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Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software
developers who build applications on top of these devices. Many applications in this domain have severe non-functional
requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating
systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some
of the key points in the software development for IoT in these constrained devices, like task synchronisation and network
communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of
support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on
the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner,
as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them
according to their performance evaluation in the obtained results.

1 Introduction
The internet of things (IoT) consists, basically, of various types of
devices, of heterogeneous hardware and software architectures,
connected together and to the internet [1]. Increasing complexity of
embedded systems designed for the IoT leads to the necessity of
managing the various tasks performed by the system in a consistent
manner, a role taken by an operating system (OS). This is an
important part of the challenges faced in this context of connected
cyber-physical systems in which IoT is immersed [2].

Real-time constraints are a major concern in this context,
especially in at least three areas concerning IoT devices: sensing,
actuation, and communication. Taking a patient remote monitoring
system as an example, it is easy to observe these constraints. In
such a system, sensors are attached to the patient's body to collect
health parameters, such as blood pressure and oxygen level in the
blood. Depending on the type of monitoring and the health problem
the patient has, the acquisition of these parameters has to be timely
precise, i.e. they must obey specific timing requirements in relation
to the acquisition of the samples, so that they can be semantically
correlated. This correct correlation provides the desired
information to the health personnel monitoring this patient.
However, if the data acquisition does not strictly obey the sampling
period, for instance, incorrect correlations may be calculated
misleading the health personnel to wrong diagnostics. This means
that the sampling acquisitions should neither be faster nor slower
than what is required, but precisely according to the specifications.
Besides these, the use of reliable software is a must for IoT
connected devices, as they can be deployed in places where repair
or maintenance is difficult. Also, depending on the domain of
application, such as avionics systems, industrial control,
transportation, as well as for medical devices, software certification
is a requirement, and using a pre-certified software stack reduces
time-to-market and development costs.

RFC 7228 [3] introduces a standardisation for classifying
wireless network devices with constrained system resources, based
mainly on memory capacity. The proposed classification separates
the devices into three categories:

i. Class 0 devices are the most constrained ones, having <10 kB
of data memory (RAM) and <100 kB of code memory (ROM,
e.g. Flash). These are typically sensor nodes, which most likely

will not communicate directly with the internet, needing a
proxy or a gateway in between, and with very basic or none at
all management capabilities. In other words, these are deploy
and forget nodes, in the sense that either their expected life
time is so short or their functionality is so simple that no
update should be expected for their entire lifetime.

ii. Class 1 devices have around 10 kB of RAM and 100 kB of
ROM. These types of devices do not have full internet protocol
stacks, such as hypertext transfer protocol and transfer layer
security, but protocols devised for devices of this class have
been created, like the constrained application protocol (CoAP)
over user datagram protocol.

iii. Class 2 devices have around 50 kB of RAM and 250 kB of
ROM. These devices are much less constrained than the other
two classes and are capable of supporting most of the same
protocols as much larger systems. However, using the same
protocols as devices in lower classes makes sense, as these are
typically developed with power consumption in mind, and
leaves more room for application logic.

In large embedded system platforms (devices beyond class 2), it
is suitable to use an OS like Linux, a BSD variant, Windows CE or
even Windows 10 IoT Core. For small devices, with size, memory
and energy consumption constraints (classes 1 and 2), the overhead
of such OSs in memory, storage or processing power has driven to
the development of specialised OSs, such as Contiki [4], the
Zephyr Project [5], RIOT-OS [6] and many others, as surveyed in
[7]. The authors show in their vision, what are the requirements for
an OS for IoT devices: small memory footprint, support for
heterogeneous hardware, network connectivity, energy efficiency,
real-time capabilities, and security. Technical key design choices
like general architecture and modularity, scheduling model,
memory allocation strategies, network buffer management,
programming models, supported programming languages, driver
model and hardware abstraction layer, debugging tools, feature set,
and testing are discussed. Non-technical aspects such as standards,
certification, documentation, maturity, license, and provider are
also discussed.

