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a b s t r a c t

Distributed generation expansion planning (DGEP) has been frequently reported in the literature around
the world. In this scope, renewable technologies which are considered as a kind of distributed genera-
tions are developing due to their environmental benefits. However, only a few renewable energies have
proven to be competitive so far, while their economic viability is also limited to certain regions of the
world. In this paper, an encouraging mechanism is proposed in favor of clean technologies in the
planning process. This mechanism is defined based on a grant function of emission not polluted which is
paid to DG owners to promote renewable and clean technologies. In the planning process, a multi-
objective optimization algorithm is applied to produce a Pareto set of optimal planning schemes by
taking into account different objective functions (cost and grant functions). The best planning scheme
among the Pareto set is chosen based on a composite utility which are obtained through a Monte Carlo
simulation of uncertain situations. Distributed generation technologies which are considered in this
paper are conventional and renewable technologies, namely photovoltaic (PV), wind turbine (WT), fuel
cell (FC), micro turbine (MT), gas turbine (GT), and reciprocal engine (RE). To assess the ability of the
proposed method, a typical distribution system is used for expansion planning under two environmental
scenarios.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed generation (DG) is an emerging approach to provide
electric energy close to load center [1,2]. Changing economic and
regulatory environment and also technological innovations have
resulted in a renewed interest for distributed generation in the last
decade [3].

Because of the wide definition of DG units, there are different
types of DGs from the technological point of view. These tech-
nologies generally can be divided into two groups namely:
combustion and non-combustion or renewable and nonrenew-
able. Nowadays, most of the DG capacities which are installed in
the world are: Diesel/gas reciprocating engines and gas turbines.
However, in one hand, renewable technologies such as photo-
voltaic and wind turbine are growing extremely quickly due to
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strong policy support. PV has the fastest growing renewable
technology in the world by 60% per year from 2000 to 2004 and
during the same 5-year period WT grew by 28% per year [4]. On
the other hand, new DG technologies such as micro-turbines and
fuel cells are being developed and are seen as a potential for the
future too [5].

Nevertheless, there is not a unique DG technology until now
that captures different aspects such as: economical, operational,
environmental, etc. Therefore various types of DG technologies
must be included in the planning strategy to choose the best ones
according to the objectives and constraints of the planner. Many
methods and techniques have been employed for DG expansion
planning problem so far. Kim et al. [6] presented an approach based
on Hereford ranch algorithm to minimize energy losses in a sub-
transmission system. El-Khaltam et al. [7,8] presented a heuristic
approach to determine the optimal DG size and site from an
investment point of view and the optimal planning was obtained
through a cost-benefit analysis. They considered several cost
functions in their planning model. Keane and O’Malley [9] pre-
sented an optimal allocation of DG based on maximizing genera-
tion penetration subject to technical constraints. In recent years,
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Nomenclature

Sets, parameters and scalars:
aj availability factor of unit type j at the end of planning

horizon
Dj expected peak power demand in jth load bus at the end

of planning horizon
ERj emission rate of DG technology type j
ERP average of emission rate of integrated fueled power

plants
GR Grant rate of emission not polluted ($/Kg)
ICj yearly investment of DG technology type j
Li length of ith line
LF load factor of the consumption at the end of planning

horizon
OCj hourly operating cost of DG technology type j
nb total number of buses in the distribution system

nlb number of load buses in the distribution system
ns number of substations which feed the distribution

system
pf system power factor
PLi emission limitation at ith bus
TIB total investment budget
Zij impedance of branch between ith and jth bus

Greek letters
a average plant factor of integrated power plants in the

grid
p hourly price of electricity market
l probability rate of outage line

Variables
Vi voltage of ith bus
PDG,ij capacity of technology type j in the ith bus
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another kind of planning methods based on the multi-objective
optimization techniques have been proposed by the researchers
[10–12] due to the ability of considering several conflicting objec-
tives at the same time.

