=3.15
R2=0.992
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rays are always perpendicular to that surface. On the other hand, the DI
on a plane of a LCPV system can be simply obtained from the DNI and
its incident angle on the surface of the LCPV module as:

DI DNIcos θ= ( ) (1)

where θ is the incident angle.
Although there are a large number of methods to estimate the

global irradiance (GHI), both analytical and artificial intelligence based
technics [53], the DNI is affected by phenomena that are very difficult
to forecast. These phenomena, such as cirrus clouds, wildfires, dust
storms, and episodic air pollution events, can reduce DNI (or DI) by up
to 30% on otherwise cloud-free days [54]. A similar behaviour can be
observed with the DHI. Because of this, the modelling and prediction of
the DNI (or DI) and DHI is a difficult task and several authors have
used ANN-based models to address this issue. These ANNs-based
models are briefly described below and Table 1 summarises their main
features used to estimate the DNI (or DI) and DHI.

Lopez et. al [55] developed a Bayesian artificial neural network for
modelling the DNI. The authors also used a relevance determination
method to find the relative relevance of a large set of meteorological
and radiometric variables. Results of this method showed that the
clearness index (Kt) and air mass (AM) are the more relevant
parameters. However, the analysis of the errors was not provided.

In Ref. [56] an ANN model used to indirectly estimate the beam
solar radiation from a new parameter, the reference clearness index
(RCI), was developed. This parameter is defined as the ratio of the
measured beam solar radiation at normal incidence to the beam solar
radiation as computed by Hottel's clear day model. The root mean
square error (RMSE) of the models varies between 1.65–2.79% for
various Indian regions.

Mishra et al. [57] developed self-consistent models for the estima-
tion of direct solar radiation for the Indian climatic zone. Two ANN-
based models were used for the indirect estimation of the DNI from the
Kt; a feed-forward back-propagation neural network (FFNN) and a
radial basis function network (RBF). The results showed the good
agreement of the predictions with the measurements for the Indian
region, with a RMSE ranging from 0.8% to 5.4% for the FFNN, and 7–
29% for the RBF.

In Ref. [58], an adaptive model for predicting the hourly GHI, DHI
and DNI was presented. The proposed model was also compared with a
FFNN. The results showed that FFNN performed better than the
designed adaptive alpha-model, being able to predict the DHI and
DNI with acceptable accuracy at Jeddah (KSA), with a correlation
coefficient (R2) of 98.34% for the direct normal irradiance and 98.22%

for the diffuse irradiance.
Mubiru [59] studied different architectures of ANNs in order to

develop the most suitable model for estimating of monthly average
daily direct solar radiation. The results showed a correlation coefficient
of 0.998, a mean bias error (MBE) of 0.005 MJ/m2 and the root mean
square error of 0.197 MJ/m2.

In [60], several forecasting models for hourly solar irradiation (DNI
and GHI) using artificial neural networks were developed. The
meteorological data used were obtained from the US National
Weather Service forecasting database, and solar geotemporal variables
were used as inputs. In order to select the more relevant inputs, the
gamma test combined with a genetic algorithm was used. According to
the authors, it was found that the DNI is much more difficult to predict
reliably; RMSE obtained on same-day forecasts are in the range of 28–
35%.

Rodrigo et al. [61] developed different architectures of Multilayer
Perceptron (MLP) neural network for the generation of DNI hourly
time series for a number of Spanish locations. The models were tested
in Spanish locations and the results showed that the ANNs perform
better for locations placed at the south of Spain. The developed models
could be a useful tool for the estimation of the energy that will be
produced by concentrating photovoltaic systems, to perform economic
analysis and supervise plant operation.

Rehman and Mohandes [62] developed a RBF network to model the
DHI and DNI for locations in KSA. The inputs of the model were the
day number, global solar radiation, ambient temperature and relative
humidity. The results indicate that the proposed model predicts direct
normal solar radiation with a mean absolute percentage error (MAPE)
of 0.016 and 0.41 for diffuse solar radiation.

Eissa et al. [63] developed a statistical model based on an ensemble
artificial neural network (E-ANN) approach for predicting the DHI and
the DNI. The inputs of the model were six SEVIRI (on-board Meteosat
Second Generation satellite) thermal channels along with several time
and seasonal dependent parameters, namely the solar zenith angle,
solar time, day number and eccentricity correction. The results were
very promising when estimating the solar irradiance at a 15 min
temporal resolution and a 3 km spatial resolution. For a totally
independent dataset for all sky conditions, RMSE were 26.1% for
DNI and 25.6% for DHI, while the MBE were −6% for DNI and +3.6%
for DHI.

Chu et al. [64] designed a novel smart forecasting model for intra-
hour DNI. ANN optimization schemes in combination with sky image
processing were used by authors. The hybrid forecast models achieved
statistically robust forecasting skills in excess of 20% over persistence

Fig. 3. RMSE of the different method analysed for the estimation of the components of the irradiance DNI (or DI) and DHI.
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for both 5 and 10 min ahead forecasts, respectively.
Mohammad et al. [65] proposed an ANN ensemble framework used

to estimate the solar irradiance components, DHI, DNI, and GHI.
Cloud-free and cloudy observations, for DHI, and DNI, were consid-
ered as two separate case studies. In each case study, two E-ANN
models were trained; one model for predicting the DHI and the other
for predicting the DNI. For the cloud-free case, the RMSE were around
19.5% for DNI and 21.7% for DHI, while MBE were −0.2% for DNI and
−3.1% for DHI. For cloudy observations the RMSE were 34.6% for DNI
and 26.7% for DHI, while the MBE were +1.2% for DNI and +2.6% for
DHI.

