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Abstract: The popular histogram equalisation (HE) technique, which was developed to improve the image contrast, sometimes
may also be misused to hide intensity variations in tampered images with ill intention. The authors investigate how existing
image forensic techniques may fail to detect HE operation in highly compressed and low-resolution images. They then propose
an algorithm to detect whether a given image (either uncompressed or JPEG compressed) has undergone the HE process or
not. It is based on the frequency domain analysis of image histogram and exploits the difference in DC and AC coefficients in
histogram's discrete Fourier transform. It can detect HE operation even if the image is saved in JPEG format after the
equalisation, where most the existing algorithms fail. The extensive computer simulations over large dataset show the
effectiveness of the proposed algorithm.

1 Introduction
1.1 Motivation

In the modern digital era, the availability of low cost and powerful
image editing softwares (e.g. Adobe Photoshop, CorelDraw etc.)
and tools have made the task of image editing so simple that even
an unexperienced person can edit, manipulate and process images
without leaving any visual clues. These days, as a huge population
of the world relies on images and videos shared very frequently
through social media platforms such as Facebook, WhatsApp,
Snapchat, and Instagram, which may be used for propagating
wrong information through tampered/modified images and videos.
Thus, form the information security viewpoint, authentication of
digital images and videos is the need of the time and multimedia
forensics has emerged as a significant research area. The primary
goal of digital image forensics is to identify the nature of
manipulation or tampering done in the image. Since it is impossible
to detect all types of forgeries with a single method, a number of
methods have been proposed to detect image alterations under
different scenarios [1–4].

The image authentication approaches, in general, can be
classified into two broad categories: active and passive [5]. In
digital watermarking [6–9], one of the most popular active
approaches, the watermark is embedded into the image either at the
time of image generation or before any processing. In contrast,
however, the passive methods [10–15] do not need any prior
information for the analysis of the image and thus makes a blind
decision. The wide applicability and practicality have made the
passive forensic analysis as one of the popular research fields. Over
the past few years, several passive forensic techniques have been
proposed. For instance, in [16], authors have developed a forensic
method by detecting traces of resampling. The lighting
inconsistencies [17], colour filter array aberrations [18], as well as
the noise patterns in camera sensors [19] have been used to identify
tampered regions in images. In [20], using multiple hypothesis
testing, authors proposed a unique approach revealing the order of
operations that have been performed over image.

Recently, due to its wide acceptability, the forensic issues
related to JPEG compressed images has received a great attention.
Many algorithms have been developed to determine whether a
given JPEG image is doubly compressed or not [21–25]. These
methods consider double compression as a possible indication of
forgery; however, sometimes, images may simply be decompressed

and recompressed again without any manipulation, just to satisfy
the file-size limitations of uploading. A number of anti-forensics
techniques, such as [26–29], have been developed to dodge
existing forensics methods, but at the same time there has been a
continuous effort to develop algorithms to cope up with such anti-
forensic methods [30].

It has been observed that often image forgery operations are
followed by some filtering and enhancement techniques to hide the
traces of manipulations and to give more realistic look to the
forged images. The popular image processing operations such as
edge sharpening, gamma correction, histogram equalisation (HE),
noise reduction and median filtering, developed mainly for image
enhancement, may also be used as a means to hide image
manipulations. For example, Fan et al. [31] proposed an image
enhancement operation based on variational deconvolution of the
image and suggested that the same can be used as anti-forensic
operation to disguise the traces of other image processing
operations. Thus, revealing the traces of these operations may be
very important in many forensic applications. In this paper, we
develop a technique to detect whether the given image
(uncompressed or JPEG compressed) is histogram equalised or not.
It should be emphasised here that although detecting specific
operation (HE in this paper) may not necessarily guarantees a
malicious tempering, it definitely creates some uncertainty about
the originality of the image.

1.2 Related works

In recent past, many methods to a detect specific operation
performed over images have been proposed in [32–36]. For
example, Zhang et al. [32] have used high-order local ternary
patterns to detect non-linear median filtering operation. Kang et al.
[33] have proposed the use of autoregressive model to reveal the
traces of median filtering operation. Similarly in [34], a method to
jointly detect the filtering and JPEG compression operations in
digital images has been proposed. Apart from median filtering,
contrast enhancement is another important operation generally used
to hide the traces in tampered images (particularly to hide intensity
irregularities occurred due to image manipulations), and has been
explored for forensic applications [35, 36].