Globally, burning carbon has significant negative effects on the
well-being of humans and eco-systems [13]. The main concentra-
tion of many of published literatures is focused on economical and
technical issues; however, recently a part of them consider the
environmental problem which is an important factor of sustainable
development. Dicorato et al. [14,15] presented a comprehensive
and interesting energy planning methodology including environ-
mental constraints to allocate required electricity generation in
whole power system. However, it is not compatible with unbun-
dling of the electricity network after deregulation and also siting of
power plant (centralized and decentralized) in the electricity
network are not determined in their proposed method. In [16]
some supporting schemes such as feed-in tarrifs, net metering and
green pricing were presented to reduce production costs of
renewable technologies. Van Alphen et al. [17] demonstrated that
current subsidies for conventional energy can be removed or shif-
ted to towards renewable energy technologies (RET) to promote
these kinds of technology. They also illustrated that rebates on
investments and low-interest loans should be provided to RET
project developers to overcome the high initial project costs. Sar-
afidis et al. [18] expressed to promote renewable energies it is
necessary to shift from a centralized view of the energy sector to
a regional perspective. They used a bottom-up approach intended
to match the supply of available renewable resources to the
particular energy demand profile of the regional level. A detailed
overview of the policies and measures implemented in Denmark
aiming to meet 35% of energy demand based on renewable energies
are presented in [19]. do Valle Costa et al. [20] presented an analysis
about the developments in renewable energy policies and the
prospects for Brazil based on the European experience in
promoting renewable energy sources.

In the medium term, dependency on the traditional fossil fuel
resources must be reduced gradually, in favor of clean energy
sources and this will be occurred by considering some encouraging
instructions, subsidy, or limiting constraints. This paper presents
a theoretical and practical approach based on multi-objective
expansion planning of DG technologies subject to technical,
economical, and environmental constraints. Addition to the
conventional cost functions, a grant function as a pollution not
emanated is proposed that must be maximized. Afterwards, Monte
Carlo Simulation (MCS) is applied to the options of the Pareto set,
output of multi-objective optimization, to consider probabilistic
behavior of uncertain parameters in the long term planning and
choose the best planning scheme. Six technologies of DG that are
taken into account in this paper are: photovoltaic (PV), wind
turbine (WT), fuel cell (FC), micro turbine (MT), gas turbine (GT)
and diesel reciprocating engine.
2. Mathematical model

2.1. Objective functions of DGEP problem

The future environmental rules like Kyoto protocol put a new
vision in front of the planner’s and legislator’s eyes. Therefore a new
objective related to the emitted pollution function will be added to
the conventional cost functions in generation expansion planning
problems. In the proposed planning model, a grant function is
introduced in addition to the conventional cost functions such as:
the cost of investment and operation, cost of energy losses and
purchased energy. The grant function is based on the pollution not
generated due to employing new DG technologies.

2.1.1. Cost function of investment and operation
This function (1) takes into account the investment and opera-

tion cost of DG technologies. According to (1), all load buses are
possible candidate for DG installation.

f1 ¼
Xnlb

i¼1

X
j˛Tech

CPV1$ICj$PDG;ij

þ
Xnlb

i¼1

X
j˛Tech

CPV2$OCj$PDG;ij$aj � 8760 (1)

where j denotes to the DG technologies that is studied in this paper,
i.e., PV, WT, FC, MT, GT, and RE. IC and OC are yearly DG investment
and hourly operating costs respectively, nlb is the number of load
buses in the distribution system, PDG,ij is the capacity of technology
type j in the ith bus, CPV1 and CPV2 are cumulative present values
related to fixed and variable costs respectively which are illustrated
in appendix and aj is the plant factor of jth technology at the end of
planning horizon [21].
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2.1.2. Cost function of energy losses and purchased power
This objective function comprises two consistent objective

functions: the total cost of the energy losses in the distribution
system and the purchased energy from the grid [22]. The aim of the
objective (f2) is to minimize both cost functions according to the
penetration level, capacity and location of DG units. Power flow in
feeder connecting bus i to j which is used to formulate energy loss
function is approximately defined in (3).