Recently, Renno et al. [66] have developed a MLP model for
predicting the DNI. Different parameters such as climatic, astronomic
and radiometric variables have been chosen as inputs, the Kt, declina-
tion angle, hour angle, global normal irradiance. The MLP network was
trained, tested and validated for the hourly DNI estimation obtaining
the MAPE, RMSE and R2 statistical index values, equal to 5.72%,
3.15% and 0.992 respectively.

As can be seen from Table 1, most of the authors have used feed-
forward back-propagation artificial neural networks to predict the
components of the irradiance DNI (or DI) and DHI. The majority of
the methods are based on atmospherics parameters (temperature,
humidity, etc.) and astronomic and radiometric variables (longitude,
latitude, solar zenith angle, etc.) as input variables. Regarding the
methods that predict the DNI (or DI), the analysis of the errors
provided by authors shows that the method proposed by Alam et al.
[56] and the method proposed by Mishra et al. [57] based on FFNN
present the best results with RMSE values ranging from 2.79 to 1.65%
and 0.8 to 5.4%, respectively. However, it is important to highlight that
neither of them directly gives the DNI (or DI) as the output parameter.
The method proposed by Alam et al. [56] provides as output a new
parameter called the reference clearness index (RCI), while the method
proposed by Mishra et al. [57] provides Kt as output. Among the
methods that directly provide the DNI as output, the method developed
by Renno et al. [66] is the one that yields the best results with a RMSE

of 3.15%. With regards to the DHI, it is should be noted that only a few
methods provide this parameter, and that the RMSE value found is
around to be 24% for all cases studied. These results are graphically
shown in Fig. 3, where the distribution of the RMSE of the considered
methods is represented. It is important to remark that only the
methods that provide the RMSE have been taken into account in this
analysis. This parameter has been selected since is the most widely
used by the different authors to evaluate their methods.

2.2. Applications of ANNs to estimate the ambient temperature

The temperature is another atmospheric parameter that has a
significantly influence on the output of PV devices and consequently
affects the performance of concentrator photovoltaic devices. To
illustrate this, Fig. 4 shows for an example day the evolution of the
open circuit voltage (Voc) of a HCPV module with the ambient
temperature (Tair).

Usually time series of ambient temperature, Tair are available in
most of the weather stations databases. However, several authors have
applied ANN-method to predict this parameter in regions where the
availability of data is limited or they do not exist. Furthermore, ANNs
have been used for short-term forecast time-series of Tair. The ANNs-
based models are described below and Table 2 summarises their main
features used to estimate Tair.

In [67] authors used artificial neural network to predict the hourly
mean values of Tair twenty-four hours in advance, in Saudi Arabia. The
only input to the model is temperature while the output is the
temperature of the following day at the same hour. The RMSE is
1.75 °C while the mean percent deviation between the predicted and
measured values is found to be 3.16, 4.17 and 2.83 for three different
years.

Abdel-Aal [68] proposes an abductive network as an alternative
machine learning approach to hourly temperature forecasting. The
dataset used consists of measured hourly temperature data for Seattle
(USA) over a seven years period. The author developed several models
to predict the next-day hourly values of temperature and the tempera-
ture at the next-hour. The mean absolute errors (MAE) are 2.02 °F and
1.05 °F respectively, while the MAPE values are 3.19% and 2.14%,
respectively.

Smith et al. [69] proposed a ward-style ANN for the prediction of
Tair during the entire year based on near real-time detailed weather
data collected by the Georgia Automated Environmental Monitoring
Network (AEMN). Current values and twenty-four hours duration of
prior observations for Tair, solar radiation, wind speed, rainfall, and
relative humidity from the time of prediction were used as inputs for
the ANN models. The ANNs were able to provide predictions through-
out the year, with a mean absolute error (MAE) of the year-round
models that was less during the winter months than the MAE of the
models resulting from the application of previously developed winter-
specific models. The prediction MAE for a year-round evaluation set
ranged from 0.516 °C at the one-hour horizon to 1.873 °C at the
twelve-hour horizon.

Dombaycı and Gölcü [70] proposed an ANN to predict daily mean
Tair in Denizli, Turkey. The ANN was trained with temperature values
measured by the Turkish State Meteorological Service over a three
years’ period (2003–2005). The temperature values for the year 2006
were used as testing data. The inputs of the network were the month,
day and the mean temperature value of the previous day. Several ANNs
was trained and the best results were obtained for the network having 6
hidden neurons. The R2 and the RMSE values of this network were
0.99 and 1.85 for the training dataset. As for the testing dataset, these
values were 0.98 and 1.96, respectively.