The authors in [7] then present a number of candidate OSs for
IoT devices. Those that are open source are Contiki, RIOT,
FreeRTOS, TinyOS, OpenWSN, eCOS, mbedOS, L4 family,
uClinux, Android, Brillo and some other small RTOSs. Those
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which are proprietary, not open source, are the following: ThreadX,
QNX, VxWorks, Wind River Rocket, PikeOS, embOS, Nucleus,
Sciopta, μC/OS-II and μC/OS-III, μ-velOSity, Windows CE and
Huawei LiteOS. The authors categorise these OSs into three
categories: event-driven, multi-threading OSs, and pure RTOSs.
Finally, a case study about the key design choices is shown for one
representative of each category: Contiki, RIOT, and FreeRTOS,
respectively.

Since the publication of this comprehensive survey, the Zephyr
Project [5], from the Linux Foundation, has been released to
developers. This project is based on the Rocket kernel, by Wind
River.

Observing this landscape of OSs for IoT devices and the major
importance of real-time support for IoT application, this study
reports a study on real-time OSs (RTOSs) for IoT devices. Besides
other important aspects related to IoT operation, such as energy
consumption, the study is focused on real-time properties, as the
analysis of other concerns goes beyond the intended work, besides
the need for different and complementary methodology for their
evaluation.

This study proposes benchmarking selected open and closed
source RTOSs for IoT focusing on the performance evaluation of
key synchronisation primitives the system provides for
applications, such as semaphores and message queues, as well as
the system responsiveness to external events, which will dictate the
overall performance of devices using these OSs, thus directly
impacting the time aspects of the final users' services supported by
these IoT devices [8].

Besides this introduction, the paper is organised as follows:
Section 2 discusses related works; Section 3 presents the study
methodology, describing the benchmark criteria and the rationale
behind them; Section 4 describes the experimental environment,
setup and the acquired results, which are then critically discussed;
finally, Section 5 concludes the paper providing directions for
future work.

2 Related works
Among all of an operating system's aspects, inter process
communication (IPC) performance is one of the most important
criteria to be taken into account for the system to meet its timing
constraints and desired performance, as seen in [9]. The authors
present a set of three benchmarks to measure the performance of
synchronisation primitives, most notably semaphores, on
FreeRTOS.

The authors in [10] present a set of benchmarking strategies for
IPC mechanisms on RTOSs. The benchmarks are application-based
or based on the most frequently used features, which they call fine-
grained benchmarking, themselves based on the criteria proposed
in [11], which evaluate the system responsiveness to external
events, inter-task synchronisation and resource sharing and inter-
task data transferring.

The authors in [10] selected the following RTOSs for their
study: μITRON, μTKernel, μC-OS/II, EmbOS, FreeRTOS, Salvo,
TinyOS, SharcOS, XMK OS, Echidna, eCOS, Erika, Hartik,
KeilOS, and PortOS. The criteria used to analyse these RTOSs are:
design objective (commercial, research, hobby, etc.); author
(individual, organisation or company); scheduling scheme
(preemptive, cooperative, other); real-time capability and
performance; memory footprint; programming language support;
application programming interface (API) richness; OS-aware
debugging; licensing; and documentation.

Finally, a performance and memory footprint benchmark is
shown in [10] for a selected subset of these RTOSs in the Renesas
M16C/62P platform. The chosen performance criteria are task
switch time, get and release semaphore time, semaphore passing
time, pass and receive message time, inter-task message passing
time, fixed-memory acquire and release time, task activation from
within an interrupt service routine. All the pseudo-codes used for
these measurements are presented. Memory footprint information
is obtained for each benchmark through the toolchain reports, after
compilation.

In the work reported in [12], the author presents a comparison
of the performance of the CMSIS-RTOS layer, developed by ARM
to standardise common RTOS system calls, with two RTOSs, the X
Real-Time Kernel [13], and a FOSS RTOS kernel, which was not
specified by the author. The benchmarks are based on the same
methodology as [10].

In [14], the authors present SenSpire OS, an OS for wireless
sensor networks, and CSpire, the programming language, which is
used to create applications using this OS. They present the various
aspects which defined the development of this OS: predictability,
flexibility, and efficiency. Predictability is achieved through using
the priority ceiling protocol for synchronisation primitives and
what they call as two-phase interrupt servicing, which is basically
performing the sensitive and critical parts inside the interrupt
handlers, and deferring the rest to a task with lower priority.
Flexibility is approached by having a hybrid system model,
combining event-driven and multi-threaded programming. As for
efficiency, SenSpire OS supports dynamically loadable system
modules, enabling energy-efficient software. Stack sharing is also
used to reduce the memory footprint. A series of benchmarks
evaluating interrupt latency, scheduler overhead, and overall
system performance is also presented.