f2 ¼

0
@Xnb

i¼1

Xnb

j¼ iþ1

���Vij � jVjj
�2

jZijj
$pf $p

þ
Xns

i¼1

Xnlb

j¼1

jVij
���Vij �

��Vj
���

jZijj
$p$pf

1
A$LF$CPV2 � 8760 (2)

PijzjVij$
���Vij �

��Vj
���

jZijj
$pf (3)

where nb is the total number of buses in the distribution system, ns
is the number of substations which feed the distribution system, V
is the bus voltage, Zij and Pij are impedance and power flow of
branch between ith and jth bus respectively, pf is the system power
factor, p is the hourly price of electricity market and LF is the
prediction of load factor in the last year of planning horizon.

2.1.3. Grant or subsidy function as a pollution not emanated
One of the advantages of the new DG technologies is the

reduction of the greenhouse gas (GHG) emission using less fossil
fueled power plants. Pollution not emanated can be considered as
an appropriate objective function defined by authorized entities
to encourage distribution companies (DisCo) or independent
power producers (IPP) towards new technologies. This objective
function (4) must be maximized which is defined as the cost
saving of pollution not generated due to utilization of clean DG
units. For this purpose a pollution rate is used for each tech-
nology of DG units.

f3 ¼
 

DGcap$ap$ERP �
Xnlb

i¼1

fEDGig
!

$GR$CPV2 � 8760 (4)

DGcap ¼
Xnlb

i¼1

X
j˛Tech

PDG;ij (5)

EDGi ¼
X

j˛Tech

 
PDG;ij$aj

X3

k¼1

uk$ERjk

!
; i c nlb (6)

where DGcap is the total capacity of DG units which is planned to
be installed in the distribution system, ERP is the emission
average rate of integrated fueled power plants, a is the average
plant factor of integrated power plants in the grid, EDGi is the
total emission of DG units in the ith bus related to the technology
type of DG, GR is the grant rate of emission not polluted, ERjk is
the emission rate of kth pollutant related to jth DG technology
and wk is the weighting factor of kth pollutant.
2.2. Constraints of DGEP problem

The predefined objective functions are optimized subject to
various constraints to satisfy the technical, economical and envi-
ronmental aspects of the distribution networks.
2.2.1. Balance of supply and demand
One of the most important constraints in the planning process is

to meet future demand of the distribution system in peak load
conditions (7). This is an equality constraint that sum of all
incoming and outgoing active power from each load bus must be
balanced.

Xnb

i¼1

(
Pij �

���Vij �
��Vj
���

jZijj
$pf

)
þ PCAP

DG;j ¼ Dj j c nlb (7)

Pcap
DG;i ¼

X
j˛Tech

PDG;ij i c nlb (8)

where Dj is the peak power demand in jth bus and PCAP
DG is capacity

of DG units at each bus.
2.2.2. Voltage limits
Voltage magnitude of all the load buses must be limited within

allowed upper and lower limits (9). In this paper, upper and lower
limits of voltage are assumed to be 1.05 p.u. and 0.95 p.u.
respectively.

Vmin
i � Vi � Vmax

i c i˛nlb (9)

2.2.3. Feeder capacity constraint
Power flow of the distribution feeders must be limited under

maximum capacity of the feeders (10).

Pij � PMax
ij ; i c ns & j c nlb (10)

2.2.4. Maximum installed capacity
Maximum installed capacity at each bus is determined for DG

units according to technical characteristics of distribution system.
The calculated capacity of DG units through optimization algorithm
must be less than maximum installed capacity of DG units at each
bus (11).

Pcap
DGi � Pmax

DG c i˛nlb (11)

where Pmax
DG is the maximum permitted capacity of the total

installed DG units at each bus of the distribution system. This value
is considered to be 4 MVA according to the voltage limits and short
circuit level of distribution system [7].

2.2.5. Total investment budget
Either DisCo or IPPs have to carry out investment planning

according to their maximum financial budget. It is taken as
a significant factor in calculating the capacity of DG units.