Deligiorgi et al. [71] proposed several ANNs for temporal and
spatial estimation of the air temperature. For the temporal forecasting
of air temperature, separate ANNs were trained for predicting the Tair

one hour, two hours and three hours ahead using the Levenberg-

Fig. 4. Ambient temperature and open circuit voltage of a typical HCPV module made
up of MJ solar cells a Fresnel lenses measure during a summer day at the Centro de
Estudios Avanzados en Energía y Medioambiente in Jaen (University of Jaén).
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Marquardt back propagation algorithm. It was found that the ANNs
performance was decreased with increasing the forecasting lag. In all
cases the MAE was less than 1.4 °C and the variance decreased from
97.7% for the one hour ahead to 88.7% for the three hours ahead. For
the spatial estimation the RBF and MLP predictions non-linear FFNN
schemes were compared. From the analysis of the results authors
concluded that both models gave accurate air temperature, estimated

with MAE values less than 0.9 °C, with very high index of agreement
(d) values and minimal biases. Furthermore, the variance was 95.9%
for the RBF model and 96.3% for the MLP scheme.

Almonacid et al. [72] proposed an ANN-based model for estimating
the hourly series of Tair in Spain. The inputs of the model were the daily
maximum, minimum and the daily mean air temperatures, latitude and
altitude. The results were compared with the ones estimated by

Table 2
Summary of ANN-based models for predicting Tair..

Authors Type of ANN Inputs Output Error

Tasadduq et al.[57] FFNN • Hourly Tair • Next-day hourly Tair Mean percent deviation=2.83–4.17
RMSE=1.75

Abdel-Aal[58] Abductive network • 24 hourly temperatures for day

• Extreme temperatures for day

• Forecasted extreme temperatures for
next day

• Next-day hourly Tair MAE (°F)=1.68
MAPE (%)=3.19

Abductive network • 24 hourly temperatures for day

• Available hourly temperatures on day

• Extreme temperatures for day

• Forecasted extreme temperatures for
next day

• Next-hour Tair MAE(°F)=1.05
MAPE (%)=2.14

Smith et al.[59] Ward-style ANN • Air temperature

• Solar radiation

• Wind speed

• Rainfall

• Relative humidity

• Tair at different hour horizon (1–
12 h)

MAE (°C)=0.52 (1 h) to 1.87 (12 h)

Dombaycı and
Gölcü[60]

FFNN • Monthly Tair

• Daily Tair

• The mean temperature value of the
previous day

• Mean daily Tair R2=0.99 (training set) and 0.98 (test set)
RMSE=1.85 (training set) and 1.96 (test
set)

Deligiorgi et al.[61] FNNN • The current and the five previous Tair

observations
• Tair at different hour horizon

(1 h, 2 h and 3 h)
R=0.99 (1 h), 0.97 (2 h) and 0.94 (3 h)
R2=0.98 (1 h), 0.94 (2 h) and 0.89 (3 h)
MBE (°C)=−−0.07 (1 h), −0.23 (2 h) and
−0.41 (3 h)
MAE (°C)=0.59 (1 h), 1.00 (2 h) and 1.36
(3 h)
RMSE(°C)=0.84 (1 h), 1.43(2 h) and 1.90
(3 h)
d=0.99 (MLP) and 0.99 (RBF)

MLP • Mean hourly Tair data from six
meteorological stations

• Spatial estimation of Tair R=0.98(MLP) and 0.98 (RBF)
RBF R2=0.96 (MLP) and 0.96 (RBF)

MBE (°C)=−0.01 (MLP) and 0.03 (RBF)
MAE (°C)=0.82 (MLP) and 0.87 (RBF)
RMSE(°C)=1.07 (MLP) and 1.12 (RBF)
d=0.99 (MLP) and 0.99 (RBF)

Almonacid et at[62] MLP • Daily maximum Tair

• Daily minimum Tair

• Daily mean Tair

• Latitude

• Altitude

• Hourly Tair RMSE (°C)=0.53–1.28
RMSE (%)=2.81–8.08

Cobaner et al.[63] FFNN • Latitude

• Longitude

• Altitude

• Month number

• Maximum Tair

• Minimum Tair

• Average Tair

MAE (%)=2.99 (max), 4.28 (min) and
3.08 (average)
MSE (%)=14.75 (max), 30.04 (min) and
16.35 (average)
R2=0.778 (max), 0.772 (min) and 0.780
(average)

ANFI MAE (%)=1.74 (max), 2.83 (min) and
1.25(average)
MSE (%)=5.06(max), 14.48 (min) and
2.58 (average)
R2=0.925 (max. temp), 0.890 (min) and
0.966 (average)

Kisi and Shiri[64] FFNN • Month number

• Latitude

• Longitude

• Altitude

• Long-term monthly Tair R2=0.99 to 0.92
ANFI R2=0.99 to 0.88
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classical methods. Absolute RMSE values ranging from 0.53 to 1.98 °C
and relative RMSE values from 2.81% to 8.08% were obtained.

Cobaner et al. [73] proposed the use of artificial neural networks
(ANN), adaptive neuro-fuzzy inference system (ANFIS), and multiple

linear regression (MLR) models to estimate the means of maximum,
minimum, and average monthly temperatures as a function of geo-
graphical coordinates and month number for any location in Turkey.
The latitude, longitude, and altitude of the location, and the month
number are used as the input variables, and each of the mean monthly
maximum, minimum, and average air temperatures is computed as the
output variable. The ANFIS-based model provided the best result with
a MAE ranging from 1.25% for the average temperature to 2.83% for
the minimum temperature, mean square error (MSE) ranging from
2.58% for the average temperature to 14.48% for the minimum
temperature and R2 ranging from 0.890 for the minimum temperature
to 0.966 for the average temperature.