Different from [9], which focuses on the performance of
semaphores on FreeRTOS, [10], which does a comprehensive study
of objective (like performance and language support) and
subjective characteristics (like license and documentation) of
RTOSs focused on industrial applications, [12], which evaluates
the CMSIS-RTOS middleware, the present paper combines
selected benchmarks from them and [14], and presents a
performance evaluation of key performance components of RTOSs,
focusing on RTOSs for IOT connected devices.

3 Study methodology
Among all of the RTOSs present in the survey in [7], three were
chosen: FreeRTOS [15], RIOT [6], μC/OS-III [16]. Besides these
three, the Zephyr and μC/OS-II [17] RTOSs will also be
benchmarked following the same criteria. They were chosen based
on their open source license, popularity [18] and out-of-the-box
support for the test platform used in this study. Another popular
open source RTOSs, like Apache Mynewt, had incipient support
for the used platform at the time of developing and writing of this
work, and others, like mbedOS, had a setup procedure that was
considered to be too cumbersome. Additionally, the mbed web-
based integrated development environment (IDE) was not
sufficient for the needs of the study here reported. The benchmarks
which will be run against the selected RTOSs are what the authors
in [10, 11] call fine-grained benchmarks, leading to an evaluation
of essential features of an RTOS.

These benchmarks are the task-switching time, the time for
getting and releasing a semaphore, the time for passing a
semaphore, the time to pass and receive a message, the time to pass
a message between tasks, the time to acquire and release a fixed-
size memory region, and finally, the time to activate a task from
within an interrupt service routine.

In addition to these seven benchmarks, another one, based on
the criteria presented in [9], which evaluates the task activation
jitter, is also executed.

3.1 Benchmark criteria

3.1.1 Task switching time: There are two tasks in this
benchmark. Task A has a higher priority than task B. As soon as
task A is awoken, it goes to sleep, and a context switch to task B
occur, which in turn awakens task A. The time for the switch
between tasks A and B is measured (CS 1 in Fig. 1a). 

3.1.2 Getting and releasing a semaphore time: In this
benchmark, a single task gives and takes a semaphore repeatedly.
The semaphore is initialised as taken.

The times for taking and releasing this semaphore are measured
separately (grey area in Fig. 1b).
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3.1.3 Semaphore passing time: There are two tasks in this
benchmark. Task A has a higher priority than task B. The
semaphore is initialised as taken.

As soon as task A is awoken, it tries to take the semaphore. A
context switch to task B occurs, which gives the semaphore,
causing a context switch to task A. The time for the switch between
tasks A and B is measured (CS 1 in Fig. 1c).

3.1.4 Pass and receive a message time: In this benchmark, a
single task passes and receives messages repeatedly. The message
queue is initialised as empty. The times for passing and receiving a
message are measured (grey areas in Fig. 1d).

3.1.5 Inter-task message passing time: There are two tasks in
this benchmark. Task A has a higher priority than task B. The
message queue is initialised as empty.

As soon as task A is awoken, it asks for a message, and a
context switch to task B occurs, which in turn passes a message to
task A, causing a context switch to task A. The time for the switch
between tasks A and B is measured (CS 1 in Fig. 1e).

3.1.6 Fixed-size memory acquire and release time: In this
benchmark, a single task acquires a fixed-size region of memory
and releases it. The times to acquire and to release this region are
measured separately (grey areas in Fig. 1f).

3.1.7 Task activation from within an interrupt service routine
(ISR): In this benchmark, there are two tasks. Task A has higher
priority than task B. As soon as task A is awoken, it goes to sleep,
causing task B to be executed indefinitely. When an interrupt
occurs, its handler awakes task A.

The time taken for the task A to be resumed from within the
interrupt handler is measured (T in Fig. 2a). 

3.1.8 Task activation jitter induced by priority inversion: This
benchmark has a similar setup to test case A, but with the addition
of a third task, task C, which has lower priority and no interaction
at all with the other two tasks.

Task C makes use of a second semaphore, initialised as taken,
and does an infinite sequence of give and take operations on it.

Ideally, due to the absence of interaction between task C and the
other tasks, the timing of the other tasks should not be altered in
any way. However, as shown in [9], FreeRTOS has an in-kernel
critical region for protecting concurrent accesses to its own data
structures.