Xnlb

i¼1

X
j˛Tech

ICj$PDG;ij � TIB (12)

where TIB is the total yearly investment equal to US$ 438000 which
is available for investment in distributed generation. This yearly
parameter is obtained according to a planning horizon of 10 years
and discount rate of 9.15%.
2.2.6. Pollution emission
An important constraint in the future generation expansion

planning is the emission limitation. This constraint can be defined
either as the maximum rate in entire distribution system (13) or as
the maximum emission rate at each bus (14).



Fig. 1. Non-dominated sort in genetic algorithm.

Table 1
Peak load demand of buses at the end of planning horizon.

Bus Number 1 2 3 4 5 6 7 8
Demand (MVA) 7.6 8.7 4.6 4.0 5.1 6.1 7.6 7.4

Table 2
Technical and economical data of DG technologies.

Technology IC
($/MW-
year)

OC
($/MWh)

Commercial
size (KW)

Plant
factor (%)

Pollution
(kg/MWh)

CO2 NOx Others

PV 618,000 0 100 25 0 0 0
WT 206,000 10.9 200, 300 20 0 0 0
FC 278,100 36.4 100, 200 75 460 0.001 0.027
MT 180,250 47.3 100, 200, 300 55 720 0.1 0.478
GT 103,300 54.5 300, 500, 1000 60 630 0.5 1.135
RE 36,050 64.4 300, 500, 1000 15 685 10 2.724

Table 3
Maximum emission rate throughout distribution system in scenario A.

Maximum permitted emission (kg/h)

Case study I 8000
Case study II 7000
Case study III 6000
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Xnlb

i¼1

EDGi � TPL (13)

EDGi � PLi (14)

where EDGi is the total emission of DG units in the ith bus and PLi is
the emission limitation at ith bus and TPL is the total emission
limitation in whole distribution system.
3. Multi-objective optimization algorithm

A multi-objective optimization problem has a number of con-
flicting objective functions which are to be minimized or maxi-
mized [23]. This optimization problem can be stated as (15).
Fig. 2. Typical distribution system.
minFðxÞ ¼ ff1ðxÞ; f2ðxÞ;.; fnðxÞg
s:t: gðxÞ � 0 ; hðxÞ ¼ 0

(15)

where n is the number of objective functions, x is the vector of
variables for the optimization problem, fi(x) is the ith objective
function, g(x) and h(x) are equality and inequality constraints of the
problem. In contrary to single objective optimization, the solution
of (15) involves a set of solutions called Pareto or trade-off surface.
After a set of such trade-off solutions are found, a decision maker
can then use higher level qualitative considerations to choose an
option. Numbers of the Pareto set are set to 200 in the simulations.

Non-Dominated Sorting in Genetic Algorithms is a popular non-
domination based genetic algorithm for multi-objective optimiza-
tion [24]. In this paper a modified version, NSGA-II which has
a better sorting algorithm is applied to find trade-off optimal
solutions of DG technologies, location and size. In this method, two
blocks are added to the conventional genetic algorithm to solve
Fig. 3. Pareto set of three objective functions during the planning period.



Table 4
Five samples of the planning schemes among Pareto set of case study I.

Scheme DG technologies Bus number

1 2 3 4 5 6 7 8

1 PV 0.5 0 0 0 0.3 0 0 1.2
WT 0 0 0 0 1.5 0 0 1.5
FC 0 0 0 0 1.2 0 0 0.4
MT 1.3 1.4 0 0 0 0 0 0
GT 0.8 0 0 0 0 0 0 0
RE 1.7 1.5 0 0 0 3.3 0 1

2 PV 0 0 0 0 0 0 0 0.3
WT 0 0 0 0 1.1 0 0 1
FC 0 0 0 0 0 0 0 0
MT 0 1.4 0 0.9 0 0 0.9 0.9
GT 0 1.4 0 0 1.7 0 2 0
RE 0 0 0 2.1 0 0 0 1