Kisi and Shiri [74] proposed the use of ANFIS and ANN models for
predicting the long-term monthly Tair values at 30 weather stations of
Iran. Monthly data of 20 weather stations were used for training. The
number of the months, station latitude, longitude and altitude values
were used as input parameters. The ANN model generally performed
better than the ANFIS model in the test period. For the ANNmodel, the
maximum and minimum correlation coefficient values were found to be
0.99 and 0.92 in Semnan and Bandar-e-Abbas.

As can be concluded from the summary of ANN models presented
in Table 2, in contradiction to the case of predicting the different
components of irradiance, several types of ANNs have been used to
forecast the air temperature. The majority of the methods use atmo-
spheric parameters and some radiometric variables as inputs.
Regarding the output, the proposed methods provide the Tair at
different time-scales, such as Tair at different hourly horizons (1 h,
2 h, etc.), next-day hourly Tair, maximum, minimum and average
values of Tair, and time-hourly series of Tair. The authors also provide
different statistical parameters to evaluate the models proposed, so an
easy comparison among them is unfortunately not direct in most of the
cases. Despite of this, from the analysis of the errors, it can be
concluded that ANNs are an accurate tool to predict the Tair, with
RMSE values less than 3% (or 2 °C), MAE values less than 3% (or 3 °C),
MAPE values around 3% and R2 values of 0.9 for most of the cases. As a
summary, Fig. 5 graphically shows the most widely used statistical
parameters to evaluate the proposed methods by the different authors,
namely RMSE and MAE.

3. Application of ANNs to the electrical modelling of CPV
devices

As in any kind of energy system, modelling the electrical output of a
photovoltaic device is crucial for the system design and its energy

Fig. 5. RMSE and MAE values of the methods for estimating the air temperature provide by the authors.

Table 3
Summary of ANN-based models for modelling MJ solar cells.

Authors Type of
ANN

Inputs Output Error

Patra and
Patra
et al.
[73,74]

MLP • λ • Tunnelling
effects of a
DJ solar cell

• EQE of a DJ
solar cell

R2 = 0.99 (TJ) and
0.99 (EQE)MSE =
30.63 (TJ) and
−29.67 (EQE)

• Voltage • Current
density at
one sun of a
DJ solar cell

• Current
density in
dark of a DJ
solar cell

R2 = 0.99 (1sun)
and 0.99 (dark)
MSE = −20.02
(1sun) and −58.90
(dark)

Patra[76] Chebyshev
Neural
Network

• λ • Tunnelling
effects of a
DJ solar cell

• EQE of a DJ
solar cell.

R2 = 0.99 (TJ) and
0.99 (EQE)MSE =
31.50 (TJ) and
−31.17 (EQE)

• Voltage • Current
density at
one sun of a
DJ solar cell.

• Current
density in
dark of a DJ
solar cell.

R2 = 0.99 (1sun)
and 0.99 (dark)
MSE = −14.30
(1sun) and −52.10
(dark)

Patra and
Maskel-
l[77]

MLP • λ

• η

• f

• EQE of a TJ
solar cell

R2 = 0.99(top),
0.99 (middle) and
0.99 (bottom)
MSE(dB) =
2.11(top),
2.34(middle) and
6.55(bottom)

Fernández
et al.[78]

FFNN • X

• SMR

• Tc

• Isc a TJ solar
cell

• Voc a TJ solar
cell

• Pmax a TJ
solar cell

RMSE(%) = 0.00
(Isc), 0.12 (Voc)
and 0.48 (Pmax)
MBE(%) = 0.00
(Isc), 0.01 (Voc)
and −0.08 (Pmax)
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prediction. However, as it is indicated previously, the electrical
modelling of CPV modules and systems shows a significantly greater
level of complexity than conventional PV technology. Moreover, this
level of complexity is increased in HCPV technology due to the use of
MJ solar cells. Because of this difficulty, in recent years the scientific
community has devoted efforts in developing ANN-based models which
try to solve some of these issues. These models are mainly focused on
the prediction of the maximum power or the I-V characteristic of this
kind of devices, but also on the modelling of the behaviour of MJ solar

cells, on the estimation of the cell temperature (Tc) or the spectral
dependence of these devices. In the next subsections, the ANNs based
models developed to address some of the issues related with the CPV
technology, are presented. Tables 3 and 4 summarise the main features
of these ANN-models used in the field of the CPV technology.

3.1. Applications of ANNs to LCPV technology

One of the problems of LCPV technology is the lack of models to
calculate directly the maximum power. This is mainly due to the fact
that the performance of these systems largely depends on the sun
angle, module temperature and the ability to collect the DHI and the
DI. However, as previously mentioned, the amount of collection of DHI
differs from the DI, so it needs to be treated differently [51].

To address this issue Fernández et al. developed an ANN-based
model to estimate the maximum power of a LCPV module [75]. The
model takes into account all the main important parameters that
influence the electrical output of these kinds of systems such as the
direct irradiance, diffuse irradiance, module temperature and the
transverse and longitudinal incidence angles. Fig. 6 shows the actual
and the estimated maximum power using the ANN-based model
proposed for two example days summer (left) and winter (right), i.e.,
high and low irradiance levels. The R2, the RMSE and the MBE values
of this network were 0.99% and 2.32% and −0.05%, respectively.