This can introduce jitter in the task activation timings if the tick
interrupt occurs while the kernel is inside one of its own critical
regions. The times between P in Fig. 2b are measured.

3.2 Rationale behind the criteria

Benchmark A is extremely important, as it shows the system
performance on the most basic context switching scenario, without
involving pre-emption, as the tasks simply enter in the suspend
state and later are resumed.

Benchmarks B and D show the performance of the provided
IPC directives without incurring in context switches showing the
underlying quality of these primitives. While benchmarks C and E
show the performance of the IPC directives, this time involving
two different tasks. As shown later, the results are, in almost all
cases, the results of benchmark A, added together with the results
of benchmarks B and D, with a little overhead.

Benchmarks C and E show how a generic device will respond
to internal events, like posting a message to a send queue, locking
and unlocking a critical section in the networking stack, passing a
received message to a treatment task, etc.

While not common in traditional, single-purpose real time
embedded systems, dynamic memory allocation can be an
important factor for IoT systems, enabling them to perform
different tasks. Nevertheless, a consistent timing and behaviour are
still expected for this kind of system, and this is what benchmark F
shows.

Perhaps the most important benchmarks, G and H show the
behaviour of the system under different conditions. In benchmark
G, an external event, serviced by its interrupt handler, wakes up a
task to perform work based on this event, showing how well the
system responds to events. Benchmark H, in turn, shows how well
the system respects its timing constraints under heavy load.

Considering, for instance, a people counter application, these
two benchmarks can be used to determine how well this
application would react to surges in the number of people
circulating in the monitored areas. If the devices take too long to
service interrupts, it is possible that a miscount will occur. Also, if
the devices do not respect the timing constraints under this
unexpected surge, system functions, like communications, could be
negatively impacted.

4 Experiments and results
4.1 Hardware configuration

The hardware chosen to conduct this study was the NXP/Freescale
FRDM-K64F board [19], which contains a Kinetis K64F, an ARM
Cortex-M4F based microcontroller, capable of running at 120 
MHz, with 1 MB of flash memory and 256 kB of RAM, with a
great set of peripherals: USB, Ethernet, SDHC card reader,
connectors for readily available Nordic nRF24L01+ wireless and
JY-MCU Bluetooth modules and connectors for Arduino
compatible shields. This platform was chosen due to the fact that it
has out-of-the-box support for all of the selected RTOSs.

4.2 OSs setup and configuration

4.2.1 FreeRTOS: The 9.0.0 version of FreeRTOS was chosen for
this work. Despite this version introducing static allocation of
threads, semaphores and message queues, the old style API, with
dynamic memory allocation was used. The main configuration
parameters are given in Table 1. 

4.2.2 RIOT: The default configuration of RIOT for the FRDM-
K64F was modified to disable one of the timer modules, which
used the channels 2 and 3 of the programmable interrupt timer

Fig. 1  Test cases A–F
(a) Test case A, (b) Test case B, (c) Test case C, (d) Test case D, (e) Test case E, (f)
Test case F

 

Fig. 2  Test cases G and H
(a) Test case G, (b) Test case H

 

178 IET Softw., 2018, Vol. 12 Iss. 3, pp. 176-182
© The Institution of Engineering and Technology 2018



(PIT). Despite this, sema was the only additional module used, for
enabling semaphores. The version used for the performed tests was
at the 4fbe9b1d11 Git commit, from 2016-11-19.

4.2.3 μC/OS-II and μC/OS-III: The code for the benchmarks was
based on the default project created by the Kinetis Design Studio
IDE when used in conjunction with the Kinetis SDK. The modified
configuration parameters for μC/OS-II and μC/OS-III are given in
Table 2. Flag OS_CFG_TMR_TASK_RATE_HZ is only present in
μC/OS-III because, in μC/OS-II, the software timer rate is the same
as the tick rate, while in μC/OS-III, it can be an integer fraction of
the tick rate. The versions used were 2.92.11 for μC/OS-II and
3.05.01 for μC/OS-III. Both versions were supplied by Freescale,
on the Kinetis SDK builder webpage. 

4.2.4 Zephyr: As in RIOT, the default configuration for the
FRDM-K64F board was used with no modifications. Like the other
systems, the tick rate was configured to be 1000 Hz. The used
version was at the 79f020be54 Git commit from 12-11-2016.