3 PV 0 0 0.5 0 0.7 0 0 0.5
WT 0 0 1.5 0 1.3 0 0 1.3
FC 0.8 0 0 0 0 0 0 0
MT 0 0 0 0 0.7 0 0 0.9
GT 0.9 0 0.8 0 0 0 0 0.3
RE 2.2 0 1.1 0 1 0 0 0.9

4 PV 0 0 0 0 0.2 0 0 0
WT 0 0 0 0 1 0 0 0
FC 0 0 0 0 1 0 0 1.5
MT 0 0 0 0 0 0 0 0
GT 0 0.9 0 0 0 0 0 1.2
RE 2 2.1 0 3 0.8 0 0 0

5 PV 0 0.4 0 0 0 0 0 0
WT 0 0 1.1 0 0.3 0 0 0
FC 0 1.6 0 0 0 0.2 0.8 0
MT 0 0.5 0.9 0 0 0.6 0 0
GT 1.7 0 0 0 0 1.7 0 0
RE 1.4 0.3 1.1 0 0 0.3 2.2 0

Fig. 4. Probability distribution function of yearly investment cost associated with DG
technologies.
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multi-objective problems. These parts, shown in Fig. 1 are
described as follow.

3.1. Non-dominated sort

The population, P in each generation is classified and sorted to
several fronts according to non-domination hypothesis [25]. Each
individual in main population, P is compared with the other indi-
viduals to determine whether it is dominated or not. Those indi-
viduals that are not dominated with the others form the first front.
After removing the individuals belong to the first front from the
main population, this process which is described in detail in [23] is
carried out to find out the next fronts (16).

P ¼ Wr
j¼1Pj (16)

where Pj is the jth front of the sorted population.

3.2. Crowding distance

After completing non-dominated sort, the crowding distance is
assigned. Since the individuals are selected based on rank and
crowding distance, all the individuals in the population are
Table 5
Penetration level (%) of DG technologies among Pareto set for scenario A.

PV WT FC MT GT RE

Case study I 6.9 12.8 12.6 10.2 15.4 42.1
Case study II 10.1 16.9 13.5 5.4 17.6 36.6
Case study III 12.4 19.8 22.5 2.9 27.1 15.3
assigned a crowding distance value. The crowding distance is
a measure of how close an individual is to its neighbors. Large
average crowding distance will result in better diversity in the
population. The basic idea behind the crowing distance is finding
the Euclidian distance between each individual in a front. This
parameter is calculated between two individuals in the same front.

djðkÞ ¼
Xn

i¼1

fiðk� 1Þ � fiðkþ 1Þ
f max
i � f min

i

; j ¼ 1;.; r (17)

where d(k) is the distant of kth individual in the jth front. An infinite
distance is assigned to boundary individuals in each front.
4. Monte carlo simulation

Monte Carlo Simulation is one of the methods for simulating
real systems by analyzing uncertainty propagation, where the
goal is to determine how random variation, lack of knowledge, or
error affects the sensitivity, performance, or reliability of the
system that is being modeled [26]. Since the uncertain
Fig. 5. Probability distribution function of hourly operating cost associated with DG
technologies.



Fig. 6. Histogram samples of MCS for scheme no. 154 by composite utility function.
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parameters as inputs of MCS are randomly generated from
a probability distribution function, MCS is known as a sampling
technique. This characteristic can be defined as the ability of the
technique that takes into account randomness by investing
hundreds of thousands of different situations [27]. The results are
Table 6
Ten first schemes of DG expansion planning of case study I according to different
utility functions.

Schemes ranking based on different utility functions

Investment
cost ($)

Operating
cost ($)

Cost of energy
losses &
purchased

Cost of
energy
not served ($)

Composite
utility
function

127 160 4 15 146
2 109 5 76 144
22 13 83 145 174
180 67 33 70 142
171 168 120 49 192
200 182 195 157 103
3 97 8 29 29
117 45 166 36 23
65 106 37 78 41
84 154 7 38 149
then gathered and used to make decisions. This process will help
decision maker to come closer to the reality.