It should be noted that a few models for the electrical characteriza-
tion of low concentrator photovoltaic modules have been reported [76]
and that there are no models in literature that allow the direct
calculation of the maximum power of a LCPV module under real
conditions and which take into account all the parameters that
influence its electrical performance, such as the direct irradiance,
diffuse irradiance, module temperature and the transverse and long-
itudinal incidence angles. Currently, the ANN based-model is the only
one that has taken into account all parameters that affect the output of
a LPCV device, being able to predict the maximum power of a LCPV
module with a great level of accuracy for any operating condition. This
model allows the behaviour of a module with the same characteristics
to be analysed in a wide range of operating conditions, being a useful
tool for designers and researchers. Furthermore, the ANN-based model
could be adapted to a large number of systems and variations based on
very distinct technologies [5] of the LCPV technology, as it is a useful
tool for designing and evaluating the performance and profitability of
LCPV technology.

3.2. Applications of ANNs to HCPV technology

In the field of HCPVs, due to their complexity, the ANNs have been
used to solve different issues related with this new technology. For
instance, this technology is based on the use of high-efficiency solar
cells made of several p-n junctions of compound semiconductors whose
electrical behaviour is more complex to model than single-junction
solar cells. Furthermore, due to the use of multi-junction solar cells and
concentrator optics, HCPV modules and systems show a strong
dependence on the solar spectrum. The way to quantify the spectral
changes and evaluate how these affect the output of a HCPV device is
not a trivial issue [19,77]. In addition, as in conventional PV
technology, the cell temperature is an important input in models used
for the electrical characterization of HCPV devices since the high
temperature at which the cells of a HCPV module are working due to
solar concentration affects its performance. However, one of the
problems in HCPV technology is that the direct measurement of this
temperature is complex because it requires access inside the module
[21,22,78].

A complete review of the ANN applications in the HCPV field is
presented in this section.

Table 4
Summary of the main features of ANN-based models for modelling CPV devices.

Authors Type of
ANN

Inputs Output Error

Fernández
et al.[65]

FFNN • DI

• DHI

• Tm

• Transverse
angle

• Longitudinal
angle

• Pmax of a
LCPV module

R2 = 0.99
RMSE
(%) =
2.32
MBE (%)
= −0.05

Fernandez and
Almonaci-
d[79]

FFNN • AM

• AOD

• PW

• DNIc R2 = 0.98
RMSE
(%) =
2.92
MBE (%)
= 0.07

Fernández
et al.[69]

FFNN • DNI

• Tair

• Ws

• Tc of a HCPV
module

R2 = 0.95
RMSE
(%) =
4.80
RMSE
(°C) =
3.24

Fernández and
Almonaci-
d[80]

FFNN • DNIheat

• Tair

• Ws

• Th-k of a
HCPV module

NRMSE
(%) =
2.93
ARMSE
(°C) =
1.76
MAE
(°C) =
1.13
MBE (%)
= −0.04
MRE (%)
= −0.15

Almonacid
et al.[84]

FFNN • DNI

• AM

• PW

• Tair

• Ws

• Pmax of a
HCPV module

R2 = 0.99
RMSE
(%) =
2.91
MBE (%)
= 0.12

Rivera et al.
[85]

RBF with a
cooperative-
competitive
hybrid
algorithm

• DNI

• APE

• Tair

• Ws

• Pmax of a
HCPV module

RMSE
(%) =3.3

Almonacid
et al.[88]

FFNN • DNIc

• Tc

• I-V
characteristic
of a HCPV
module

RMSE
(%) =
0.19–
1.66
MBE(%)
= 0.38–
0.40

García-
Dominguez
et al.[89]

FFNN • DNI

• APE

• Tair

• Ws

• I-V
characteristic
of a HCPV
module

AE(%) =
3.73
(MLPVI)
and 3.72
(MLPρα)
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3.2.1. Applications of ANNs to model multi-junction solar cells
While LCPV and MCPV systems are based on single-junction solar

cells, usually Si-crystalline, the solar cells used in HCPV technology, are
made of several p-n junctions of III-V semiconductor alloys of the
Periodic Table. The aim of these cells is to optimize the absorption of
the solar spectrum and increase the efficiency of the solar cell electricity
conversion [79]. However, the internal series connection of several
junctions with different band gap energies makes these devices
extremely sensible to the incident spectrum. Thus, while single-
junction solar cells are mainly influenced by changes in irradiance
and temperature, multi-junction solar cells show complex behaviour as
their performance is also strongly influenced by changes in the solar
spectrum. Due to this, several approaches based on artificial neural
network have been proposed in order to characterize these devices.

In [80,81] Patra et al. developed four MLPs to characterize dual-
junction (DJ) GaInP/GaAs solar cells; one for estimating the tunnelling

effects of a DJ solar cell, and the other three for estimating the External
Quantum Efficiency (EQE) and the I-V characteristic, both under 1 sun
and in dark. The ANNs use as input the voltage for estimating the
tunnelling effects, and the I-V characteristic and the irradiation
wavelength (λ) for estimating the EQE. The results showed that the
predicted parameters with the ANNs developed are more closely to the
experimental ones than the simulated data obtained through the
Silvaco ATLAS software [82].