4.3 Results

All timings were measured using the channels 2 and 3 of the PIT,
which has 32 bits per channel and is free-running and downwards
counting timers running at the same clock as the main processor
bus, at 60 MHz, half of the core clock. For each benchmark, 128

batches of 1024 samples were captured, resulting in a total of
131,072 measurements.

4.3.1 Task switching: Observing the benchmark statistics in
Tables 3 and 4 and Fig. 3, RIOT has the best results in this
benchmark because of its clean implementation and being a
tickless RTOS. Looking only at the means, μC/OS-II and
FreeRTOS, both of which also have a simple implementation,
follow. μC/OS-III and Zephyr are next, with mixed results for both. 

While Zephyr clearly had a quicker response to task suspension,
resuming is almost 50% slower than μC/OS-III, and almost 100%
slower than RIOT.

The high switching times of Zephyr can be explained by its rich
API, which has many layers of abstraction. While the API call used
in this benchmark does not present this to the user, the underlying
code makes use of these flexible APIs. Besides this, the execution
of two interrupt service handlers, the supervisor call (SVC) and the
system-level service handler (PendSV), is necessary to make the
task switch, while for the other RTOSs tested, the context switches
are performed by the PendSV handler. RIOT branches to the SVC
handler from within the PendSV, but an interrupt is not generated,
eliminating the need for the tail-chaining operation in the ARM
Cortex-M4 core [20].

Even though the quickest response is a desirable characteristic,
in an RTOS, determinism is much more important. Looking at the
standard deviation, RIOT again is clearly the winner, with the
lowest variation. μC/OS-III comes next. FreeRTOS and Zephyr
follow with mixed results in both measurements. μC/OS-II is the
RTOS with the worse results for these benchmarks.

Table 5 presents the system API calls used in this benchmark. 

4.3.2 Getting and releasing a semaphore: Like the previous
benchmark, the results here (Fig. 4a) show a difference of 100%
between two or more systems. Here, though, there is not a clearly
faster OS. FreeRTOS and Zephyr have the highest times for
releasing a semaphore, followed by μC/OS-III. 

FreeRTOS semaphores are based on message queues, which
pass NULL messages, explaining the slower performance. μC/OS-
III uses the underlying OS_Post function, which is common to
various other functions, and must handle a multitude of situations,
which uses a more complex logic, and in turn, a slower
performance for posting a semaphore. On the other hand, μC/OS-

Table 1 FreeRTOS configuration parameters
Configuration flag Value
configUSE_PREEMPTION 1
configUSE_IDLE_HOOK 0
configUSE_TICK_HOOK 0
configTICK_RATE_HZ 1000
memory heap management strategy heap_4.c
 

Table 2 μC/OS-II and μC/OS-III configuration parameters
μC/OS-II μC/OS-III Value
OS_TASK_TMR_PRIO OS_CFG_TMR_TASK_PRIO 5
OS_TICKS_PER_SEC OG_CFG_TICK_RATE_HZ 1000
— OS_CFG_TMR_TASK_RATE_HZ 1000
 

Table 3 Task suspension statistics
FreeRTOS RIOT μC/OS-II μC/OS-III Zephyr

mean 6.255775 5.049999 5.586434 8.441663 7.419267
Std 0.1203 0.000322 1.527383 0.041686 0.095662
min 5.85 4.933333 5.05 7.983333 7.1
1% 6.233333 5.05 5.466667 8.4 7.416667
25% 6.233333 5.05 5.466667 8.4 7.416667
50% 6.233333 5.05 5.466667 8.4 7.416667
75% 6.266667 5.05 5.483333 8.483333 7.416667
99% 6.266667 5.05 5.483333 8.483333 7.416667
max 7.983333 5.05 27.966667 8.483333 10.966667
 

Table 4 Task resume statistics
FreeRTOS RIOT μC/OS-II μC/OS-III Zephyr

mean 5.720775 5.338889 5.710462 8.475 11.820378
std 0.099118 0.007857 1.573594 0.008334 0.12047
min 5.7 5.333333 5.583333 8.466667 11.783333
1% 5.7 5.333333 5.583333 8.466667 11.783333
25% 5.7 5.333333 5.583333 8.466667 11.816667
50% 5.716667 5.333333 5.583333 8.475 11.816667
75% 5.716667 5.35 5.6 8.483333 11.816667
99% 5.733333 5.35 5.6 8.483333 11.816667
max 7.383333 5.366667 28.1 8.5 15.366667
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III has the fastest performance for taking a semaphore. The
common function OS_Post is also used, but because of its lean
implementation, it has the best performance of all.