MCS method is performed in the following steps [28,29]:
Step 1: Determine an appropriate distribution function for each

uncertainty regarding the available records and experts’ opinion.
Step 2: Determine number of runs that the simulation should be

performed. It is determined according to the problem size and
importance of risks.
Table 7
Candidate DG schemes: capacity, location and technology type of best schemes in
scenario A.

Bus no. Case I: Scheme no. 154 Case II: Scheme no. 46 Case III: Scheme no. 97

PV WT FC MT GT RE PV WT FC MT GT RE PV WT FC MT GT RE

1 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0
2 0.5 0 1.0 0 1.3 1.2 0.4 0 1.2 0 1.4 0.8 0.3 0 1.3 0 1.6 0.8
3 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 1 0 1.2 0 0 0.9 0 0 0.9 0 0 0.9 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0.5 0 0.4 0 0 2.2 0.4 0 0 0 1.8 0.9 0.3 0 0 0 1.7 0.8
8 0.3 0.7 0.3 0 0 1.8 0.8 1.1 0.2 0 0 0.8 0.8 1 0.3 0 0 0.9



Fig. 7. Zoning of distribution system according to ecological criterion.
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Step 3: In each run, allocate a random number for each uncer-
tainty according to the predefined distribution function.

Step 4: Utility function measure is determined based on the
value of uncertainties obtained in current run.

Step 5: Do steps 3 and 4 for all simulation runs and then draw
the histogram diagram of utility function results.

According to the uncertain parameters, a composite utility
function (18) is defined to assess the sensitivity of the uncertain
parameters on planning schemes of the Pareto set. The composite
function is weighted sum of the yearly investment cost (U1),
average of yearly operation cost (U2), cost function of energy losses
and energy purchased (U3) and penalty cost of energy not served
(U4). The utility function of energy not served (19) is the probability
cost of energy not served according to the uncertainty of electricity
demand.

Uc ¼
X4

i¼1

wiUi (18)

U4 ¼
Xnl

i¼1

�
Dt

i � Pt
DG;i

�
$Li$l$Cu (19)

where w is the weighting factor of the utility functions assumed
to be equal to 0.25, Dt

i and Pt
DG;i are total demand and local

generation in the deliberate island respectively that is down-
ward of the fault location, nl is the number of lines in the
distribution system, Li is the length of ith line, l is the yearly
probability rate of line outage and Cu is the average cost of
energy not served through the distribution system. It is
assumed to be 350 $/MWh.

As MCS is a stochastic technique, if the simulation is repeated,
a different set of summary statistics will have been calculated.
Therefore, if the sample size becomes larger, the difference
between the repeated simulations will be smaller. Number of
samples is assumed to be 5000 in this paper.

5. Simulation results

As it was described, a strategy based on encouragement (grant
function) and convincement (emission constraints) is proposed to
promote clean technologies in the DGEP problem. To assess the
ability of the proposed approach, a typical distribution system
shown in Fig. 2 is used [7]. The distribution system consists of 8
load buses and one junction substation connecting remainder of
the system to the main grid. The capacity of the substation is
40 MVA. It is assumed that planning horizon consists of 10 years
and DisCo has to supply peak demand at the end of planning
horizon by investing in DG capacities. Peak demand of load buses at
the end of planning horizon is presented in Table 1. Power factor is
assumed unity in the distribution system.

The technical and economical data of DG technologies are pre-
sented in Table 2 [5]. The emission rate of some greenhouse gases
are presented for each technology in this table. The total amount of
emission for each technology is determined based on the weighted
sum of the pollutants. The weighting factors are equal to 0.3, 0.5,
and 0.2 for CO2, NOx and the other gases like SO2 and CO. The grant
rate of emission not polluted is considered equal to 0.25 $/kg [30].
Electricity market price at the end of planning horizon, tenth year,
is assumed to be 60 $/MWh. Since siting of WT is strongly related to
geographical factors, it is assumed that appropriate places to install
WT units are just buses 3, 5 and 8.