Following the same approach as in the previous case in [83] a novel
Chebyshev neural network-based model to predict the EQE and the I–
V characteristics (both at one sun and dark levels) for a DJ GaInP/
GaAs solar cell, was presented.

Patra and Maskell [84] also developed an ANN-based model to
estimate the EQE and the performance of triple-junction (TJ) InGaP/
GaAs/Ge solar cells under the influence of a wide range of charged
particles. The model use the wavelength (λ), the proton energy (η) and

Fig. 6. Example of actual and estimated maximum power using the ANN-based model proposed in [75] for two example days: (a) summer and (b) winter.

Fig. 7. Example of the actual and predicted electrical parameters of a TJ solar cells using the ANN-based model presented in [85] versus SMR for two different temperatures (X=1).
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fluence (f) as inputs. From the analysis of the results presented by the
authors it can be concluded that the ANN models developed perform
quite well for the estimation of EQE of the solar cell under the influence
of proton energy ranging from 30 keV to 10 MeV with fluence levels
ranging from 1010 to 1014 ion/cm2.

Fernández et al. [85] proposed three ANN based-models for
modelling the main electrical parameters of a TJ solar cell, i.e.,
short-circuit current (Isc), open circuit voltage (Voc) and maximum
power (Pmax). The inputs of the ANNs were the concentration level (X),
spectral matching ratio (SMR) and cell temperature (Tc). Fig. 7 shows
some examples of the actual and predicted electrical parameters using
the ANN-based model versus SMR. Results show that the models
accurately estimate the main electrical parameters of a TJ solar cell
with a RMSE lower than 0.5% and a MBE almost 0%.

It is important to note that modelling the electrical behaviour of MJ
solar cells is a crucial task for designing and evaluating the perfor-
mance and profitability of HCPV technology. The main problem is that
these devices show a complex behaviour under concentrated sunlight,
spectrum and cell temperature, and the ability to obtain the electrical
parameters of MJ solar cells at any desired working condition remains
challenging since the previous models that address this issue, estimate
the parameters at a particular set of operating conditions. The ANN-
based models developed, offer an excellent and alternative tool for the
simulation of MJ devices when analytical relationships are not avail-
able. Furthermore, these ANN-based models could be easily adapted to
the new devices that are coming soon such as MJ solar cells based in
four junctions or metamorphic solar cells.

Table 3 summarises the main features ANNs-based models for
modelling MJ solar cells.

3.2.2. Applications of ANNs to quantify the effective irradiance of a
HCPV module

As already indicated, HCPV modules and systems show a strong
dependence with the spectrum, due to the use of high-efficiency solar
cells made of several p-n junctions of compound semiconductors and
concentrator optics. One approach to quantify this spectral dependence
is based on the premise that the spectral effects of a HCPV device can
be quantified from the effective irradiance (DNIc) that can be defined as
the portion of the incident spectrum that an HCPV device is able to
convert into electricity:

∫∫
∫

DNI
min E λ η λ SR λ dλ

min E λ η λ SR λ dλ
E λ dλ=

( ( ) ( ) ( ) )

( ( ) ( ) ( ) )
( )c

b i

b ref i
b ref

,
,

(2)

where the index i represents the junction considered, λ is the
wavelength, SRi(λ) is the spectral response of the i-junction, Eb(λ) is
the spectral distribution of the direct normal irradiance and η(λ) is the
optical efficiency of the HCPV module.

Following this approach, Fernandez et al. presented an ANN-based
model to predict the effective irradiance [86]. The inputs used were
those atmospheric parameters that have a major influence on the
spectral distribution of the direct normal irradiance and so on, in the
performance of a HCPV device, namely, the air mass (AM), aerosol
optical depth (AOD) and precipitable water (PW). Results show that
the ANN-based model is able to predict the effective irradiance with a
RMSE of 2.92%, a MBE of −0.12% and a R2 of 0.98.

3.2.3. Applications of ANNs to quantify the cell temperature of a
HCPV module

As in conventional PV technology, the cell temperature is an
important input in models used for the electrical characterization of
HCPV devices since the temperature at which the cells of a HCPV
module are working affects its performance. However, the measure-
ment of this temperature in a HCPV module is a complex task due to its
special features that do not allow the cell to be accessed in the majority
of the cases without damaging the modules.

To solve this problem an ANN-based model was presented in [78].
This model attempts to characterise the relationship between the cell
temperature and the main meteorological parameters that affect its
performance. The input parameters are the direct normal irradiance
(DNI), air temperature (Tair) and wind speed (Ws). Results show that
the ANN based-model significantly improves the results of the method
based on a lineal expression, with an R2=0.95, a relative RMSE=4.80%
and an absolute RMSE=3.24 °C.