In [35], technique which detects HE by measuring the strength
of high-frequency components in image's histogram has been
proposed. This is based on the assumption that unaltered images

IET Image Process., 2018, Vol. 12 Iss. 5, pp. 760-768
© The Institution of Engineering and Technology 2017

760



(without contrast enhancement) generally have a smooth contoured
histogram. However, this assumption of smooth contoured
histogram of unenhanced images may not be always valid. We
have observed two such cases in which this assumption fails.
Firstly, the unaltered low-resolution (small sized) images exhibits
discontinuities in their histogram, as all pixel intensities (within
dynamic range) may not be present in such images. Secondly,
when images are heavily compressed, many of the intensities may
be mapped to single intensity due to their quantisation to achieve
high compression, thereby resulting in a histogram with unsmooth
contour. In [36], Cao et al. proposed a method to detect contrast
enhancement by comparing the number of zero-height-gap (non-
occurring intensities) in the histograms of altered and unaltered
images against a threshold. This method outperforms Stamm's [35]
method at the low quality of JPEG compression. Although, this
method works well for large-size images but has poor accuracy for
small-size (or low resolution) images. One of the reason of
performance degradation for small-size images is due to the fact
that an unaltered small-size image itself has a number of empty
bins in its histogram. It may be noted that low-resolution images
(as small as 16 × 16 or 8 × 8) are used in many applications. For
example, in copy move forgery generally, a small patch is copied
and pasted in images to hide or add some information.
Furthermore, small-size images are used as icons or thumbnail
representation.

Another major drawback of methods developed for contrast
enhancement-based forensics [35, 36] is that they assume that the
contrast enhancement operation is the last step of manipulation
applied to the images. These state-of-the-art methods fail to detect
contrast enhancement operation if image is JPEG compressed after
the enhancement. However, very few forensic methods have been
developed for images that are post processed after the compression.
For instance, in [37], Conotter et al. developed a method to reveal
the entire chain of operations, which can detect linear filtering
operations in between two JPEG compressions. In [38], Chen et al.
proposed a blind technique to detect the median filtered image.
This method [38] even sustains strong post-processing operation.
To the best of our knowledge, no attempts have been made to
perform forensic detection of HE (one of the most popular contrast
enhancement technique) process on images saved in JPEG format
after the HE process, which is the main objective of this paper.

1.3 Contributions

The objective of this paper is to develop an efficient method to
detect whether the given image (uncompressed or JPEG
compressed) has undergone through HE operation or not. We
further aim that proposed method should perform satisfactorily
even for low resolution (small size) images, where most of the
previously developed methods [35, 36] fail. The main contributions
of this work can be summarised as follows:

• In this paper, first we would try to unfold the reason that why
most of the existing methods developed for detecting HE
operation in images [35, 36] have poor performance for low-
resolution images and also why they fail if the image is JPEG
compressed after equalisation. Specifically, we will analyse the
histogram of images at different resolutions to demonstrate that
the assumption of a smooth contoured histogram of un-equalised
images or non-occurrences of zero in original images fails for
low resolution and heavily compressed images (Sections 2.2 and
2.3).

• Based on our analysis, we target to detect HE images (even low-
resolution images) in two different scenarios (Case I and Case II
of Fig. 1). For Case I, the HE image is saved in an
uncompressed format (such as TIFF, BMP, PNG), while Case II

represents the case when the equalised image is JPEG
compressed (post processed). Present techniques [35, 36] are
limited to the Case I only and fails if the equalised image is
saved in JPEG format. The proposed method exploits frequency
domain characteristics of the image histogram to determine if
the given image (either in uncompressed or JPEG format) has
been HE or not (Section 3).

1.4 Organisation

The rest of this paper is organised as follows. Section 2 reviews the
HE technique and its effect on the histogram of an equalised image
saved in uncompressed and compressed formats. Further, this
section analyses the histograms of low-resolution images and that
of highly compressed images and unfolds the reasons that why the
assumption of a smooth contour of unequalised images may not be
always valid. In Section 3, we propose a novel algorithm to detect
HE images in different scenarios. The experimental results are
presented in Section 4. Finally, the paper is concluded in Section 5.

2 Review of HE and effects of various operations
on histogram
Since paper focuses on detection of HE process in images, we will
briefly review the HE technique. The HE process redistributes
pixel intensities in such a way that processed image has almost a
flat histogram. As the detection of HE process is mainly based on
exploiting histogram characteristics, it is important to study the
effects of various operations on the image histogram. Therefore, in
this section we also analyse the dependency of smoothness of
histogram on image resolution and degree of compression.