In this section two scenarios based on maximum emission rate
are considered to assess the capability of the proposed method-
ology under future uncertainties.
5.1. Scenario A: emission constraint throughout distribution system

In this scenario, total emission by overall installed DG is
limited by a constraint. It can be an appropriate constraint if
system under study has small geography extent, especially for
small distribution system. Maximum permitted emission rate
throughout the typical distribution system under three case
studies is presented in Table 3. The Pareto set of multi-objective
optimization as a set of optimal planning schemes is depicted in
Fig. 3 for case I and Table 4 gives five sample schemes among
Pareto set for this case study. Average penetration level of each
DG technology among the Pareto set are presented in Table 5. It is
shown that penetration level percentage of such DG technologies
with high emission rate (RE, MT and GT) is decreased in favor of
clean technologies (PV, WT and FC) from case I to case III by
reducing maximum emission rate. Next step is to achieve a final
decision among the obtained planning schemes. In this paper,
a MCS method is applied to choose the best planning scheme by
considering future uncertainties. MCS method is performed
according to section 3 and uncertain parameters are defined as
yearly investment cost, hourly operating cost, electricity market
price and maximum electricity demand at each bus. A special
distribution function is defined for each uncertain parameter to
simulate the future variations. These distribution functions are
chosen according to the probability of the future technology
development and expert’s opinions. Figs. 4 and 5 show the
distribution function of investment and operation costs related to
DG technologies. For example, in Fig. 4, investment cost of DG
technologies varies in different trend according to the future



Table 10
Candidate DG schemes: capacity, location and technology type of best schemes in
scenario B.

Bus
no.

Case IV: Scheme no. 43 Case V: Scheme no. 141 Case VI: Scheme no. 45

PV WT FC MT GT RE PV WT FC MT GT RE PV WT FC MT GT RE

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 1.1
2 0 0 0 0.9 0.9 1 0 0 0 0.8 0.9 1 1.4 0 1 0 0.9 0.6
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 3 0 0 1.5 0 1 0.3 0 0 0 0 0 0
5 0 0.9 0 0 0 2.1 0 1 0 0 0 2 0.4 1.8 0 0 1 0.8
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0.9 2.1 0 0 0 0 0.9 2.1 0.6 0 0 0 1.5 1.1
8 0 1 0 0 0 2.1 0 1 0 0 0 2 0 1.8 0.4 0 1 0.9

Table 8
Maximum emission rate at each bus of distribution system in scenario B.

Zone 1 (kg/h) Zone 2 (kg/h) Zone 3 (kg/h)

Case study IV 2600 2200 1800
Case study V 1800 2600 2200
Case study VI 2200 1800 2600

Table 9
Penetration level (%) of DG technologies for scenario B.

PV WT FC MT GT RE

Case study IV 4.3 10.7 8.7 8.4 19.8 48.1
Case study V 8 12.1 12.5 6.9 20.5 40
Case study VI 10.8 16 17.4 8.6 12.6 34.6
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development. Similarly, operation cost variations of conventional
technologies like GT and RE show the probability of increasing
prices due to future increasing prices of oil and gas. MCS method
with 5000 samples is applied on different utility functions by
using predefined uncertain parameters. Standard deviation value
of MCS samples is calculated for each scheme and the scheme
with lowest standard deviation is chosen as the best planning
scheme in viewpoint of a specified utility function. Table 6 shows
ranking of 10 first planning schemes according to different utility
functions. Final decision is made based on a composite utility
function which is weighted sum of defined utility functions. It is
assumed that all the weighting factors are equal to 0.25. Histo-
gram curves of MCS samples for scheme no. 154 is shown in
Fig. 6 as the best scheme of the case study I. Candidate schemes
for three case studies are presented in Table 7. It presents
capacity, location and technology type of DG units.
5.2. Scenario B: emission constraint at each bus