Following the approach presented in [78], Fernández and
Almonacid, developed an ANN-based model to indirectly predict the
cell temperature of a HCPV module connected to an inverter [87]. The
aim of this model was to avoid the direct measurement of the cell
temperature and so to damage the module, but also take into account
that the Tc of a HCPV module connected to an inverter is lower than
operating open-circuit voltage since an important part of the light
power density is converted into electricity. The inputs of the model
were the Tair, Ws and the portion of the direct normal irradiance

Fig. 8. (a): example of actual DNIc versus DNIc predicted by ANN based model presented in [86] for a day (b): example of the Tc of the HCPV module measured during a day versus Tc

predicted by the ANN based-model presented in [78].
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transformed into heat (DNIheat). The output was the heat-sink tem-
perature (Th-s) of the HCPV module connected to the micro-inverter.
Results show that the method predicts the Tc of a module connected to
an inverter with a low margin of error with a normalised root mean
square error (NRMSE) equal to 2.93%, an absolute root mean square
error (ARMSE) equal to 1.76 °C, a MAE equal to 1.13 °C, and a MBE
and a mean relative error (MRE) almost equal to 0%.

As mentioned above, the direct measurement of the Tc in HCPV
modules requires access inside the module and placing a sensor close
to the solar cell on the solar receiver and this is not usually possible
without damaging the HCPV module or the elements of the assembly
that surround the MJ solar cells. It is worth mentioned that the ANN-
based model developed in [87] allows the indirect measurement of this
temperature to be done with a great level of accuracy, avoiding the
damage of the module. Furthermore, this model is an excellent tool
offered to scientific community to calculate this temperature in any
CPV device and in any location on the cell since is based only on
atmospheric parameters.

As an example of the methods described above, Fig. 8(a) shows the
DNI measured during a summer day and the DNIc measured for this
day versus the DNIc predicted by the ANN based-model presented in
[86]. As can be seen from this figure, at the sunrise and sunset the DNIc
measured is lower than the DNI due to higher spectral losses; this

behaviour is also shown by the DNIc predicted by the ANN. Fig. 8(b)
shows an example of the Tair for a summer day and the Tc of the HCPV
module measured for this day versus the Tc predicted by the ANN
based-model presented in [78].

It is important to highlight that a different approach for the
electrical modelling of a HCPV device is based on the premise that
the electrical parameters of a HCPV module can be estimated by
applying models and equations used for conventional PV technology
from the direct normal irradiance, corrected spectrally, and the cell
temperature [88,89]. Thus, the ANN-based models developed for
estimating the spectrally corrected direct normal irradiance and cell
temperature could allow the calculation of the electrical parameters of
the HCPV devices to be carried out by applying the conventional model
used in PV [90]. This will facilitate the study and analysis of these
systems to be able to apply simple models widely used by the scientific
community.

3.2.4. Application of ANNs to model a HCPV module
As any kind of energy system the electrical characterization of

HCPV devices is crucial. It is for this reason that the majority of the
ANN-based models developed for HCPV technology are focused to
address this issue, i.e., the prediction of the maximum power and the I-
V characteristic of this kind of devices.

Fig. 9. Example of actual Pmax versus predicted maximum power by ANN based model presented in [91] for two day: summer (left) and winter (right).

Fig. 10. Example of actual and predicted IV curves using this ANN-based model presented in [95] for different operating conditions.
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3.2.5. Application of ANNs to estimate the maximum power of a
HCPV module

The output of HCPV modules could be expressed as a function of
irradiance (B), spectrum (S), temperature (T) and wind speed (Ws):

P f B S T W= ( , , , )max s (3)

In order to fit this function, different approaches based on artificial
neural network-based models have been proposed, since the relation
between these parameters and the electrical behaviour of a HCPV
module is complex and nonlinear.

Almonacid et al. [91] developed an ANN-based model to find the
relation between the output of a HCPV and the main parameters that
affect its performance. The input parameters used by the model are the
direct normal irradiance, the air mass and precipitable water to
evaluate the spectrum; and the air temperature and the wind speed
to evaluate the cell temperature. The results show that the ANN based-
model could be used to estimate successfully the output of a HCPV
module with a MBE of 0.07%, a RMSE of 2.91% and R2 of 0.99.

Fig. 9 shows an example of the estimation of the Pmax of the HCPV
module using the ANN based-model presented in [91] for two different
days (summer and winter).

Rivera et al. [92] implemented a cooperative-competitive hybrid
algorithm for radial basis function networks to estimate the output of a
HCPV module. The inputs of the model are the direct normal
irradiance, the Average Photon Energy (APE) [93,94], to quantify the
spectral influences on the maximum power of a HCPV module, the air
temperature and the wind speed. The model obtained gives an absolute
error (AE) of approximately 3.3%.

3.2.6. Application of ANNs to estimate the IV characteristic of a
HCPV module

The simulation of the complete I-V curve of a PV device is a key
factor for the electrical characterization and design of systems and
power plants; this issue is especially complex in HCPV due to its inherit
features. Thus, several authors have proposed the use of ANNs to
address this issue.

Almonacid et al. [95] introduced a method based on ANN and
atmospheric parameters for obtaining the I-V curve of a HCPV module
as a function of the spectrally corrected direct normal irradiance and
cell temperature. The analysis of the results shows that the method
accurately predicts the I-V curve of a HCPV module with RMSE values
ranging from 0.19 to 1.66% and MBE values ranging from 0.38 to
0.40% for a wide range of operating conditions. Fig. 10 shows some
examples of actual and predicted IV curves using this ANN-based

model for different operating conditions.
García-Dominguez et al. [96] proposed two multilayer perceptron

(MLP) models which were used to obtain the I-V curve of a HCPV
module using as inputs the direct normal irradiance, the air tempera-
ture, the wind speed and the average photon energy. The first model
consisted of a MLP trained with Cartesian coordinates (MLPVI) and the
second model consisted of a MLP trained with polar coordinates
(MLPρα). The MLP trained with Cartesian coordinates has an average
relative curve area error equal to 3.73%. In the case of the MLP trained
with polar coordinates, this model produces an average relative curve
area error of 3.72%.