2.1 Histogram equalisation

HE is a one of the most widely used contrast enhancement
technique, which transforms the input histogram (normalised
histogram is the probability distribution function) into uniformly
distributed output histogram. The histogram of processed image is
uniformly spread in the entire dynamic range of pixel intensities
[39]. The transformation function for HE is defined mathematically
as

yk = T(xk) = ∑
i = 0

k
px(xi) = ∑

i = 0

k ni
n ; k = 0, 1, 2, …, L − 1 (1)

Here, variable x represents the pixel intensities of input image that
is to be enhanced and y is the output value for each input x to the
transformation T, ni is the number of pixels with ith intensity, n is
the total number of pixels in the image and L is the number of
possible intensity levels (L = 256 for grey-scale images). It must be
noted that the discrete transformation in (1) not necessarily
provides a perfect uniform probability distribution function.
However, it has the general tendency of spreading the histogram of
the input image in such a way that the histogram of equalised
image spans over the full range of intensities [39]. This spreading
and intensity redistribution property of HE process may sometimes
be used as a tool to hide the traces of image tampering.

Fig. 2a shows the histogram of original ‘Lena’ image and
Fig. 2b depicts the histogram of its equalised version. It can be
observed from Fig. 2b that HE causes almost even spread in the
histogram and also results in a large number of empty bins in it. In
previous works such as [36], this property of increased number of
empty bins in histogram of equalised images is used as an evidence
to reveal HE operation in images saved in uncompressed formats
like TIFF and BMP. However, when an equalised image is saved in
JPEG format, it is difficult to detect HE operation on the basis of
the number of empty bins, as evident from Fig. 2c showing the
histogram of equalised Lena image but saved in JPEG format with
quality factor (QF) = 75 and having lesser number of empty bins
(the same has been described in more detail in Section 2.3). It must
be noted that although after JPEG compression there is a
redistribution of pixel values in image histogram, the overall

Fig. 1  Different scenarios in which forged images may be saved
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contour of histogram still remains almost uniform. In subsequent
sub-sections, we will show that unsmooth histogram with large
number empty bins may occur in low-resolution images and highly
compressed images, even without the HE. 

2.2 Effect of image resolution on histogram

As mentioned earlier, the previous works [35, 36] used the
histogram of images to reveal traces of enhancement operations by
assuming that unequalised images have their histogram with
smooth contour, while histogram of equalised images shows an
increase in the number of empty bins. However, we observed that
histogram of small-size unequalised images also exhibit similar
characteristics. In order to verify our observation, we consider
original ‘Elaine’ image and its downsampled versions at six
different resolutions (of sizes
256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16 and 8 × 8).
Histogram of the image at different resolutions is shown in Fig. 3.
A close observation of Figs. 3a–f reveals that the contours of
histograms of low-resolution unequalised images are not as smooth
as that of the high resolution. Further, it can be observed that the
histogram of low-resolution images has many empty bins, which
causes irregularities (unsmoothness) in histogram's contour. This
observation can be justified by the fact that for small-size images,
the total available pixel values are not enough to cover the entire
range of the histogram thereby resulting in zero-valued bins in the
histogram. Thus, the assumption of a smooth contoured histogram
of unequalised images, which is the basis of earlier studies [35] is
not a valid for small-size (low resolution) images. The tampered
region, in many forensic scenarios, maybe just a small patch, for
example, some number/characters or the face of a person etc. In
such cases, these existing methods would usually fail. 

2.3 Effect of compression on histogram contour

In order to reduce bandwidth requirement for transmission over the
Internet/mobile networks or to satisfy the file-size limitations for
uploading, many times images need to be highly compressed. This
is generally achieved through the use of large step-size quantiser,
which causes unsmoothness in the contour of image histogram.
Since JPEG is widely used for compression of images shared over
social media, we consider JPEG compressed images to study the
effect of compression (or quantisation) on image histogram. In
JPEG compression, DCT coefficients are quantised by dividing
them with corresponding elements of a predefined quantisation
matrix Q. The elements of Q matrix are scaled according to the QF.
For a specified QF, elements of matrix Q are generally large for
high-frequency coefficients compared to the DC and low-
frequency coefficients. To achieve a high degree of compression,
more and more high-frequency DCT coefficients are quantised to
zero value according to