4.3.3 Semaphore passing: This benchmark results (Fig. 4b)
show the performance when using semaphores to synchronise two
tasks. For RIOT, μC/OS-II and μC/OS-III and Zephyr, the results
are, basically, the results of benchmarks A and B added together
(suspension with take, wakeup with give) in between 1 and 2 μs of
the overhead, as shown in Fig. 4c.

The biggest difference occurs with taking a semaphore in
FreeRTOS, with almost 6 μs of overhead. The reasons for this
result are not clear. The system API calls used in benchmarks B
and C are shown in Table 6. 

4.3.4 Passing and receiving a semaphore: As benchmark B,
this benchmark shows the performance solely of the message
queue implementations, not taking in consideration task switching
caused by message passing, though, in this benchmark, the results
(Fig. 5a) are more uniform than on benchmark B. 

FreeRTOS and Zephyr, again, have almost the same results for
posting and receiving while μC/OS-III shows the same difference
as in benchmark B. Again, μC/OS-II has the lowest times, followed
by RIOT.

4.3.5 Inter-task message passing: Like in benchmark C, the
results of this benchmark (Fig. 5b) show the performance when
using message queues to do inter-task communication. Again, like
in benchmark C, the results are almost the same as benchmarks A
and D added together (suspension with receive, wakeup with post)
with between 1 and 2 μs of the overhead, as shown in Fig. 5c.

Again, the biggest difference occurs when receiving a message
in FreeRTOS, with almost 5 μs, with no clear reason to why this
occurs. The system API calls used in benchmarks D and E are
shown in Table 7. 

4.3.6 Fixed-size memory acquire and release: Fig. 6 shows
the results of this benchmark. μC/OS-II, μC/OS-III and RIOT have
almost the same times. While μC/OS-II and μC/OS-III use a
predefined memory pool, with fixed block size, RIOT has no

means of releasing a memory region, when using its base package.
It is possible to use a two-level segregated fit allocator, which has
deterministic time, but it is necessary to make another download
and it has a memory overhead for each memory pool. 

The heap_4 strategy used in FreeRTOS tries to avoid memory
fragmentation, using a predefined memory pool also, but using a
first fit algorithm, and coalescing adjacent free memory blocks into
single larger blocks. This implementation, though, is not
deterministic.

Zephyr also uses a predefined memory pool, and like
FreeRTOS, is not deterministic. The main difference is that the
Zephyr allocation scheme uses a recursive function to search for
free blocks of memory.

Table 8 presents the system API calls used in this benchmark. 

Fig. 3  Task suspension and wake-up times, in μs
 

Table 5 System APIs used in benchmark A
FreeRTOS vTaskSuspend vTaskResume
RIOT thread_sleep thread_wakeup
μC/OS-II OSTaskSuspend OSTaskResume
μC/OS-III OSTaskSuspend OSTaskResume
Zephyr k_thread_suspend k_thread_resume

 

Fig. 4  Semaphore give and take times, in μs
(a) Benchmark B, (b) Benchmark C, (c) Difference of benchmarks A and B added
together, with regard to benchmark C

 
Table 6 System APIs used in benchmarks B and C
FreeRTOS xSemaphoreTake xSemaphoreGive
RIOT sema_wait sema_post
μC/OS-II OSSemPend OSSemPost
μC/OS-III OSSemPend OSSemPost
Zephyr k_sem_take k_sem_give
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4.3.7 Task activation from interrupt service routine: This
benchmark was initially supposed to run on FreeRTOS, RIOT,
Zephyr and μC/OS-III, though, due to limitations in the API from
μC/OS-III, calling OSTaskResume directly from an interrupt
service routine is not possible. Due to this, μC/OS-II was added to

the list of systems to be benchmarked, to keep the comparison fair
between the families of the chosen OSs.

Fig. 7 shows that FreeRTOS has the smallest time because the
kernel does not keep track of interrupts, ISR safe APIs are
provided instead, like xTaskResumeFromISR. RIOT and μC/OS-II
have around the same delay, about 1 μs more than FreeRTOS,
while Zephyr has the highest of all, at almost 14 μs, which is the
same behaviour found in benchmark A. 