In this scenario, a hard emission constraint is considered at each
bus. This constraint could be applied in the expansion planning of
large urban distribution systems which have a great concern about
emitted pollution. For this purpose, as shown in Fig. 7, the distri-
bution system under study is divided into three zones according to
the ecological and pollutant criterion. Maximum emission rate at
each bus is presented under three case studies in Table 8. The
results of the penetration level percentage of DG technologies are
presented in Table 9. It is seen that RE has the largest penetration
level in three case studies; however its amount is reduced from
48.1% in case IV to 34.6% in case VI. Since zone 2 of the distribution
system consists of important buses in viewpoint of DG siting such
as 2 and 5, case VI has the strictest conditions among the case
studies due to emission constraint in zone 2. Table 9 shows that
clean and renewable technologies have the highest penetration
level in case study VI. The Penetration level of these technologies is
increased from cases IV to VI. However, the penetration of
conventional technologies is decreased from cases IV to VI. It is
observed from Table 8 that zone 2 and after that zone 1 have severe
emission constraints in case VI. These zones include important
candidate buses (2, 4, 5 and 1, 7) due to either their locations at the
end of distribution system or their high power demand.

Candidate schemes of DG expansion planning are presented in
Table 10 for three case studies. It is observed that none of the
schemes have DG at buses 3 and 6. It is also seen that installation of
PV units is just economical in the case VI.

It was observed by comparison of simulation results in two
scenarios that emission constraint in scenario A is a limiting
constraint in whole distribution system and location of DG units is
not affected by this constraint. On the contrary, the assumed
emission constraints in scenario B affect the location of DG units
according to the case study as well as limit the emission in each zone.

6. Conclusion

By approving and executing Kyoto protocol approximately in most
of the countries, it is obvious that environmental issues will be
a significant concern besides economical and technical criteria inpolicy
and decision makings. This paper proposed a promotion strategy based
on a grant of pollution not emanated to encourage DisCo or IPP for
applying clean technologies. This encouraging mechanism is used
along with emission constraint to control emitted pollution in the
distribution system. A multi-objective optimization method (NSGA-II)
and Monte Carlo Simulation were applied to choose the best planning
scheme consists of information about DG technologies, capacity and
location in the distribution system. Simulation results of this paper
appropriately shows that renewable energy sources will be the most
favoured technologies of the future, if new technologies have a eye-
catching development in the next decade or emission constraints are
established more severe than today.
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Appendix. Cumulative present value (CPV)

Cumulative present value is a factor to actualize total costs
during a certain period of time. CPV of fixed costs (CPV1) is calcu-
lated as follow:

S0 ¼
Xt

n¼1

Sc

�
1

1þ d

�n

¼ Sc

Xt

n¼1

ðP1Þn¼ Sc$CPV1 (A1)

CPV1 ¼
Xt

n¼1

ðP1Þn¼
ðP1Þ � ðP1Þtþ1

1� ðP1Þ
(A2)

where S0 is the cumulative present value of expenditures during
years, Sc is the yearly fixed payment and d is the discount rate.

If the variable costs increase according to inflation and load
growth rate in each year (A3), cumulative present value of variable
costs (CPV2) is calculated as follows:

Sn ¼ S1½ð1þ f Þð1þ gÞ�n (A3)

S0 ¼
Xt

n¼1

Sn

�
1

1þ d

�n

¼
Xt

n¼1

S1

	
ð1þ f Þð1þ gÞ

1þ d


n

¼ S1

Xt

n¼1

ðP2Þn

¼ S1$CPV2 (A4)
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CPV2 ¼
Xt

ðP2Þn¼
ðP2Þ � ðP2Þtþ1

(A5)

n¼1

1� ðP2Þ

where S1 and Sn are variable costs at first and nth year respectively
and CPV2 is the cumulatively present value based on the variable
cost at the first year (S1). Since in this paper, variable cost is
calculated at the end of the planning horizon according to the
predicted load duration curve, the equation (A5) is changed as
follows by putting (A3) into (A4).

CPV2 ¼
CPV2

½ð1þ f Þð1þ gÞ�t
(A6)

Discount, inflation and load growth rate are considered equal to
0.06, 0.05 and 0.02 in this paper.
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