Y(u, v) = round F(u, v)
q(u, v) = 0; if q(u, v) > 2F(u, v) (2)

where Y(u, v) is the quantised version of DCT coefficient F(u, v)
and q(u, v) is the corresponding element of the quantisation matrix.
As indicated in (2), Y(u, v) will be rounded to zero if q(u, v) is
greater than twice the magnitude of F(u, v). Since at lower value of
QF (high degree of compression), most of the elements in
quantisation matrix are of large magnitude, many DCT (mainly
high frequency) coefficients are likely to be quantised to zero
value. Due to loss of these high frequency coefficients, the
reconstructed image appears to be relatively smoother (containing
only low-frequency components) compared to images compressed
at higher QF. That is, in a highly compressed image, the majority
of pixels within the neighbourhood of a given pixel are likely to be
of similar intensity. Thus, the histogram of highly compressed
images will show many sudden peaks and discontinuities as a
result of which Stamm's [35] method fails for low quality of
compression (the same fact has been established in Cao's [36]
work). It must be noted that till now the QF refers to the primary
quality of compression that is the QF1 at which image is

compressed before equalisation. Now in order to understand the
effect of post compression (Case II), in Fig. 4 we plot the
cumulative distribution of ‘E’ (energy parameter defined and used
in Stamm's [35] work) is computed for uncompressed, equalised
(Case I) and equalised plus JPEG compressed (Case II, QF2 = 75)
versions of 1338 images from UCID [40] database. It can be
observed from Fig. 4 that the distribution of ‘E’ for original images
and its equalised version only are much separated and thus can be
differentiated using an appropriate threshold. However, for the
equalised plus JPEG compressed images, the parameter ‘E’ follows
the same distribution curve as original images. Hence, Stamm's
method is limited to Case I only and fails for Case II. 

As mentioned earlier (see Fig. 2), HE operation results in
almost uniformly distributed histogram over the full intensity range
and increases the number of zero height (or empty) bins in the
histogram. The algorithm proposed in [36] is based on the number
of these empty bins in image histogram, which is compared with a
pre-determined threshold value to decide if the given image is HE
or not. It works well for large-size images, but has poor accuracy
for low-resolution images. This is mainly due to the fact that the
non-equalised small-size images themselves have a lot of empty
bins in their histogram (Fig. 3). In order to further strengthen the
fact that the empty bins in the histograms are not only due to HE
operation performed on the image but also depends on the size of
(unequalised) image and JPEG compression after the equalisation
process, we have carried out an experiment considering 1338
images, each of size 512 × 384, from the UCID database [40]. The
small-size images, of six different resolutions
256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16 and 8 × 8 are
then generated by down-sampling, thereby resulting in a database
of 9366( = 1338 × 7) images, including the original images. The
number of empty bins in image histograms of original and HE
images of different resolutions are then counted. Fig. 5 shows the
average number of empty bins (averaged over the number of
images of a particular size) in the histograms of unequalised and
uncompressed images (UC), their JPEG compressed (QF = 75)
versions (JPEG), images obtained after HE of uncompressed
images (UC + HE), HE of JPEG (QF = 75) compressed images
(JPEG + HE), and images which are JPEG compressed after
equalisation (HE + JPEG). It can be observed from Fig. 5 that the
average number of empty bins in the histogram equalised images
(irrespective whether images are initially uncompressed or JPEG
compressed, i.e. UC + HE and JPEG + HE cases) is very high and
is almost independent of image size. However, the average number
of empty bins in unequalised images (UC and JPEG cases)
increases as the image resolution decreases, and approaches to
almost same values as that of histogram equalised images, for
16 × 16 and 8 × 8 size images. Furthermore, it can be observed that
for histogram equalised images saved as JPEG (HE + JPEG case),
the number of empty bins increases as image resolution decreases.
Therefore, it is obvious that simply counting the number of empty
bins, as suggested in [36], is not sufficient to discriminate
unequalised and histogram equalised images, particularly for
small-size images (Case I) and for the cases where the equalised
image is saved in JPEG format (Case II). 

The above arguments justify our observations that the
assumption of the smooth histogram is not valid for low-resolution
images (Section 2.2) and for highly compressed images (Section
2.3), which was the basis of previous studies [35]. Also, Cao's [36]
method, although independent of primary quantisation (QF1), is
limited to large resolution images only. In Section 2.3, we also
showed that both Stamm's [35] and Cao's [36] methods are
designed to work in the Case I (Fig. 1) scenario only and fails if the
image is JPEG compressed after equalisation (Case II, Fig. 1). In
the following section, a novel algorithm is designed to detect HE
process in an image that works satisfactorily irrespective of image
resolution and image format.

3 Proposed method for identifying histogram
equalised images
In this section, we propose a very generic method to detect HE
process in image, which is based on the frequency domain features
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of the images histogram and is able to reveal the traces of HE even
if the equalised image is JPEG compressed (i.e. it works for both
Case I and Case II of Fig. 1).