4.3.8 Task activation jitter by priority inversion: Fig. 8 shows
the jitter in the activation times of task A. It is possible to observe
that μC/OS-II and μC/OS-III have the jitter centred in 0 μs and
have the lowest variance, followed by RIOT, which, even though
has the jitter centred around 4 and 5 μs, the variance is still low.
The jitter in FreeRTOS and Zephyr have the greatest variance, with
the whiskers of the boxplots in almost 1.5 μs. 

The reasons for this behaviour in FreeRTOS are already
discussed in [9]. Analysing the code for the k_sem_take and
k_sem_give functions in Zephyr, we can see that interrupts are
disabled right after entering these functions, so the same reason for
FreeRTOS applies to Zephyr.

RIOT semaphores are based on message queues, as in
FreeRTOS, but the critical sessions where interrupts are disabled
are smaller and used only where strictly necessary. In addition, the
periodic wakeup in RIOT is not based on the SysTick, but another
timer, so the 4.5 μs delay can be subtracted from the wakeup
period, to have it even closer to 0.

Fig. 5  Message post and receive times, in μs
(a) Benchmark D, (b) Benchmark E, (c) Difference of benchmarks A and B added
together, with regard to benchmark E

 
Table 7 System APIs used in benchmarks D and E
FreeRTOS xQueueReceive xQueueSend
RIOT msg_receive msg_send
μC/OS-II OSQPend OSQPost
μC/OS-III OSQPend OSQPost
Zephyr k_msgq_get k_msgq_put

 

Fig. 6  Memory allocation and release times, in μs
 

Table 8 System APIs used in benchmark F
FreeRTOS pvPortMalloc vPortFree
RIOT Malloc —
μC/OS-II OSMemGet OSMemPut
μC/OS-III OSMemGet OSMemPut
Zephyr k_malloc k_free

 

Fig. 7  Task activation from ISR time, in μs
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μC/OS-III has a small variance for the same reason as RIOT,
the critical sessions with interrupts disabled in OSSemPend and
OSSemPost functions are small. μC/OS-II has the smallest
variance because OSSemPend and OSSemPost functions have very
small critical sessions.

5 Conclusion
Reliable software is an important requirement for IOT devices. The
set of benchmarks presented in this study measure the performance
of features and primitives of RTOSs focused on low-end IoT
devices.

For high-integrity and safety-critical systems, there is no doubt
that μC/OS-II and μC/OS-II should be chosen, as these systems
have commercial support available, and are pre-certified in
standards concerning avionics systems (DO-178B), industrial
control (IEC61508) and medical devices (ISO62304).

For commercial applications, open-source OSs, such as RIOT,
FreeRTOS, and Zephyr can be an advantage because concerning
IoT devices, privacy and security are fundamental and open-source
software can address easily these two characteristics due to the
collaborative way the development takes place.

FreeRTOS, while not as consistent as RIOT, also had good
results. Commercial support is available through OPENRTOS [21],
a distribution which removes all GPL restrictions from the base
system, and SAFERTOS, a safety-critical, pre-certified kernel for
several applications, such as transportation and rail, nuclear and
automotive.

Despite being categorised under the multi-threaded OSs and not
the RTOS group in [7], in the benchmarks presented in this study,
RIOT had more consistent results than the other systems. Zephyr,
while showing response times much greater than the other systems,
also had low variations in its behaviour. Both coming pre-packed
with network stacks for multiple protocols, such as 6LoWPAN
[22], RPL [23], OpenWSN [24] and CoAP [25], and supporting a
huge number of development boards, in RIOT ranging from the
Texas Instruments EZ430-Chronos smart watch [26], to the
FRDM-K64F, and in Zephyr ranging from the Arduino Due [27] to
the Intel Galileo [28]. These facts represent a huge advantage over
the other systems, in which the developers would need to integrate
all the drivers and networking subsystems.

For future works, a performance study of the network
communication and routing protocols provided by the studied
RTOSs, such as 6LoWPAN, RPL and CoAP could give more
insights into which OS is best suited for different kinds of
applications. Another important direction for future work is a
precise study on energy consumption associated with the
networked operation of the IoT devices, as well as the analysis on
security aspects, which is a must regarding IoT applications.
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