The estimation of the IV curve of a HCPV generator under the time-
varying atmospheric parameters is crucial for energy yield assessments
and for the design of the electrical requirements and/or protections of a
system or power plant. This is also important since the generator works
in different regions of its IV curve depending on the regulation and
control devices used in each installation and therefore, the complete IV
curve needs to be known in order to accurately predict its electrical
performance. However, due to its complexity, the estimation of the IV
curve of a HCPV module and its validation with long-term measure-
ments outdoors has not been addressed yet with analytical models.
Thus, the ANN-based methods allow the IV curve of a HCPV generator
to be simulated under the time-varying atmospheric parameters with a
low margin of error. Furthermore, the method presented in [95] is also
fully based on atmospheric parameter and outdoor measurements so
has the advantage that the electrical parameters of a HCPV module can
be estimated without detailed information about the materials and
characteristics of the module. The use of atmospheric parameters also
allows the simulation of the complete IV curve at a desired site
provided that the atmospheric parameters are available.

The main features of the different ANNs-based models for model-
ling CPV devices outlined above can be found in Table 4.

From the methods analysed in this section, it can be concluded that
the use of ANNs, mainly feed-forward back-propagation artificial
neural networks, provides a very useful and accurate tool to model
the electrical behaviour of CPV technology. This offers a valuable
approach to carry out an adequate assessment of this new technology
and promote its market expansion. At the same time, they provide a
precise and alternative rapid solution to solve problems that are still
under study by the CPV community from a fundamental physical point
of view. This is the case, for instance, of the method introduced in [85]
to predict the I-V dynamics of MJ solar cells under different irra-
diances, temperatures and spectra, or the method developed in [75] to
predict the maximum power of a LCPV system by considering the

Fig. 11. RMSE values provided by each author obtained with the different methods developed for the electrical characterization of CPV devices.
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transverse and longitudinal incidence angles, as well as the different
components of the incident irradiance. Furthermore, the use of ANNs
for modelling complex physical effects of MJ solar cells as tunnelling
effects, as well as the EQE of these devices, is proved to be a powerful
tool as has been shown in the studies conducted by Patra et al.
[80,81,83,84]. In addition, ANNs have proved to produce a higher
accuracy than other methods based on conventional analytical solu-
tions for the modelling of HCPV modules. This is the case, for instance,
of the method introduced in [86] to obtain their effective irradiance,
the procedures discussed in [78,87,97] to predict their cell and/or heat-
sink temperatures, the model analysed in [91,98] to predict their
output power, or the methodology discussed in [95,99] to simulate
their whole I-V characteristics as a function of the relevant weather
variables. Fig. 11 graphically shows the RMSE values obtained with the
different methods developed for the electrical characterization of CPV
devices. As in the previous cases (Sections 2.1 and 2.2), this parameter
has been selected to compare the different methods since is the most
widely used by the various authors. As can be seen from this figure, this
value is less than 5% for all ANN-based methods, which demonstrates
the high accuracy and convenience of ANNs for CPV modelling
applications.

4. Conclusions

In this paper, various applications of artificial neural networks
(ANNs) for modelling of concentration photovoltaic (CPV) devices have
been reviewed. The electrical characterization of CPV devices is a
crucial task for the design, study, improvement and implementation of
systems based on this technology. However, the characterization of
devices based on this technology is more complex than traditional PV
devices, mainly due to the use of the optical element. Furthermore, in
the case of HCPV, the use of MJ solar cells increases this level of
complexity. Several authors have developed ANN based models to
address issues related to CPV technology. Published papers presented
show the potential of the ANNs as powerful tool for modelling the CPV
technology. Regarding the reviewed papers, which include the latest
research work in the applications of ANNs for modelling CPV devices,
the following key conclusions can be made:

• The ANNs-based models allow the electrical characterization the
LCPV and HCPV devices to be done with a great level of accuracy.
Furthermore, due to the fact that most of them are based on
atmospheric parameters it is possible to estimate their electrical
behaviour at a desired site if the atmospheric parameters are
available.

• The ANNs models developed allow the cell temperature of a HCPV
device to be estimated indirectly from atmospheric parameters,
avoiding the need to access inside the module, and therefore damage
it.

• The ANN-based models developed, offer an excellent and alternative
tool for the simulation of MJ solar cells.

However, despite the fact that ANNs have been applied to solve
several problems related with the CPV technology and they gave very
good results, some issues related with this technology have been not
covered yet. Some of these issues in which the use of ANNs could be
useful, include:

• To characterise the spectrum for CPV applications.

• Electrical characterization of the new devices that are coming soon,
such as MJ solar cells based in four junctions or metamorphic solar
cells.

• To estimate the IV characteristic of LCPV devices.

• To estimate the effective irradiance, spectrally and angularly cor-
rected, for LCPV devices.
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