3.1 Discrete Fourier transform (DFT) of image histogram

An image histogram is the representation of frequency of
occurrences of grey-scale intensities in the image, and can be
considered as a 1D discrete signal (with intensity as an independent
variable and count of intensity as a dependent variable). The
information about the degree of changes (or frequency of abrupt
changes) in the histogram can be obtained by transforming
histogram in frequency domain. For an 8-bit grey-scale image I,
with pixel intensities varying in the range n = 0, 1, 2, …, 255, and if
H(n) represents count of nth intensity level, then N point (here N = 
256) DFT of the histogram H can be defined as

X(k) = ∑
n = 0

N − 1
H(n)exp − j2πnk

N ; k = 0, 1, …, N − 1 (3)

where N represents the number of equally spaced points in the
interval [0, 2π] on a unit circle in the Z-plane. Since H(n) is a real
valued discrete sequence, its DFT X(k) will be a complex quantity
and will exhibit complex conjugate symmetry. Thus, for a real N-
point discrete time 1D signal H(n), from (3), it can be easily
verified that

X(N − k) = X∗(k) = X( − k) (4)

Consequently

|X(N − k) | = | X(k)| (5)

Therefore, from (4) and (5), it can be inferred that for an even N
(which is the case here), apart from a DC term (X(0)), the
magnitude of X(k), i.e. |X(k)| will have only N/2 unique values
which are symmetrically located on both sides of k = N/2. The
proposed algorithm uses frequency domain characteristics of
histogram of given image to detect HE operation on it.

Fig. 2  Histogram
(a) Original Lena image, (b) Its equalised version, (c) Its equalised plus JPEG
compressed version

 

Fig. 3  Histogram of Elaine image at resolutions
(a) 256 × 256 (b) 128 × 128 (c) 64 × 64 (d) 32 × 32 (e) 16 × 16 (f) 8 × 8

 

Fig. 4  Cumulative distribution of ‘E’ values (Stamm et al. [35]) computed
from UCID images, its histogram equalised version (Case I) and equalised
plus JPEG compressed (Case II) version

 

Fig. 5  Average number of empty bins in images at different resolutions
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3.2 Proposed algorithm

In order to describe the proposed algorithm, consider that an
unequalised original image Io (which may be either uncompressed
or JPEG compressed) has undergone the HE process followed by
JPEG compression, resulting in images IE and IEC, respectively.
Let Ho, HE and HEC are the histograms of Io, IE and IEC images,
respectively. We believe that exploiting the frequency domain
information inherent in the processed (HE process in our case)
images, the nature of the process applied to generate the
corresponding image can be identified. Let Xo(k), XE(k) and XEC(k)
are DFT coefficients of Ho, HE and HEC obtained using (3),
respectively.

The magnitude spectrum of histograms of a typical unequalised
(uncompressed or JPEG compressed) ( | Xo(k) | ), HE image ( | XE(k))
and JPEG compressed equalised image ( | XEC(k) | ) are shown in
Figs. 6a–c, respectively. In each |X(k)|, k = 0 represents the
corresponding DC term and can be written as |X(0) | = ∑n = 0

N − 1 H(n),
where H is the histogram whose DFT is to be evaluated. It may be
noted that |X(0)| is equal to the total number of pixels in the image,
which will remain the same before and after the HE and/or JPEG
compression. That is, |Xo(0) | = | XE(0) | = | XEC(0)|, which is also
evident from Figs. 6a–c. Further, it can be observed that the
maximum value in each of the magnitude spectrum plots are the
corresponding DC values at k = 0. All other values in |X(k)| (except
at k = 0) represent different AC components. As mentioned earlier,
DFT of histograms (being real 1D data) shall exhibit even
symmetry at k = N /2 = 128, and is clearly evident from Figs. 6a–
c. 

We propose to identify the HE process in an image by
observing the difference between DC coefficient (|X(0)|) and
weighted sum of unique AC coefficients (|X(k) | ; k ∈ {1, 128}) of
DFT of its histogram. As evident from Fig. 2a, the histogram of an
unequalised image likely to have random envelope, with many
abrupt changes in its shape, and therefore corresponding
|X(k) | ; k ∈ {1, 128} are likely to have larger values, which can be
verified in Fig. 6a. Since it is expected that the HE process
generates an image having almost uniformly distributed histogram,
and therefore the values of |X(k) | ; k ∈ {1, 128} are likely to be zero
(or very small value). The similar observations can be made for an
image which is JPEG compressed after HE as shown in Fig. 2c.
This is because, when an equalised image is JPEG compressed,
resulting in redistribution of pixel intensities in its histogram;
however, the overall contour of the histogram still remains almost
uniform (as discussed in Section 2.1, and also evident from

Fig. 2c). Therefore, in histogram equalised images, the AC
coefficients are expected to be much smaller as compared to DC
coefficient. However, in practice the histogram of equalised image
is not perfectly uniform and often contains sudden jumps or breaks,
which may sometime results in large value of mid and high-
frequency components in its DFT. To overcome this problem, we
suggest to use weighted sum of AC coefficients, with weights
decreasing exponentially with frequency. Therefore, the difference
between DC and weighted sum of AC coefficients in histogram's
DFT may be used as feature to identify the HE process in images.
The AC coefficients should be weighted in such a way that low-
frequency components are emphasised more than the mid and high-
frequency components.

Based on above discussions and using the DFT coefficients of
the histograms, we propose that the DC normalised difference
between DC and weighted sum of AC coefficients of DFT of the
image histogram can be used to identify whether the given image is
histogram equalised or not. For this purpose, we define a new
parameter ξ as

ξ = |X(0) | − δ
|X(0)| = 1 − δ

|X(0)| (6)

where δ is the weighted sum of magnitude of AC coefficients as
defined in (7) and weights are decaying exponential with β as a
decay factor

δ = ∑
k = 1

128
| X(k) | exp( − β(k − 1)) (7)

The purpose of β is to deemphasise mid- and high-frequency
components. Experiments show that β = 1 is appropriate.

Since unequalised (uncompressed or JPEG compressed) images
have relatively larger values of |X(k); k ∈ {1, 128}| and therefore
for such images parameter ξ (defined in (6)) will be of smaller
value as compared to that for histogram equalised as well as JPEG
compressed images. In order to justify our claims, we have
considered 1338 images from UCID [40] dataset and their
downsampled versions. Each of these images is histogram
equalised and then JPEG compressed with QF = 75. For each
image, the parameter ξ was evaluated. The mean (μξ) and standard
deviation (σξ) of parameter ξ of unequalised (original), histogram
equalised and equalised plus compressed images of different sizes
are listed in Table 1. It can be observed from Table 1 that the value
of μξ is small for unequalised (original) images compared to that of

Fig. 6  Block diagram of the considered framework
(a) Magnitude plot of the DFT of greyscale histogram of an original unequalised image. (b) Magnitude plot of the DFT of greyscale histogram of the equalised version of the image.
(c) Magnitude plot of the DFT of greyscale histogram of an equalised then compressed image
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only equalised as well as equalised and JPEG compressed images.
This ensures that the proposed method can differentiate
unequalised and equalised images irrespective of the format in
which final image is saved. Additionally, the standard deviation σξ
of equalised plus compressed images is smaller compared to that of
equalised only images. Furthermore, it can be observed that both μξ
and σξ are almost independent of image size. This property ensures
that the proposed method can be applied to even low-resolution
images, where most of the existing techniques fail. Thus, by
comparing the value of parameter ξ of the given image I with a pre-
determined threshold (ξTh), the image can be classified as
unequalised or histogram equalised. The proposed algorithm is
summarised in Fig. 7.

4 Simulation results and discussion
4.1 Dataset

To test the efficacy of the proposed methods, we have considered
two popular standard image datasets, namely UCID [40] and NCID
[41]. We select all 1338 uncompressed images (each of size
512 × 384) from UCID and random 2000 uncompressed images
(each of size 256 × 256) from NCID. In order to demonstrate the
effectiveness of the proposed method irrespective of the image
size, the low-resolution images are generated by central cropping
(CC) as well as down-sampling (DS) all original images to
generate images of sizes
8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128 and 256 × 256 which
gives a total dataset of 39, 394(1338 × 13 + 2000 × 11)
uncompressed images. All these images are histogram equalised
and are saved in either TIFF or JPEG formats. The accuracy of
proposed methods is measured in terms of true positive rate (TPR)
and false positive rate (FPR). Here, TPR is defined as percentage
of equalised images detected as equalised (true detection), whereas
FPR is the measure of the percentage of unequalised images
detected as equalised images (false detection). The performance of
proposed method is compared with that of Stamm's [35] and Cao's
[36] methods. The proposed and other algorithms are simulated
using MATLAB2016 and are executed on a workstation with 8 GB
RAM and Intel Core i7-6700 at 3.40 GHz × 8 CPU. 

4.2 HE detection

4.2.1 Experiment 1: To measure the detection accuracy (detection
of HE process in the given image) of proposed method and to
compare with that of Stamm's [35] and Cao's [36] methods, the
receiver operating characteristic (ROC) curves (Fig. 8) are
generated on UCID dataset [40]. Here, detection ROC curve for
Case I (of Fig. 1) corresponding to QF1 = 100, 70, 50 are shown in
Figs. 8a–c, respectively. While detection ROC curve for Case II
corresponding to QF1 = 100, 70, 50 are shown in Figs. 8d–f,
respectively. These curves following observations can be inferred:

• For Case I (equalised images saved in TIFF format), it can be
observed from Figs. 8a–c that both the proposed and Cao's [36]
methods perform well irrespective of the value of primary QF1.

However, the performance of Stamm's [35] degrades as the
value of QF1 decreases or as compression is changed from high
quality to the low quality.

• Further, it can be observed from Figs. 8d–f that the proposed
method outperforms other contemporary methods [35, 36] in
detecting the HE process in the JPEG images (Case II). Further,
it may be emphasised that the proposed method achieves high
TPR under low FPR value, whereas other two compared
methods [35, 36] totally failed to detect HE operation. These
results justify out initial observations mentioned in Section 2.3.

4.2.2 Experiment 2: In order to evaluate the identification
accuracy of different methods for low-resolution images and at
different secondary QF2 (the QF of JPEG compression performed
after the equalisation), another experiment on the dataset
mentioned in Section 4.1 is performed. First the images of different
size in the dataset are histogram equalised. Then the equalised
images are saved as uncompressed TIFF format (referred as UC) as
well as JPEG compressed at QF2 = {10, 30, 50, 75, 90, 100}. In
other words, UC is representing Case I and JPEG compressed
images represent Case 2 of Fig. 1. This gives us a total of
275, 758(7 × 39, 394) images. The accuracy of the proposed and
other existing methods is listed in Table 2 (for image size
512 × 384, 256 × 256, 128 × 128 and 64 × 64) and Table 3 (for
image size 32 × 32, 16 × 16 and 8 × 8) for different values of QF2.
Here, the accuracies are reported in terms of TPR for a fixed value
of FPR (1%). For the proposed method, the threshold values
obtained are 0.8473, 0.8437, 0.8139, 0.8325 0.8235, 0.8327,
0.8576 for image size
512 × 384, 256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16 and
8 × 8, respectively. It must be noted that we have performed
evaluation on small-size images generated by both central cropping
and downsampling of the original images. Centrally cropped (CC)
images, in contrast to downsampled images (DS), does not
preserve the overall structure of the actual image. However, since
in copy and move forgery, a cropped portion of the image is
generally used to hide or add some data, we have performed the
evaluation on centrally cropped images also. 

It can be observed from Table 2 and Table 3 that for case I,
Stamm's method [35] has almost 100% accuracy for image size up
to 32 × 32, and the performance of Cao's method [36] degrades
drastically for small-sized images; however, the proposed method
has accuracy consistently more than 96% irrespective of the image
size. Similarly for Case 2, the proposed method completely
outperforms both methods [35, 36] under consideration. The poor
performance of Stamm's [35] and Cao's [36] is mainly due to the
quantisation effect (during JPEG compression/decompression) as
discussed in Sections 2.2 and 2.3. In contrast, the proposed method
uses feature in frequency domain (DFT of histogram), and mainly
exploits the flatness in histogram (before and after the
equalisation). Since, the algorithm suppresses the effect of sudden
peak and gaps in the histogram by penalising mid- and high-
frequency components, the proposed method performs well even if
equalised image is JPEG compressed. It must be noted that for
small size (16 × 16, 8 × 8) and highly compressed (QF = 10)
images, all these algorithms fail to detect HE operation. This is
because, heavy compression on very small size images results in
the complete loss of the structure of the image. In fact, such images
are of no practical use.

4.2.3 Experiment 3: In order to verify that the proposed image
works equally well for large-size images, we perform another
experiment randomly selected 2500 images from the popular
RAISE [42] image dataset. The dataset mainly consists of outdoor,
indoor, landscape, natural, people, object and building images,
each of size 4928 × 3264.

From the ROC curve shown in Fig. 9, it can be observed that
although both Cao's [36] and Stamm's [35] methods have slightly
better performance compared to proposed method for Case I (when
equalised image saved in uncompressed format). However, for
Case II, when equalised image is saved in JPEG format, the

Fig. 7  HE detection
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Table 1 Average value (μξ) and standard deviation (σξ) of ξ for unequalised (O), equalised (E) and equalised plus compressed
(EC) images of different size
Size μξ(O) σξ(O) μξ(E) σξ(E) μξ(EC) σξ(EC)
512 × 384 0.4771 0.1969 0.9712 0.0425 0.9718 0.0417
256 × 256 0.4435 0.2220 0.9727 0.0469 0.9732 0.0455
128 × 128 0.3476 0.2446 0.9754 0.0364 0.9756 0.0354
64 × 64 0.3200 0.2807 0.9719 0.0534 0.9713 0.0508
32 × 32 0.3107 0.2850 0.9686 0.0799 0.9666 0.0755
16 × 16 0.3587 0.2786 0.9636 0.1029 0.9552 0.0969
8 × 8 0.4326 0.2794 0.9466 0.1345 0.9198 0.1237
 

Fig. 8  HE detection ROC curves on Dataset 1 for different combination of QF1 and QF2

(a–c) Case 1 of Fig. 1; (d–f) Case II of Fig. 1. Here, ′QF1′ denotes the JPEG QF of image before equalisation, ′QF2′ denotes the QF at which histogram equalised image is JPEG
compressed and QF1/2 = UC means image is saved in uncompressed format (TIFF)

 
Table 2 Detection accuracy in terms of TPR for a fixed value of FPR = 1% at different values of QF2 for image size ranging
from 512 × 384 to 64 × 64
Case QF2 Method 512 × 384 256 × 256 128 × 128 64 × 64

Original CC DS CC DS CC DS
1 UC Stamm [35] 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Cao [36] 100.00 100.00 100.00 98.05 99.40 55.39 89.82
Proposed 98.05 98.80 98.66 99.33 98.80 98.58 98.80

2 100 Stamm [35] 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Cao [36] 63.47 64.67 65.84 47.16 41.92 5.16 9.66
Proposed 98.05 98.80 98.95 99.33 98.80 98.58 98.80

90 Stamm [35] 9.73 4.72 5.23 1.57 2.02 1.27 0.82
Cao [36] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 98.05 98.88 98.95 99.40 98.80 98.73 99.03

75 Stamm [35] 7.41 3.74 4.12 1.35 1.57 1.12 0.67
Cao [36] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 98.05 98.88 98.95 99.40 98.88 98.88 99.03

50 Stamm [35] 14.37 13.10 13.02 1.27 3.52 1.35 0.97
Cao [36] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 98.13 98.95 98.95 99.48 98.95 99.03 99.10

30 Stamm [35] 8.21 4.22 4.22 1.14 2.15 0.98 0.83
Cao [36] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 98.13 98.95 98.95 99.48 98.95 99.03 99.10

10 Stamm [35] 3.17 3.58 2.54 0.59 1.73 2.41 0.94
Cao [36] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 98.05 98.05 98.05 99.33 93.19 94.54 84.81
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proposed method outperforms the methods of [35, 36]. Thus our
algorithm works satisfactorily both for small-size (as small as
8 × 8) and large-size images (as large as 4928 × 3624). Also, it is
almost independent of both the primary (QF1) and secondary (QF2)
QFs of compression, which is a major advantage of the proposed
algorithm. 

4.3 Computational complexity

To compare the computational complexity of different methods, we
measure and compare the average (averaged over number of
images) computation time. Table 4 shows the average computation
time of different algorithms for different size of images. It can be
observed that proposed method is computationally efficient as
compared to methods reported in [35, 36]. This is because the
proposed method is based on computing DFT of histogram of

images, which consumes lesser time than the features used in [35,
36]. 

5 Conclusion
In this paper, we proposed an efficient image forensics technique to
detect the HE operation which can be used to hide the traces of
previous JPEG compression or intensity variation in images due to
manipulations. The proposed method is very general and can detect
the HE operation in images even if they are post-processed (JPEG
compressed) after the equalisation operation. Based on our analysis
on the effects of equalisation and compression processes on the
image histogram and by observing the frequency domain
characteristics of histogram, a new parameter has been suggested
and its effectiveness to differentiate histogram equalised images
from unequalised images has been demonstrated. Experimental
results have shown the efficacy of the proposed methods and
demonstrate that the proposed method can detect HE process
satisfactorily for low- and high-resolution images. It has also been
shown that it can detect HE operation even if the image is JPEG
compressed after equalisation, where most of the contemporary
methods fail. It may be noted that the proposed method can detect
only standard HE process and does not work for more advanced
equalisation techniques like contrast limited adaptive histogram
equalisation (CLAHE), dynamic histogram equalisation (DHE). In
future, we aim to develop similar algorithms for advanced
equalisation techniques as well as to identify other image
processing operations frequently used to hide image manipulations.
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